qemu/hw/block/pflash_cfi02.c

790 lines
24 KiB
C

/*
* CFI parallel flash with AMD command set emulation
*
* Copyright (c) 2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For now, this code can emulate flashes of 1, 2 or 4 bytes width.
* Supported commands/modes are:
* - flash read
* - flash write
* - flash ID read
* - sector erase
* - chip erase
* - unlock bypass command
* - CFI queries
*
* It does not support flash interleaving.
* It does not implement boot blocs with reduced size
* It does not implement software data protection as found in many real chips
* It does not implement erase suspend/resume commands
* It does not implement multiple sectors erase
*/
#include "hw/hw.h"
#include "hw/block/flash.h"
#include "qemu/timer.h"
#include "block/block.h"
#include "exec/address-spaces.h"
#include "qemu/host-utils.h"
#include "hw/sysbus.h"
//#define PFLASH_DEBUG
#ifdef PFLASH_DEBUG
#define DPRINTF(fmt, ...) \
do { \
fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define PFLASH_LAZY_ROMD_THRESHOLD 42
#define TYPE_CFI_PFLASH02 "cfi.pflash02"
#define CFI_PFLASH02(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH02)
struct pflash_t {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
BlockDriverState *bs;
uint32_t sector_len;
uint32_t nb_blocs;
uint32_t chip_len;
uint8_t mappings;
uint8_t width;
uint8_t be;
int wcycle; /* if 0, the flash is read normally */
int bypass;
int ro;
uint8_t cmd;
uint8_t status;
/* FIXME: implement array device properties */
uint16_t ident0;
uint16_t ident1;
uint16_t ident2;
uint16_t ident3;
uint16_t unlock_addr0;
uint16_t unlock_addr1;
uint8_t cfi_len;
uint8_t cfi_table[0x52];
QEMUTimer *timer;
/* The device replicates the flash memory across its memory space. Emulate
* that by having a container (.mem) filled with an array of aliases
* (.mem_mappings) pointing to the flash memory (.orig_mem).
*/
MemoryRegion mem;
MemoryRegion *mem_mappings; /* array; one per mapping */
MemoryRegion orig_mem;
int rom_mode;
int read_counter; /* used for lazy switch-back to rom mode */
char *name;
void *storage;
};
/*
* Set up replicated mappings of the same region.
*/
static void pflash_setup_mappings(pflash_t *pfl)
{
unsigned i;
hwaddr size = memory_region_size(&pfl->orig_mem);
memory_region_init(&pfl->mem, OBJECT(pfl), "pflash", pfl->mappings * size);
pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
for (i = 0; i < pfl->mappings; ++i) {
memory_region_init_alias(&pfl->mem_mappings[i], OBJECT(pfl),
"pflash-alias", &pfl->orig_mem, 0, size);
memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
}
}
static void pflash_register_memory(pflash_t *pfl, int rom_mode)
{
memory_region_rom_device_set_romd(&pfl->orig_mem, rom_mode);
pfl->rom_mode = rom_mode;
}
static void pflash_timer (void *opaque)
{
pflash_t *pfl = opaque;
DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
/* Reset flash */
pfl->status ^= 0x80;
if (pfl->bypass) {
pfl->wcycle = 2;
} else {
pflash_register_memory(pfl, 1);
pfl->wcycle = 0;
}
pfl->cmd = 0;
}
static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
int width, int be)
{
hwaddr boff;
uint32_t ret;
uint8_t *p;
DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
ret = -1;
/* Lazy reset to ROMD mode after a certain amount of read accesses */
if (!pfl->rom_mode && pfl->wcycle == 0 &&
++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
pflash_register_memory(pfl, 1);
}
offset &= pfl->chip_len - 1;
boff = offset & 0xFF;
if (pfl->width == 2)
boff = boff >> 1;
else if (pfl->width == 4)
boff = boff >> 2;
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read*/
DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
pfl->wcycle = 0;
pfl->cmd = 0;
/* fall through to the read code */
case 0x80:
/* We accept reads during second unlock sequence... */
case 0x00:
flash_read:
/* Flash area read */
p = pfl->storage;
switch (width) {
case 1:
ret = p[offset];
// DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
break;
case 2:
if (be) {
ret = p[offset] << 8;
ret |= p[offset + 1];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
}
// DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
break;
case 4:
if (be) {
ret = p[offset] << 24;
ret |= p[offset + 1] << 16;
ret |= p[offset + 2] << 8;
ret |= p[offset + 3];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
ret |= p[offset + 2] << 16;
ret |= p[offset + 3] << 24;
}
// DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
break;
}
break;
case 0x90:
/* flash ID read */
switch (boff) {
case 0x00:
case 0x01:
ret = boff & 0x01 ? pfl->ident1 : pfl->ident0;
break;
case 0x02:
ret = 0x00; /* Pretend all sectors are unprotected */
break;
case 0x0E:
case 0x0F:
ret = boff & 0x01 ? pfl->ident3 : pfl->ident2;
if (ret == (uint8_t)-1) {
goto flash_read;
}
break;
default:
goto flash_read;
}
DPRINTF("%s: ID " TARGET_FMT_plx " %x\n", __func__, boff, ret);
break;
case 0xA0:
case 0x10:
case 0x30:
/* Status register read */
ret = pfl->status;
DPRINTF("%s: status %x\n", __func__, ret);
/* Toggle bit 6 */
pfl->status ^= 0x40;
break;
case 0x98:
/* CFI query mode */
if (boff > pfl->cfi_len)
ret = 0;
else
ret = pfl->cfi_table[boff];
break;
}
return ret;
}
/* update flash content on disk */
static void pflash_update(pflash_t *pfl, int offset,
int size)
{
int offset_end;
if (pfl->bs) {
offset_end = offset + size;
/* round to sectors */
offset = offset >> 9;
offset_end = (offset_end + 511) >> 9;
bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
offset_end - offset);
}
}
static void pflash_write (pflash_t *pfl, hwaddr offset,
uint32_t value, int width, int be)
{
hwaddr boff;
uint8_t *p;
uint8_t cmd;
cmd = value;
if (pfl->cmd != 0xA0 && cmd == 0xF0) {
#if 0
DPRINTF("%s: flash reset asked (%02x %02x)\n",
__func__, pfl->cmd, cmd);
#endif
goto reset_flash;
}
DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
offset, value, width, pfl->wcycle);
offset &= pfl->chip_len - 1;
DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
offset, value, width);
boff = offset & (pfl->sector_len - 1);
if (pfl->width == 2)
boff = boff >> 1;
else if (pfl->width == 4)
boff = boff >> 2;
switch (pfl->wcycle) {
case 0:
/* Set the device in I/O access mode if required */
if (pfl->rom_mode)
pflash_register_memory(pfl, 0);
pfl->read_counter = 0;
/* We're in read mode */
check_unlock0:
if (boff == 0x55 && cmd == 0x98) {
enter_CFI_mode:
/* Enter CFI query mode */
pfl->wcycle = 7;
pfl->cmd = 0x98;
return;
}
if (boff != pfl->unlock_addr0 || cmd != 0xAA) {
DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
__func__, boff, cmd, pfl->unlock_addr0);
goto reset_flash;
}
DPRINTF("%s: unlock sequence started\n", __func__);
break;
case 1:
/* We started an unlock sequence */
check_unlock1:
if (boff != pfl->unlock_addr1 || cmd != 0x55) {
DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
DPRINTF("%s: unlock sequence done\n", __func__);
break;
case 2:
/* We finished an unlock sequence */
if (!pfl->bypass && boff != pfl->unlock_addr0) {
DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
switch (cmd) {
case 0x20:
pfl->bypass = 1;
goto do_bypass;
case 0x80:
case 0x90:
case 0xA0:
pfl->cmd = cmd;
DPRINTF("%s: starting command %02x\n", __func__, cmd);
break;
default:
DPRINTF("%s: unknown command %02x\n", __func__, cmd);
goto reset_flash;
}
break;
case 3:
switch (pfl->cmd) {
case 0x80:
/* We need another unlock sequence */
goto check_unlock0;
case 0xA0:
DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
__func__, offset, value, width);
p = pfl->storage;
if (!pfl->ro) {
switch (width) {
case 1:
p[offset] &= value;
pflash_update(pfl, offset, 1);
break;
case 2:
if (be) {
p[offset] &= value >> 8;
p[offset + 1] &= value;
} else {
p[offset] &= value;
p[offset + 1] &= value >> 8;
}
pflash_update(pfl, offset, 2);
break;
case 4:
if (be) {
p[offset] &= value >> 24;
p[offset + 1] &= value >> 16;
p[offset + 2] &= value >> 8;
p[offset + 3] &= value;
} else {
p[offset] &= value;
p[offset + 1] &= value >> 8;
p[offset + 2] &= value >> 16;
p[offset + 3] &= value >> 24;
}
pflash_update(pfl, offset, 4);
break;
}
}
pfl->status = 0x00 | ~(value & 0x80);
/* Let's pretend write is immediate */
if (pfl->bypass)
goto do_bypass;
goto reset_flash;
case 0x90:
if (pfl->bypass && cmd == 0x00) {
/* Unlock bypass reset */
goto reset_flash;
}
/* We can enter CFI query mode from autoselect mode */
if (boff == 0x55 && cmd == 0x98)
goto enter_CFI_mode;
/* No break here */
default:
DPRINTF("%s: invalid write for command %02x\n",
__func__, pfl->cmd);
goto reset_flash;
}
case 4:
switch (pfl->cmd) {
case 0xA0:
/* Ignore writes while flash data write is occurring */
/* As we suppose write is immediate, this should never happen */
return;
case 0x80:
goto check_unlock1;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 4)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
case 5:
switch (cmd) {
case 0x10:
if (boff != pfl->unlock_addr0) {
DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
__func__, offset);
goto reset_flash;
}
/* Chip erase */
DPRINTF("%s: start chip erase\n", __func__);
if (!pfl->ro) {
memset(pfl->storage, 0xFF, pfl->chip_len);
pflash_update(pfl, 0, pfl->chip_len);
}
pfl->status = 0x00;
/* Let's wait 5 seconds before chip erase is done */
timer_mod(pfl->timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() * 5));
break;
case 0x30:
/* Sector erase */
p = pfl->storage;
offset &= ~(pfl->sector_len - 1);
DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
offset);
if (!pfl->ro) {
memset(p + offset, 0xFF, pfl->sector_len);
pflash_update(pfl, offset, pfl->sector_len);
}
pfl->status = 0x00;
/* Let's wait 1/2 second before sector erase is done */
timer_mod(pfl->timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / 2));
break;
default:
DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
goto reset_flash;
}
pfl->cmd = cmd;
break;
case 6:
switch (pfl->cmd) {
case 0x10:
/* Ignore writes during chip erase */
return;
case 0x30:
/* Ignore writes during sector erase */
return;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 6)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
case 7: /* Special value for CFI queries */
DPRINTF("%s: invalid write in CFI query mode\n", __func__);
goto reset_flash;
default:
/* Should never happen */
DPRINTF("%s: invalid write state (wc 7)\n", __func__);
goto reset_flash;
}
pfl->wcycle++;
return;
/* Reset flash */
reset_flash:
pfl->bypass = 0;
pfl->wcycle = 0;
pfl->cmd = 0;
return;
do_bypass:
pfl->wcycle = 2;
pfl->cmd = 0;
}
static uint32_t pflash_readb_be(void *opaque, hwaddr addr)
{
return pflash_read(opaque, addr, 1, 1);
}
static uint32_t pflash_readb_le(void *opaque, hwaddr addr)
{
return pflash_read(opaque, addr, 1, 0);
}
static uint32_t pflash_readw_be(void *opaque, hwaddr addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 2, 1);
}
static uint32_t pflash_readw_le(void *opaque, hwaddr addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 2, 0);
}
static uint32_t pflash_readl_be(void *opaque, hwaddr addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 4, 1);
}
static uint32_t pflash_readl_le(void *opaque, hwaddr addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 4, 0);
}
static void pflash_writeb_be(void *opaque, hwaddr addr,
uint32_t value)
{
pflash_write(opaque, addr, value, 1, 1);
}
static void pflash_writeb_le(void *opaque, hwaddr addr,
uint32_t value)
{
pflash_write(opaque, addr, value, 1, 0);
}
static void pflash_writew_be(void *opaque, hwaddr addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 2, 1);
}
static void pflash_writew_le(void *opaque, hwaddr addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 2, 0);
}
static void pflash_writel_be(void *opaque, hwaddr addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 4, 1);
}
static void pflash_writel_le(void *opaque, hwaddr addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 4, 0);
}
static const MemoryRegionOps pflash_cfi02_ops_be = {
.old_mmio = {
.read = { pflash_readb_be, pflash_readw_be, pflash_readl_be, },
.write = { pflash_writeb_be, pflash_writew_be, pflash_writel_be, },
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const MemoryRegionOps pflash_cfi02_ops_le = {
.old_mmio = {
.read = { pflash_readb_le, pflash_readw_le, pflash_readl_le, },
.write = { pflash_writeb_le, pflash_writew_le, pflash_writel_le, },
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
{
pflash_t *pfl = CFI_PFLASH02(dev);
uint32_t chip_len;
int ret;
chip_len = pfl->sector_len * pfl->nb_blocs;
/* XXX: to be fixed */
#if 0
if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
return NULL;
#endif
memory_region_init_rom_device(&pfl->orig_mem, OBJECT(pfl), pfl->be ?
&pflash_cfi02_ops_be : &pflash_cfi02_ops_le,
pfl, pfl->name, chip_len);
vmstate_register_ram(&pfl->orig_mem, DEVICE(pfl));
pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
pfl->chip_len = chip_len;
if (pfl->bs) {
/* read the initial flash content */
ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
if (ret < 0) {
vmstate_unregister_ram(&pfl->orig_mem, DEVICE(pfl));
memory_region_destroy(&pfl->orig_mem);
error_setg(errp, "failed to read the initial flash content");
return;
}
}
pflash_setup_mappings(pfl);
pfl->rom_mode = 1;
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
if (pfl->bs) {
pfl->ro = bdrv_is_read_only(pfl->bs);
} else {
pfl->ro = 0;
}
pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
pfl->wcycle = 0;
pfl->cmd = 0;
pfl->status = 0;
/* Hardcoded CFI table (mostly from SG29 Spansion flash) */
pfl->cfi_len = 0x52;
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
pfl->cfi_table[0x12] = 'Y';
/* Command set (AMD/Fujitsu) */
pfl->cfi_table[0x13] = 0x02;
pfl->cfi_table[0x14] = 0x00;
/* Primary extended table address */
pfl->cfi_table[0x15] = 0x31;
pfl->cfi_table[0x16] = 0x00;
/* Alternate command set (none) */
pfl->cfi_table[0x17] = 0x00;
pfl->cfi_table[0x18] = 0x00;
/* Alternate extended table (none) */
pfl->cfi_table[0x19] = 0x00;
pfl->cfi_table[0x1A] = 0x00;
/* Vcc min */
pfl->cfi_table[0x1B] = 0x27;
/* Vcc max */
pfl->cfi_table[0x1C] = 0x36;
/* Vpp min (no Vpp pin) */
pfl->cfi_table[0x1D] = 0x00;
/* Vpp max (no Vpp pin) */
pfl->cfi_table[0x1E] = 0x00;
/* Reserved */
pfl->cfi_table[0x1F] = 0x07;
/* Timeout for min size buffer write (NA) */
pfl->cfi_table[0x20] = 0x00;
/* Typical timeout for block erase (512 ms) */
pfl->cfi_table[0x21] = 0x09;
/* Typical timeout for full chip erase (4096 ms) */
pfl->cfi_table[0x22] = 0x0C;
/* Reserved */
pfl->cfi_table[0x23] = 0x01;
/* Max timeout for buffer write (NA) */
pfl->cfi_table[0x24] = 0x00;
/* Max timeout for block erase */
pfl->cfi_table[0x25] = 0x0A;
/* Max timeout for chip erase */
pfl->cfi_table[0x26] = 0x0D;
/* Device size */
pfl->cfi_table[0x27] = ctz32(chip_len);
/* Flash device interface (8 & 16 bits) */
pfl->cfi_table[0x28] = 0x02;
pfl->cfi_table[0x29] = 0x00;
/* Max number of bytes in multi-bytes write */
/* XXX: disable buffered write as it's not supported */
// pfl->cfi_table[0x2A] = 0x05;
pfl->cfi_table[0x2A] = 0x00;
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions (uniform) */
pfl->cfi_table[0x2C] = 0x01;
/* Erase block region 1 */
pfl->cfi_table[0x2D] = pfl->nb_blocs - 1;
pfl->cfi_table[0x2E] = (pfl->nb_blocs - 1) >> 8;
pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
pfl->cfi_table[0x30] = pfl->sector_len >> 16;
/* Extended */
pfl->cfi_table[0x31] = 'P';
pfl->cfi_table[0x32] = 'R';
pfl->cfi_table[0x33] = 'I';
pfl->cfi_table[0x34] = '1';
pfl->cfi_table[0x35] = '0';
pfl->cfi_table[0x36] = 0x00;
pfl->cfi_table[0x37] = 0x00;
pfl->cfi_table[0x38] = 0x00;
pfl->cfi_table[0x39] = 0x00;
pfl->cfi_table[0x3a] = 0x00;
pfl->cfi_table[0x3b] = 0x00;
pfl->cfi_table[0x3c] = 0x00;
}
static Property pflash_cfi02_properties[] = {
DEFINE_PROP_DRIVE("drive", struct pflash_t, bs),
DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
DEFINE_PROP_UINT32("sector-length", struct pflash_t, sector_len, 0),
DEFINE_PROP_UINT8("width", struct pflash_t, width, 0),
DEFINE_PROP_UINT8("mappings", struct pflash_t, mappings, 0),
DEFINE_PROP_UINT8("big-endian", struct pflash_t, be, 0),
DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
DEFINE_PROP_UINT16("unlock-addr0", struct pflash_t, unlock_addr0, 0),
DEFINE_PROP_UINT16("unlock-addr1", struct pflash_t, unlock_addr1, 0),
DEFINE_PROP_STRING("name", struct pflash_t, name),
DEFINE_PROP_END_OF_LIST(),
};
static void pflash_cfi02_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pflash_cfi02_realize;
dc->props = pflash_cfi02_properties;
}
static const TypeInfo pflash_cfi02_info = {
.name = TYPE_CFI_PFLASH02,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(struct pflash_t),
.class_init = pflash_cfi02_class_init,
};
static void pflash_cfi02_register_types(void)
{
type_register_static(&pflash_cfi02_info);
}
type_init(pflash_cfi02_register_types)
pflash_t *pflash_cfi02_register(hwaddr base,
DeviceState *qdev, const char *name,
hwaddr size,
BlockDriverState *bs, uint32_t sector_len,
int nb_blocs, int nb_mappings, int width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
uint16_t unlock_addr0, uint16_t unlock_addr1,
int be)
{
DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH02);
if (bs && qdev_prop_set_drive(dev, "drive", bs)) {
abort();
}
qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
qdev_prop_set_uint32(dev, "sector-length", sector_len);
qdev_prop_set_uint8(dev, "width", width);
qdev_prop_set_uint8(dev, "mappings", nb_mappings);
qdev_prop_set_uint8(dev, "big-endian", !!be);
qdev_prop_set_uint16(dev, "id0", id0);
qdev_prop_set_uint16(dev, "id1", id1);
qdev_prop_set_uint16(dev, "id2", id2);
qdev_prop_set_uint16(dev, "id3", id3);
qdev_prop_set_uint16(dev, "unlock-addr0", unlock_addr0);
qdev_prop_set_uint16(dev, "unlock-addr1", unlock_addr1);
qdev_prop_set_string(dev, "name", name);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
return CFI_PFLASH02(dev);
}