mirror of https://gitee.com/openkylin/qemu.git
1432 lines
42 KiB
C
1432 lines
42 KiB
C
/*
|
|
* QEMU PC System Emulator
|
|
*
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "hw/hw.h"
|
|
#include "hw/i386/pc.h"
|
|
#include "hw/char/serial.h"
|
|
#include "hw/i386/apic.h"
|
|
#include "hw/block/fdc.h"
|
|
#include "hw/ide.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "monitor/monitor.h"
|
|
#include "hw/nvram/fw_cfg.h"
|
|
#include "hw/timer/hpet.h"
|
|
#include "hw/i386/smbios.h"
|
|
#include "hw/loader.h"
|
|
#include "elf.h"
|
|
#include "multiboot.h"
|
|
#include "hw/timer/mc146818rtc.h"
|
|
#include "hw/timer/i8254.h"
|
|
#include "hw/audio/pcspk.h"
|
|
#include "hw/pci/msi.h"
|
|
#include "hw/sysbus.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_i386.h"
|
|
#include "hw/xen/xen.h"
|
|
#include "sysemu/blockdev.h"
|
|
#include "hw/block/block.h"
|
|
#include "ui/qemu-spice.h"
|
|
#include "exec/memory.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "sysemu/arch_init.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/config-file.h"
|
|
#include "hw/acpi/acpi.h"
|
|
#include "hw/acpi/cpu_hotplug.h"
|
|
#include "hw/cpu/icc_bus.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/pci/pci_host.h"
|
|
#include "acpi-build.h"
|
|
|
|
/* debug PC/ISA interrupts */
|
|
//#define DEBUG_IRQ
|
|
|
|
#ifdef DEBUG_IRQ
|
|
#define DPRINTF(fmt, ...) \
|
|
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, ...)
|
|
#endif
|
|
|
|
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */
|
|
#define ACPI_DATA_SIZE 0x10000
|
|
#define BIOS_CFG_IOPORT 0x510
|
|
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
|
|
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
|
|
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
|
|
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
|
|
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
|
|
|
|
#define E820_NR_ENTRIES 16
|
|
|
|
struct e820_entry {
|
|
uint64_t address;
|
|
uint64_t length;
|
|
uint32_t type;
|
|
} QEMU_PACKED __attribute((__aligned__(4)));
|
|
|
|
struct e820_table {
|
|
uint32_t count;
|
|
struct e820_entry entry[E820_NR_ENTRIES];
|
|
} QEMU_PACKED __attribute((__aligned__(4)));
|
|
|
|
static struct e820_table e820_reserve;
|
|
static struct e820_entry *e820_table;
|
|
static unsigned e820_entries;
|
|
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
|
|
|
|
void gsi_handler(void *opaque, int n, int level)
|
|
{
|
|
GSIState *s = opaque;
|
|
|
|
DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
|
|
if (n < ISA_NUM_IRQS) {
|
|
qemu_set_irq(s->i8259_irq[n], level);
|
|
}
|
|
qemu_set_irq(s->ioapic_irq[n], level);
|
|
}
|
|
|
|
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
}
|
|
|
|
static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
return 0xffffffffffffffffULL;
|
|
}
|
|
|
|
/* MSDOS compatibility mode FPU exception support */
|
|
static qemu_irq ferr_irq;
|
|
|
|
void pc_register_ferr_irq(qemu_irq irq)
|
|
{
|
|
ferr_irq = irq;
|
|
}
|
|
|
|
/* XXX: add IGNNE support */
|
|
void cpu_set_ferr(CPUX86State *s)
|
|
{
|
|
qemu_irq_raise(ferr_irq);
|
|
}
|
|
|
|
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
qemu_irq_lower(ferr_irq);
|
|
}
|
|
|
|
static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
return 0xffffffffffffffffULL;
|
|
}
|
|
|
|
/* TSC handling */
|
|
uint64_t cpu_get_tsc(CPUX86State *env)
|
|
{
|
|
return cpu_get_ticks();
|
|
}
|
|
|
|
/* SMM support */
|
|
|
|
static cpu_set_smm_t smm_set;
|
|
static void *smm_arg;
|
|
|
|
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
|
|
{
|
|
assert(smm_set == NULL);
|
|
assert(smm_arg == NULL);
|
|
smm_set = callback;
|
|
smm_arg = arg;
|
|
}
|
|
|
|
void cpu_smm_update(CPUX86State *env)
|
|
{
|
|
if (smm_set && smm_arg && CPU(x86_env_get_cpu(env)) == first_cpu) {
|
|
smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
|
|
}
|
|
}
|
|
|
|
|
|
/* IRQ handling */
|
|
int cpu_get_pic_interrupt(CPUX86State *env)
|
|
{
|
|
X86CPU *cpu = x86_env_get_cpu(env);
|
|
int intno;
|
|
|
|
intno = apic_get_interrupt(cpu->apic_state);
|
|
if (intno >= 0) {
|
|
return intno;
|
|
}
|
|
/* read the irq from the PIC */
|
|
if (!apic_accept_pic_intr(cpu->apic_state)) {
|
|
return -1;
|
|
}
|
|
|
|
intno = pic_read_irq(isa_pic);
|
|
return intno;
|
|
}
|
|
|
|
static void pic_irq_request(void *opaque, int irq, int level)
|
|
{
|
|
CPUState *cs = first_cpu;
|
|
X86CPU *cpu = X86_CPU(cs);
|
|
|
|
DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
|
|
if (cpu->apic_state) {
|
|
CPU_FOREACH(cs) {
|
|
cpu = X86_CPU(cs);
|
|
if (apic_accept_pic_intr(cpu->apic_state)) {
|
|
apic_deliver_pic_intr(cpu->apic_state, level);
|
|
}
|
|
}
|
|
} else {
|
|
if (level) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
|
|
} else {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* PC cmos mappings */
|
|
|
|
#define REG_EQUIPMENT_BYTE 0x14
|
|
|
|
static int cmos_get_fd_drive_type(FDriveType fd0)
|
|
{
|
|
int val;
|
|
|
|
switch (fd0) {
|
|
case FDRIVE_DRV_144:
|
|
/* 1.44 Mb 3"5 drive */
|
|
val = 4;
|
|
break;
|
|
case FDRIVE_DRV_288:
|
|
/* 2.88 Mb 3"5 drive */
|
|
val = 5;
|
|
break;
|
|
case FDRIVE_DRV_120:
|
|
/* 1.2 Mb 5"5 drive */
|
|
val = 2;
|
|
break;
|
|
case FDRIVE_DRV_NONE:
|
|
default:
|
|
val = 0;
|
|
break;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
|
|
int16_t cylinders, int8_t heads, int8_t sectors)
|
|
{
|
|
rtc_set_memory(s, type_ofs, 47);
|
|
rtc_set_memory(s, info_ofs, cylinders);
|
|
rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
|
|
rtc_set_memory(s, info_ofs + 2, heads);
|
|
rtc_set_memory(s, info_ofs + 3, 0xff);
|
|
rtc_set_memory(s, info_ofs + 4, 0xff);
|
|
rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
|
|
rtc_set_memory(s, info_ofs + 6, cylinders);
|
|
rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
|
|
rtc_set_memory(s, info_ofs + 8, sectors);
|
|
}
|
|
|
|
/* convert boot_device letter to something recognizable by the bios */
|
|
static int boot_device2nibble(char boot_device)
|
|
{
|
|
switch(boot_device) {
|
|
case 'a':
|
|
case 'b':
|
|
return 0x01; /* floppy boot */
|
|
case 'c':
|
|
return 0x02; /* hard drive boot */
|
|
case 'd':
|
|
return 0x03; /* CD-ROM boot */
|
|
case 'n':
|
|
return 0x04; /* Network boot */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_boot_dev(ISADevice *s, const char *boot_device)
|
|
{
|
|
#define PC_MAX_BOOT_DEVICES 3
|
|
int nbds, bds[3] = { 0, };
|
|
int i;
|
|
|
|
nbds = strlen(boot_device);
|
|
if (nbds > PC_MAX_BOOT_DEVICES) {
|
|
error_report("Too many boot devices for PC");
|
|
return(1);
|
|
}
|
|
for (i = 0; i < nbds; i++) {
|
|
bds[i] = boot_device2nibble(boot_device[i]);
|
|
if (bds[i] == 0) {
|
|
error_report("Invalid boot device for PC: '%c'",
|
|
boot_device[i]);
|
|
return(1);
|
|
}
|
|
}
|
|
rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
|
|
rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
|
|
return(0);
|
|
}
|
|
|
|
static int pc_boot_set(void *opaque, const char *boot_device)
|
|
{
|
|
return set_boot_dev(opaque, boot_device);
|
|
}
|
|
|
|
typedef struct pc_cmos_init_late_arg {
|
|
ISADevice *rtc_state;
|
|
BusState *idebus[2];
|
|
} pc_cmos_init_late_arg;
|
|
|
|
static void pc_cmos_init_late(void *opaque)
|
|
{
|
|
pc_cmos_init_late_arg *arg = opaque;
|
|
ISADevice *s = arg->rtc_state;
|
|
int16_t cylinders;
|
|
int8_t heads, sectors;
|
|
int val;
|
|
int i, trans;
|
|
|
|
val = 0;
|
|
if (ide_get_geometry(arg->idebus[0], 0,
|
|
&cylinders, &heads, §ors) >= 0) {
|
|
cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
|
|
val |= 0xf0;
|
|
}
|
|
if (ide_get_geometry(arg->idebus[0], 1,
|
|
&cylinders, &heads, §ors) >= 0) {
|
|
cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
|
|
val |= 0x0f;
|
|
}
|
|
rtc_set_memory(s, 0x12, val);
|
|
|
|
val = 0;
|
|
for (i = 0; i < 4; i++) {
|
|
/* NOTE: ide_get_geometry() returns the physical
|
|
geometry. It is always such that: 1 <= sects <= 63, 1
|
|
<= heads <= 16, 1 <= cylinders <= 16383. The BIOS
|
|
geometry can be different if a translation is done. */
|
|
if (ide_get_geometry(arg->idebus[i / 2], i % 2,
|
|
&cylinders, &heads, §ors) >= 0) {
|
|
trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
|
|
assert((trans & ~3) == 0);
|
|
val |= trans << (i * 2);
|
|
}
|
|
}
|
|
rtc_set_memory(s, 0x39, val);
|
|
|
|
qemu_unregister_reset(pc_cmos_init_late, opaque);
|
|
}
|
|
|
|
typedef struct RTCCPUHotplugArg {
|
|
Notifier cpu_added_notifier;
|
|
ISADevice *rtc_state;
|
|
} RTCCPUHotplugArg;
|
|
|
|
static void rtc_notify_cpu_added(Notifier *notifier, void *data)
|
|
{
|
|
RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg,
|
|
cpu_added_notifier);
|
|
ISADevice *s = arg->rtc_state;
|
|
|
|
/* increment the number of CPUs */
|
|
rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1);
|
|
}
|
|
|
|
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
|
|
const char *boot_device,
|
|
ISADevice *floppy, BusState *idebus0, BusState *idebus1,
|
|
ISADevice *s)
|
|
{
|
|
int val, nb, i;
|
|
FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
|
|
static pc_cmos_init_late_arg arg;
|
|
static RTCCPUHotplugArg cpu_hotplug_cb;
|
|
|
|
/* various important CMOS locations needed by PC/Bochs bios */
|
|
|
|
/* memory size */
|
|
/* base memory (first MiB) */
|
|
val = MIN(ram_size / 1024, 640);
|
|
rtc_set_memory(s, 0x15, val);
|
|
rtc_set_memory(s, 0x16, val >> 8);
|
|
/* extended memory (next 64MiB) */
|
|
if (ram_size > 1024 * 1024) {
|
|
val = (ram_size - 1024 * 1024) / 1024;
|
|
} else {
|
|
val = 0;
|
|
}
|
|
if (val > 65535)
|
|
val = 65535;
|
|
rtc_set_memory(s, 0x17, val);
|
|
rtc_set_memory(s, 0x18, val >> 8);
|
|
rtc_set_memory(s, 0x30, val);
|
|
rtc_set_memory(s, 0x31, val >> 8);
|
|
/* memory between 16MiB and 4GiB */
|
|
if (ram_size > 16 * 1024 * 1024) {
|
|
val = (ram_size - 16 * 1024 * 1024) / 65536;
|
|
} else {
|
|
val = 0;
|
|
}
|
|
if (val > 65535)
|
|
val = 65535;
|
|
rtc_set_memory(s, 0x34, val);
|
|
rtc_set_memory(s, 0x35, val >> 8);
|
|
/* memory above 4GiB */
|
|
val = above_4g_mem_size / 65536;
|
|
rtc_set_memory(s, 0x5b, val);
|
|
rtc_set_memory(s, 0x5c, val >> 8);
|
|
rtc_set_memory(s, 0x5d, val >> 16);
|
|
|
|
/* set the number of CPU */
|
|
rtc_set_memory(s, 0x5f, smp_cpus - 1);
|
|
/* init CPU hotplug notifier */
|
|
cpu_hotplug_cb.rtc_state = s;
|
|
cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added;
|
|
qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier);
|
|
|
|
if (set_boot_dev(s, boot_device)) {
|
|
exit(1);
|
|
}
|
|
|
|
/* floppy type */
|
|
if (floppy) {
|
|
for (i = 0; i < 2; i++) {
|
|
fd_type[i] = isa_fdc_get_drive_type(floppy, i);
|
|
}
|
|
}
|
|
val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
|
|
cmos_get_fd_drive_type(fd_type[1]);
|
|
rtc_set_memory(s, 0x10, val);
|
|
|
|
val = 0;
|
|
nb = 0;
|
|
if (fd_type[0] < FDRIVE_DRV_NONE) {
|
|
nb++;
|
|
}
|
|
if (fd_type[1] < FDRIVE_DRV_NONE) {
|
|
nb++;
|
|
}
|
|
switch (nb) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
val |= 0x01; /* 1 drive, ready for boot */
|
|
break;
|
|
case 2:
|
|
val |= 0x41; /* 2 drives, ready for boot */
|
|
break;
|
|
}
|
|
val |= 0x02; /* FPU is there */
|
|
val |= 0x04; /* PS/2 mouse installed */
|
|
rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
|
|
|
|
/* hard drives */
|
|
arg.rtc_state = s;
|
|
arg.idebus[0] = idebus0;
|
|
arg.idebus[1] = idebus1;
|
|
qemu_register_reset(pc_cmos_init_late, &arg);
|
|
}
|
|
|
|
#define TYPE_PORT92 "port92"
|
|
#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
|
|
|
|
/* port 92 stuff: could be split off */
|
|
typedef struct Port92State {
|
|
ISADevice parent_obj;
|
|
|
|
MemoryRegion io;
|
|
uint8_t outport;
|
|
qemu_irq *a20_out;
|
|
} Port92State;
|
|
|
|
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
|
|
unsigned size)
|
|
{
|
|
Port92State *s = opaque;
|
|
|
|
DPRINTF("port92: write 0x%02x\n", val);
|
|
s->outport = val;
|
|
qemu_set_irq(*s->a20_out, (val >> 1) & 1);
|
|
if (val & 1) {
|
|
qemu_system_reset_request();
|
|
}
|
|
}
|
|
|
|
static uint64_t port92_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
Port92State *s = opaque;
|
|
uint32_t ret;
|
|
|
|
ret = s->outport;
|
|
DPRINTF("port92: read 0x%02x\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
|
|
{
|
|
Port92State *s = PORT92(dev);
|
|
|
|
s->a20_out = a20_out;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_port92_isa = {
|
|
.name = "port92",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT8(outport, Port92State),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void port92_reset(DeviceState *d)
|
|
{
|
|
Port92State *s = PORT92(d);
|
|
|
|
s->outport &= ~1;
|
|
}
|
|
|
|
static const MemoryRegionOps port92_ops = {
|
|
.read = port92_read,
|
|
.write = port92_write,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 1,
|
|
},
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
};
|
|
|
|
static void port92_initfn(Object *obj)
|
|
{
|
|
Port92State *s = PORT92(obj);
|
|
|
|
memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
|
|
|
|
s->outport = 0;
|
|
}
|
|
|
|
static void port92_realizefn(DeviceState *dev, Error **errp)
|
|
{
|
|
ISADevice *isadev = ISA_DEVICE(dev);
|
|
Port92State *s = PORT92(dev);
|
|
|
|
isa_register_ioport(isadev, &s->io, 0x92);
|
|
}
|
|
|
|
static void port92_class_initfn(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->realize = port92_realizefn;
|
|
dc->reset = port92_reset;
|
|
dc->vmsd = &vmstate_port92_isa;
|
|
/*
|
|
* Reason: unlike ordinary ISA devices, this one needs additional
|
|
* wiring: its A20 output line needs to be wired up by
|
|
* port92_init().
|
|
*/
|
|
dc->cannot_instantiate_with_device_add_yet = true;
|
|
}
|
|
|
|
static const TypeInfo port92_info = {
|
|
.name = TYPE_PORT92,
|
|
.parent = TYPE_ISA_DEVICE,
|
|
.instance_size = sizeof(Port92State),
|
|
.instance_init = port92_initfn,
|
|
.class_init = port92_class_initfn,
|
|
};
|
|
|
|
static void port92_register_types(void)
|
|
{
|
|
type_register_static(&port92_info);
|
|
}
|
|
|
|
type_init(port92_register_types)
|
|
|
|
static void handle_a20_line_change(void *opaque, int irq, int level)
|
|
{
|
|
X86CPU *cpu = opaque;
|
|
|
|
/* XXX: send to all CPUs ? */
|
|
/* XXX: add logic to handle multiple A20 line sources */
|
|
x86_cpu_set_a20(cpu, level);
|
|
}
|
|
|
|
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
|
|
{
|
|
int index = le32_to_cpu(e820_reserve.count);
|
|
struct e820_entry *entry;
|
|
|
|
if (type != E820_RAM) {
|
|
/* old FW_CFG_E820_TABLE entry -- reservations only */
|
|
if (index >= E820_NR_ENTRIES) {
|
|
return -EBUSY;
|
|
}
|
|
entry = &e820_reserve.entry[index++];
|
|
|
|
entry->address = cpu_to_le64(address);
|
|
entry->length = cpu_to_le64(length);
|
|
entry->type = cpu_to_le32(type);
|
|
|
|
e820_reserve.count = cpu_to_le32(index);
|
|
}
|
|
|
|
/* new "etc/e820" file -- include ram too */
|
|
e820_table = g_realloc(e820_table,
|
|
sizeof(struct e820_entry) * (e820_entries+1));
|
|
e820_table[e820_entries].address = cpu_to_le64(address);
|
|
e820_table[e820_entries].length = cpu_to_le64(length);
|
|
e820_table[e820_entries].type = cpu_to_le32(type);
|
|
e820_entries++;
|
|
|
|
return e820_entries;
|
|
}
|
|
|
|
/* Calculates the limit to CPU APIC ID values
|
|
*
|
|
* This function returns the limit for the APIC ID value, so that all
|
|
* CPU APIC IDs are < pc_apic_id_limit().
|
|
*
|
|
* This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
|
|
*/
|
|
static unsigned int pc_apic_id_limit(unsigned int max_cpus)
|
|
{
|
|
return x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
|
|
}
|
|
|
|
static FWCfgState *bochs_bios_init(void)
|
|
{
|
|
FWCfgState *fw_cfg;
|
|
uint8_t *smbios_table;
|
|
size_t smbios_len;
|
|
uint64_t *numa_fw_cfg;
|
|
int i, j;
|
|
unsigned int apic_id_limit = pc_apic_id_limit(max_cpus);
|
|
|
|
fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
|
|
/* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
|
|
*
|
|
* SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug
|
|
* QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC
|
|
* ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the
|
|
* "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS
|
|
* may see".
|
|
*
|
|
* So, this means we must not use max_cpus, here, but the maximum possible
|
|
* APIC ID value, plus one.
|
|
*
|
|
* [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is
|
|
* the APIC ID, not the "CPU index"
|
|
*/
|
|
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit);
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
|
|
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
|
|
acpi_tables, acpi_tables_len);
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
|
|
|
|
smbios_table = smbios_get_table(&smbios_len);
|
|
if (smbios_table)
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
|
|
smbios_table, smbios_len);
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
|
|
&e820_reserve, sizeof(e820_reserve));
|
|
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
|
|
sizeof(struct e820_entry) * e820_entries);
|
|
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
|
|
/* allocate memory for the NUMA channel: one (64bit) word for the number
|
|
* of nodes, one word for each VCPU->node and one word for each node to
|
|
* hold the amount of memory.
|
|
*/
|
|
numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes);
|
|
numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
|
|
for (i = 0; i < max_cpus; i++) {
|
|
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
|
|
assert(apic_id < apic_id_limit);
|
|
for (j = 0; j < nb_numa_nodes; j++) {
|
|
if (test_bit(i, node_cpumask[j])) {
|
|
numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]);
|
|
}
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
|
|
(1 + apic_id_limit + nb_numa_nodes) *
|
|
sizeof(*numa_fw_cfg));
|
|
|
|
return fw_cfg;
|
|
}
|
|
|
|
static long get_file_size(FILE *f)
|
|
{
|
|
long where, size;
|
|
|
|
/* XXX: on Unix systems, using fstat() probably makes more sense */
|
|
|
|
where = ftell(f);
|
|
fseek(f, 0, SEEK_END);
|
|
size = ftell(f);
|
|
fseek(f, where, SEEK_SET);
|
|
|
|
return size;
|
|
}
|
|
|
|
static void load_linux(FWCfgState *fw_cfg,
|
|
const char *kernel_filename,
|
|
const char *initrd_filename,
|
|
const char *kernel_cmdline,
|
|
hwaddr max_ram_size)
|
|
{
|
|
uint16_t protocol;
|
|
int setup_size, kernel_size, initrd_size = 0, cmdline_size;
|
|
uint32_t initrd_max;
|
|
uint8_t header[8192], *setup, *kernel, *initrd_data;
|
|
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
|
|
FILE *f;
|
|
char *vmode;
|
|
|
|
/* Align to 16 bytes as a paranoia measure */
|
|
cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
|
|
|
|
/* load the kernel header */
|
|
f = fopen(kernel_filename, "rb");
|
|
if (!f || !(kernel_size = get_file_size(f)) ||
|
|
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
|
|
MIN(ARRAY_SIZE(header), kernel_size)) {
|
|
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
|
|
kernel_filename, strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
/* kernel protocol version */
|
|
#if 0
|
|
fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
|
|
#endif
|
|
if (ldl_p(header+0x202) == 0x53726448) {
|
|
protocol = lduw_p(header+0x206);
|
|
} else {
|
|
/* This looks like a multiboot kernel. If it is, let's stop
|
|
treating it like a Linux kernel. */
|
|
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
|
|
kernel_cmdline, kernel_size, header)) {
|
|
return;
|
|
}
|
|
protocol = 0;
|
|
}
|
|
|
|
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
|
|
/* Low kernel */
|
|
real_addr = 0x90000;
|
|
cmdline_addr = 0x9a000 - cmdline_size;
|
|
prot_addr = 0x10000;
|
|
} else if (protocol < 0x202) {
|
|
/* High but ancient kernel */
|
|
real_addr = 0x90000;
|
|
cmdline_addr = 0x9a000 - cmdline_size;
|
|
prot_addr = 0x100000;
|
|
} else {
|
|
/* High and recent kernel */
|
|
real_addr = 0x10000;
|
|
cmdline_addr = 0x20000;
|
|
prot_addr = 0x100000;
|
|
}
|
|
|
|
#if 0
|
|
fprintf(stderr,
|
|
"qemu: real_addr = 0x" TARGET_FMT_plx "\n"
|
|
"qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
|
|
"qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
|
|
real_addr,
|
|
cmdline_addr,
|
|
prot_addr);
|
|
#endif
|
|
|
|
/* highest address for loading the initrd */
|
|
if (protocol >= 0x203) {
|
|
initrd_max = ldl_p(header+0x22c);
|
|
} else {
|
|
initrd_max = 0x37ffffff;
|
|
}
|
|
|
|
if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
|
|
initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
|
|
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
|
|
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
|
|
|
|
if (protocol >= 0x202) {
|
|
stl_p(header+0x228, cmdline_addr);
|
|
} else {
|
|
stw_p(header+0x20, 0xA33F);
|
|
stw_p(header+0x22, cmdline_addr-real_addr);
|
|
}
|
|
|
|
/* handle vga= parameter */
|
|
vmode = strstr(kernel_cmdline, "vga=");
|
|
if (vmode) {
|
|
unsigned int video_mode;
|
|
/* skip "vga=" */
|
|
vmode += 4;
|
|
if (!strncmp(vmode, "normal", 6)) {
|
|
video_mode = 0xffff;
|
|
} else if (!strncmp(vmode, "ext", 3)) {
|
|
video_mode = 0xfffe;
|
|
} else if (!strncmp(vmode, "ask", 3)) {
|
|
video_mode = 0xfffd;
|
|
} else {
|
|
video_mode = strtol(vmode, NULL, 0);
|
|
}
|
|
stw_p(header+0x1fa, video_mode);
|
|
}
|
|
|
|
/* loader type */
|
|
/* High nybble = B reserved for QEMU; low nybble is revision number.
|
|
If this code is substantially changed, you may want to consider
|
|
incrementing the revision. */
|
|
if (protocol >= 0x200) {
|
|
header[0x210] = 0xB0;
|
|
}
|
|
/* heap */
|
|
if (protocol >= 0x201) {
|
|
header[0x211] |= 0x80; /* CAN_USE_HEAP */
|
|
stw_p(header+0x224, cmdline_addr-real_addr-0x200);
|
|
}
|
|
|
|
/* load initrd */
|
|
if (initrd_filename) {
|
|
if (protocol < 0x200) {
|
|
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
|
|
exit(1);
|
|
}
|
|
|
|
initrd_size = get_image_size(initrd_filename);
|
|
if (initrd_size < 0) {
|
|
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
|
|
initrd_filename, strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
initrd_addr = (initrd_max-initrd_size) & ~4095;
|
|
|
|
initrd_data = g_malloc(initrd_size);
|
|
load_image(initrd_filename, initrd_data);
|
|
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
|
|
|
|
stl_p(header+0x218, initrd_addr);
|
|
stl_p(header+0x21c, initrd_size);
|
|
}
|
|
|
|
/* load kernel and setup */
|
|
setup_size = header[0x1f1];
|
|
if (setup_size == 0) {
|
|
setup_size = 4;
|
|
}
|
|
setup_size = (setup_size+1)*512;
|
|
kernel_size -= setup_size;
|
|
|
|
setup = g_malloc(setup_size);
|
|
kernel = g_malloc(kernel_size);
|
|
fseek(f, 0, SEEK_SET);
|
|
if (fread(setup, 1, setup_size, f) != setup_size) {
|
|
fprintf(stderr, "fread() failed\n");
|
|
exit(1);
|
|
}
|
|
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
|
|
fprintf(stderr, "fread() failed\n");
|
|
exit(1);
|
|
}
|
|
fclose(f);
|
|
memcpy(setup, header, MIN(sizeof(header), setup_size));
|
|
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
|
|
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
|
|
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
|
|
|
|
option_rom[nb_option_roms].name = "linuxboot.bin";
|
|
option_rom[nb_option_roms].bootindex = 0;
|
|
nb_option_roms++;
|
|
}
|
|
|
|
#define NE2000_NB_MAX 6
|
|
|
|
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
|
|
0x280, 0x380 };
|
|
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
|
|
|
|
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
|
|
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
|
|
|
|
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
|
|
{
|
|
static int nb_ne2k = 0;
|
|
|
|
if (nb_ne2k == NE2000_NB_MAX)
|
|
return;
|
|
isa_ne2000_init(bus, ne2000_io[nb_ne2k],
|
|
ne2000_irq[nb_ne2k], nd);
|
|
nb_ne2k++;
|
|
}
|
|
|
|
DeviceState *cpu_get_current_apic(void)
|
|
{
|
|
if (current_cpu) {
|
|
X86CPU *cpu = X86_CPU(current_cpu);
|
|
return cpu->apic_state;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
|
|
{
|
|
X86CPU *cpu = opaque;
|
|
|
|
if (level) {
|
|
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
|
|
}
|
|
}
|
|
|
|
static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id,
|
|
DeviceState *icc_bridge, Error **errp)
|
|
{
|
|
X86CPU *cpu;
|
|
Error *local_err = NULL;
|
|
|
|
cpu = cpu_x86_create(cpu_model, icc_bridge, &local_err);
|
|
if (local_err != NULL) {
|
|
error_propagate(errp, local_err);
|
|
return NULL;
|
|
}
|
|
|
|
object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
|
|
object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
|
|
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
object_unref(OBJECT(cpu));
|
|
cpu = NULL;
|
|
}
|
|
return cpu;
|
|
}
|
|
|
|
static const char *current_cpu_model;
|
|
|
|
void pc_hot_add_cpu(const int64_t id, Error **errp)
|
|
{
|
|
DeviceState *icc_bridge;
|
|
int64_t apic_id = x86_cpu_apic_id_from_index(id);
|
|
|
|
if (id < 0) {
|
|
error_setg(errp, "Invalid CPU id: %" PRIi64, id);
|
|
return;
|
|
}
|
|
|
|
if (cpu_exists(apic_id)) {
|
|
error_setg(errp, "Unable to add CPU: %" PRIi64
|
|
", it already exists", id);
|
|
return;
|
|
}
|
|
|
|
if (id >= max_cpus) {
|
|
error_setg(errp, "Unable to add CPU: %" PRIi64
|
|
", max allowed: %d", id, max_cpus - 1);
|
|
return;
|
|
}
|
|
|
|
if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
|
|
error_setg(errp, "Unable to add CPU: %" PRIi64
|
|
", resulting APIC ID (%" PRIi64 ") is too large",
|
|
id, apic_id);
|
|
return;
|
|
}
|
|
|
|
icc_bridge = DEVICE(object_resolve_path_type("icc-bridge",
|
|
TYPE_ICC_BRIDGE, NULL));
|
|
pc_new_cpu(current_cpu_model, apic_id, icc_bridge, errp);
|
|
}
|
|
|
|
void pc_cpus_init(const char *cpu_model, DeviceState *icc_bridge)
|
|
{
|
|
int i;
|
|
X86CPU *cpu = NULL;
|
|
Error *error = NULL;
|
|
unsigned long apic_id_limit;
|
|
|
|
/* init CPUs */
|
|
if (cpu_model == NULL) {
|
|
#ifdef TARGET_X86_64
|
|
cpu_model = "qemu64";
|
|
#else
|
|
cpu_model = "qemu32";
|
|
#endif
|
|
}
|
|
current_cpu_model = cpu_model;
|
|
|
|
apic_id_limit = pc_apic_id_limit(max_cpus);
|
|
if (apic_id_limit > ACPI_CPU_HOTPLUG_ID_LIMIT) {
|
|
error_report("max_cpus is too large. APIC ID of last CPU is %lu",
|
|
apic_id_limit - 1);
|
|
exit(1);
|
|
}
|
|
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
cpu = pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i),
|
|
icc_bridge, &error);
|
|
if (error) {
|
|
error_report("%s", error_get_pretty(error));
|
|
error_free(error);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* map APIC MMIO area if CPU has APIC */
|
|
if (cpu && cpu->apic_state) {
|
|
/* XXX: what if the base changes? */
|
|
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(icc_bridge), 0,
|
|
APIC_DEFAULT_ADDRESS, 0x1000);
|
|
}
|
|
}
|
|
|
|
/* pci-info ROM file. Little endian format */
|
|
typedef struct PcRomPciInfo {
|
|
uint64_t w32_min;
|
|
uint64_t w32_max;
|
|
uint64_t w64_min;
|
|
uint64_t w64_max;
|
|
} PcRomPciInfo;
|
|
|
|
static void pc_fw_cfg_guest_info(PcGuestInfo *guest_info)
|
|
{
|
|
PcRomPciInfo *info;
|
|
Object *pci_info;
|
|
bool ambiguous = false;
|
|
|
|
if (!guest_info->has_pci_info || !guest_info->fw_cfg) {
|
|
return;
|
|
}
|
|
pci_info = object_resolve_path_type("", TYPE_PCI_HOST_BRIDGE, &ambiguous);
|
|
g_assert(!ambiguous);
|
|
if (!pci_info) {
|
|
return;
|
|
}
|
|
|
|
info = g_malloc(sizeof *info);
|
|
info->w32_min = cpu_to_le64(object_property_get_int(pci_info,
|
|
PCI_HOST_PROP_PCI_HOLE_START, NULL));
|
|
info->w32_max = cpu_to_le64(object_property_get_int(pci_info,
|
|
PCI_HOST_PROP_PCI_HOLE_END, NULL));
|
|
info->w64_min = cpu_to_le64(object_property_get_int(pci_info,
|
|
PCI_HOST_PROP_PCI_HOLE64_START, NULL));
|
|
info->w64_max = cpu_to_le64(object_property_get_int(pci_info,
|
|
PCI_HOST_PROP_PCI_HOLE64_END, NULL));
|
|
/* Pass PCI hole info to guest via a side channel.
|
|
* Required so guest PCI enumeration does the right thing. */
|
|
fw_cfg_add_file(guest_info->fw_cfg, "etc/pci-info", info, sizeof *info);
|
|
}
|
|
|
|
typedef struct PcGuestInfoState {
|
|
PcGuestInfo info;
|
|
Notifier machine_done;
|
|
} PcGuestInfoState;
|
|
|
|
static
|
|
void pc_guest_info_machine_done(Notifier *notifier, void *data)
|
|
{
|
|
PcGuestInfoState *guest_info_state = container_of(notifier,
|
|
PcGuestInfoState,
|
|
machine_done);
|
|
pc_fw_cfg_guest_info(&guest_info_state->info);
|
|
acpi_setup(&guest_info_state->info);
|
|
}
|
|
|
|
PcGuestInfo *pc_guest_info_init(ram_addr_t below_4g_mem_size,
|
|
ram_addr_t above_4g_mem_size)
|
|
{
|
|
PcGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
|
|
PcGuestInfo *guest_info = &guest_info_state->info;
|
|
int i, j;
|
|
|
|
guest_info->ram_size_below_4g = below_4g_mem_size;
|
|
guest_info->ram_size = below_4g_mem_size + above_4g_mem_size;
|
|
guest_info->apic_id_limit = pc_apic_id_limit(max_cpus);
|
|
guest_info->apic_xrupt_override = kvm_allows_irq0_override();
|
|
guest_info->numa_nodes = nb_numa_nodes;
|
|
guest_info->node_mem = g_memdup(node_mem, guest_info->numa_nodes *
|
|
sizeof *guest_info->node_mem);
|
|
guest_info->node_cpu = g_malloc0(guest_info->apic_id_limit *
|
|
sizeof *guest_info->node_cpu);
|
|
|
|
for (i = 0; i < max_cpus; i++) {
|
|
unsigned int apic_id = x86_cpu_apic_id_from_index(i);
|
|
assert(apic_id < guest_info->apic_id_limit);
|
|
for (j = 0; j < nb_numa_nodes; j++) {
|
|
if (test_bit(i, node_cpumask[j])) {
|
|
guest_info->node_cpu[apic_id] = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
guest_info_state->machine_done.notify = pc_guest_info_machine_done;
|
|
qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
|
|
return guest_info;
|
|
}
|
|
|
|
/* setup pci memory address space mapping into system address space */
|
|
void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
|
|
MemoryRegion *pci_address_space)
|
|
{
|
|
/* Set to lower priority than RAM */
|
|
memory_region_add_subregion_overlap(system_memory, 0x0,
|
|
pci_address_space, -1);
|
|
}
|
|
|
|
void pc_acpi_init(const char *default_dsdt)
|
|
{
|
|
char *filename;
|
|
|
|
if (acpi_tables != NULL) {
|
|
/* manually set via -acpitable, leave it alone */
|
|
return;
|
|
}
|
|
|
|
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
|
|
if (filename == NULL) {
|
|
fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
|
|
} else {
|
|
char *arg;
|
|
QemuOpts *opts;
|
|
Error *err = NULL;
|
|
|
|
arg = g_strdup_printf("file=%s", filename);
|
|
|
|
/* creates a deep copy of "arg" */
|
|
opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0);
|
|
g_assert(opts != NULL);
|
|
|
|
acpi_table_add_builtin(opts, &err);
|
|
if (err) {
|
|
error_report("WARNING: failed to load %s: %s", filename,
|
|
error_get_pretty(err));
|
|
error_free(err);
|
|
}
|
|
g_free(arg);
|
|
g_free(filename);
|
|
}
|
|
}
|
|
|
|
FWCfgState *pc_memory_init(MemoryRegion *system_memory,
|
|
const char *kernel_filename,
|
|
const char *kernel_cmdline,
|
|
const char *initrd_filename,
|
|
ram_addr_t below_4g_mem_size,
|
|
ram_addr_t above_4g_mem_size,
|
|
MemoryRegion *rom_memory,
|
|
MemoryRegion **ram_memory,
|
|
PcGuestInfo *guest_info)
|
|
{
|
|
int linux_boot, i;
|
|
MemoryRegion *ram, *option_rom_mr;
|
|
MemoryRegion *ram_below_4g, *ram_above_4g;
|
|
FWCfgState *fw_cfg;
|
|
|
|
linux_boot = (kernel_filename != NULL);
|
|
|
|
/* Allocate RAM. We allocate it as a single memory region and use
|
|
* aliases to address portions of it, mostly for backwards compatibility
|
|
* with older qemus that used qemu_ram_alloc().
|
|
*/
|
|
ram = g_malloc(sizeof(*ram));
|
|
memory_region_init_ram(ram, NULL, "pc.ram",
|
|
below_4g_mem_size + above_4g_mem_size);
|
|
vmstate_register_ram_global(ram);
|
|
*ram_memory = ram;
|
|
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
|
|
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
|
|
0, below_4g_mem_size);
|
|
memory_region_add_subregion(system_memory, 0, ram_below_4g);
|
|
e820_add_entry(0, below_4g_mem_size, E820_RAM);
|
|
if (above_4g_mem_size > 0) {
|
|
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
|
|
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
|
|
below_4g_mem_size, above_4g_mem_size);
|
|
memory_region_add_subregion(system_memory, 0x100000000ULL,
|
|
ram_above_4g);
|
|
e820_add_entry(0x100000000ULL, above_4g_mem_size, E820_RAM);
|
|
}
|
|
|
|
|
|
/* Initialize PC system firmware */
|
|
pc_system_firmware_init(rom_memory, guest_info->isapc_ram_fw);
|
|
|
|
option_rom_mr = g_malloc(sizeof(*option_rom_mr));
|
|
memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE);
|
|
vmstate_register_ram_global(option_rom_mr);
|
|
memory_region_add_subregion_overlap(rom_memory,
|
|
PC_ROM_MIN_VGA,
|
|
option_rom_mr,
|
|
1);
|
|
|
|
fw_cfg = bochs_bios_init();
|
|
rom_set_fw(fw_cfg);
|
|
|
|
if (linux_boot) {
|
|
load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
|
|
}
|
|
|
|
for (i = 0; i < nb_option_roms; i++) {
|
|
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
|
|
}
|
|
guest_info->fw_cfg = fw_cfg;
|
|
return fw_cfg;
|
|
}
|
|
|
|
qemu_irq *pc_allocate_cpu_irq(void)
|
|
{
|
|
return qemu_allocate_irqs(pic_irq_request, NULL, 1);
|
|
}
|
|
|
|
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
|
|
{
|
|
DeviceState *dev = NULL;
|
|
|
|
if (pci_bus) {
|
|
PCIDevice *pcidev = pci_vga_init(pci_bus);
|
|
dev = pcidev ? &pcidev->qdev : NULL;
|
|
} else if (isa_bus) {
|
|
ISADevice *isadev = isa_vga_init(isa_bus);
|
|
dev = isadev ? DEVICE(isadev) : NULL;
|
|
}
|
|
return dev;
|
|
}
|
|
|
|
static void cpu_request_exit(void *opaque, int irq, int level)
|
|
{
|
|
CPUState *cpu = current_cpu;
|
|
|
|
if (cpu && level) {
|
|
cpu_exit(cpu);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps ioport80_io_ops = {
|
|
.write = ioport80_write,
|
|
.read = ioport80_read,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 1,
|
|
},
|
|
};
|
|
|
|
static const MemoryRegionOps ioportF0_io_ops = {
|
|
.write = ioportF0_write,
|
|
.read = ioportF0_read,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 1,
|
|
},
|
|
};
|
|
|
|
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
|
|
ISADevice **rtc_state,
|
|
ISADevice **floppy,
|
|
bool no_vmport,
|
|
uint32 hpet_irqs)
|
|
{
|
|
int i;
|
|
DriveInfo *fd[MAX_FD];
|
|
DeviceState *hpet = NULL;
|
|
int pit_isa_irq = 0;
|
|
qemu_irq pit_alt_irq = NULL;
|
|
qemu_irq rtc_irq = NULL;
|
|
qemu_irq *a20_line;
|
|
ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
|
|
qemu_irq *cpu_exit_irq;
|
|
MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
|
|
MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
|
|
|
|
memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
|
|
memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
|
|
|
|
memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
|
|
memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
|
|
|
|
/*
|
|
* Check if an HPET shall be created.
|
|
*
|
|
* Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
|
|
* when the HPET wants to take over. Thus we have to disable the latter.
|
|
*/
|
|
if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
|
|
/* In order to set property, here not using sysbus_try_create_simple */
|
|
hpet = qdev_try_create(NULL, TYPE_HPET);
|
|
if (hpet) {
|
|
/* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
|
|
* and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
|
|
* IRQ8 and IRQ2.
|
|
*/
|
|
uint8_t compat = object_property_get_int(OBJECT(hpet),
|
|
HPET_INTCAP, NULL);
|
|
if (!compat) {
|
|
qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
|
|
}
|
|
qdev_init_nofail(hpet);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
|
|
|
|
for (i = 0; i < GSI_NUM_PINS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
|
|
}
|
|
pit_isa_irq = -1;
|
|
pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
|
|
rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
|
|
}
|
|
}
|
|
*rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
|
|
|
|
qemu_register_boot_set(pc_boot_set, *rtc_state);
|
|
|
|
if (!xen_enabled()) {
|
|
if (kvm_irqchip_in_kernel()) {
|
|
pit = kvm_pit_init(isa_bus, 0x40);
|
|
} else {
|
|
pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
|
|
}
|
|
if (hpet) {
|
|
/* connect PIT to output control line of the HPET */
|
|
qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
|
|
}
|
|
pcspk_init(isa_bus, pit);
|
|
}
|
|
|
|
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
|
|
if (serial_hds[i]) {
|
|
serial_isa_init(isa_bus, i, serial_hds[i]);
|
|
}
|
|
}
|
|
|
|
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
|
|
if (parallel_hds[i]) {
|
|
parallel_init(isa_bus, i, parallel_hds[i]);
|
|
}
|
|
}
|
|
|
|
a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
|
|
i8042 = isa_create_simple(isa_bus, "i8042");
|
|
i8042_setup_a20_line(i8042, &a20_line[0]);
|
|
if (!no_vmport) {
|
|
vmport_init(isa_bus);
|
|
vmmouse = isa_try_create(isa_bus, "vmmouse");
|
|
} else {
|
|
vmmouse = NULL;
|
|
}
|
|
if (vmmouse) {
|
|
DeviceState *dev = DEVICE(vmmouse);
|
|
qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
|
|
qdev_init_nofail(dev);
|
|
}
|
|
port92 = isa_create_simple(isa_bus, "port92");
|
|
port92_init(port92, &a20_line[1]);
|
|
|
|
cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
|
|
DMA_init(0, cpu_exit_irq);
|
|
|
|
for(i = 0; i < MAX_FD; i++) {
|
|
fd[i] = drive_get(IF_FLOPPY, 0, i);
|
|
}
|
|
*floppy = fdctrl_init_isa(isa_bus, fd);
|
|
}
|
|
|
|
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nb_nics; i++) {
|
|
NICInfo *nd = &nd_table[i];
|
|
|
|
if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
|
|
pc_init_ne2k_isa(isa_bus, nd);
|
|
} else {
|
|
pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
void pc_pci_device_init(PCIBus *pci_bus)
|
|
{
|
|
int max_bus;
|
|
int bus;
|
|
|
|
max_bus = drive_get_max_bus(IF_SCSI);
|
|
for (bus = 0; bus <= max_bus; bus++) {
|
|
pci_create_simple(pci_bus, -1, "lsi53c895a");
|
|
}
|
|
}
|
|
|
|
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
|
|
{
|
|
DeviceState *dev;
|
|
SysBusDevice *d;
|
|
unsigned int i;
|
|
|
|
if (kvm_irqchip_in_kernel()) {
|
|
dev = qdev_create(NULL, "kvm-ioapic");
|
|
} else {
|
|
dev = qdev_create(NULL, "ioapic");
|
|
}
|
|
if (parent_name) {
|
|
object_property_add_child(object_resolve_path(parent_name, NULL),
|
|
"ioapic", OBJECT(dev), NULL);
|
|
}
|
|
qdev_init_nofail(dev);
|
|
d = SYS_BUS_DEVICE(dev);
|
|
sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
|
|
|
|
for (i = 0; i < IOAPIC_NUM_PINS; i++) {
|
|
gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
|
|
}
|
|
}
|