mirror of https://gitee.com/openkylin/qemu.git
392 lines
12 KiB
C
392 lines
12 KiB
C
/*
|
|
* HPPA memory access helper routines
|
|
*
|
|
* Copyright (c) 2017 Helge Deller
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qom/cpu.h"
|
|
#include "trace.h"
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
int hppa_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
|
|
int size, int rw, int mmu_idx)
|
|
{
|
|
HPPACPU *cpu = HPPA_CPU(cs);
|
|
|
|
/* ??? Test between data page fault and data memory protection trap,
|
|
which would affect si_code. */
|
|
cs->exception_index = EXCP_DMP;
|
|
cpu->env.cr[CR_IOR] = address;
|
|
return 1;
|
|
}
|
|
#else
|
|
static hppa_tlb_entry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
|
|
hppa_tlb_entry *ent = &env->tlb[i];
|
|
if (ent->va_b <= addr && addr <= ent->va_e) {
|
|
trace_hppa_tlb_find_entry(env, ent + i, ent->entry_valid,
|
|
ent->va_b, ent->va_e, ent->pa);
|
|
return ent;
|
|
}
|
|
}
|
|
trace_hppa_tlb_find_entry_not_found(env, addr);
|
|
return NULL;
|
|
}
|
|
|
|
static void hppa_flush_tlb_ent(CPUHPPAState *env, hppa_tlb_entry *ent)
|
|
{
|
|
CPUState *cs = CPU(hppa_env_get_cpu(env));
|
|
unsigned i, n = 1 << (2 * ent->page_size);
|
|
uint64_t addr = ent->va_b;
|
|
|
|
trace_hppa_tlb_flush_ent(env, ent, ent->va_b, ent->va_e, ent->pa);
|
|
|
|
for (i = 0; i < n; ++i, addr += TARGET_PAGE_SIZE) {
|
|
/* Do not flush MMU_PHYS_IDX. */
|
|
tlb_flush_page_by_mmuidx(cs, addr, 0xf);
|
|
}
|
|
|
|
memset(ent, 0, sizeof(*ent));
|
|
ent->va_b = -1;
|
|
}
|
|
|
|
static hppa_tlb_entry *hppa_alloc_tlb_ent(CPUHPPAState *env)
|
|
{
|
|
hppa_tlb_entry *ent;
|
|
uint32_t i = env->tlb_last;
|
|
|
|
env->tlb_last = (i == ARRAY_SIZE(env->tlb) - 1 ? 0 : i + 1);
|
|
ent = &env->tlb[i];
|
|
|
|
hppa_flush_tlb_ent(env, ent);
|
|
return ent;
|
|
}
|
|
|
|
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
|
|
int type, hwaddr *pphys, int *pprot)
|
|
{
|
|
hwaddr phys;
|
|
int prot, r_prot, w_prot, x_prot;
|
|
hppa_tlb_entry *ent;
|
|
int ret = -1;
|
|
|
|
/* Virtual translation disabled. Direct map virtual to physical. */
|
|
if (mmu_idx == MMU_PHYS_IDX) {
|
|
phys = addr;
|
|
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
goto egress;
|
|
}
|
|
|
|
/* Find a valid tlb entry that matches the virtual address. */
|
|
ent = hppa_find_tlb(env, addr);
|
|
if (ent == NULL || !ent->entry_valid) {
|
|
phys = 0;
|
|
prot = 0;
|
|
ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
|
|
goto egress;
|
|
}
|
|
|
|
/* We now know the physical address. */
|
|
phys = ent->pa + (addr & ~TARGET_PAGE_MASK);
|
|
|
|
/* Map TLB access_rights field to QEMU protection. */
|
|
r_prot = (mmu_idx <= ent->ar_pl1) * PAGE_READ;
|
|
w_prot = (mmu_idx <= ent->ar_pl2) * PAGE_WRITE;
|
|
x_prot = (ent->ar_pl2 <= mmu_idx && mmu_idx <= ent->ar_pl1) * PAGE_EXEC;
|
|
switch (ent->ar_type) {
|
|
case 0: /* read-only: data page */
|
|
prot = r_prot;
|
|
break;
|
|
case 1: /* read/write: dynamic data page */
|
|
prot = r_prot | w_prot;
|
|
break;
|
|
case 2: /* read/execute: normal code page */
|
|
prot = r_prot | x_prot;
|
|
break;
|
|
case 3: /* read/write/execute: dynamic code page */
|
|
prot = r_prot | w_prot | x_prot;
|
|
break;
|
|
default: /* execute: promote to privilege level type & 3 */
|
|
prot = x_prot;
|
|
break;
|
|
}
|
|
|
|
/* access_id == 0 means public page and no check is performed */
|
|
if ((env->psw & PSW_P) && ent->access_id) {
|
|
/* If bits [31:1] match, and bit 0 is set, suppress write. */
|
|
int match = ent->access_id * 2 + 1;
|
|
|
|
if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
|
|
match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
|
|
prot &= PAGE_READ | PAGE_EXEC;
|
|
if (type == PAGE_WRITE) {
|
|
ret = EXCP_DMPI;
|
|
goto egress;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No guest access type indicates a non-architectural access from
|
|
within QEMU. Bypass checks for access, D, B and T bits. */
|
|
if (type == 0) {
|
|
goto egress;
|
|
}
|
|
|
|
if (unlikely(!(prot & type))) {
|
|
/* The access isn't allowed -- Inst/Data Memory Protection Fault. */
|
|
ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
|
|
goto egress;
|
|
}
|
|
|
|
/* In reverse priority order, check for conditions which raise faults.
|
|
As we go, remove PROT bits that cover the condition we want to check.
|
|
In this way, the resulting PROT will force a re-check of the
|
|
architectural TLB entry for the next access. */
|
|
if (unlikely(!ent->d)) {
|
|
if (type & PAGE_WRITE) {
|
|
/* The D bit is not set -- TLB Dirty Bit Fault. */
|
|
ret = EXCP_TLB_DIRTY;
|
|
}
|
|
prot &= PAGE_READ | PAGE_EXEC;
|
|
}
|
|
if (unlikely(ent->b)) {
|
|
if (type & PAGE_WRITE) {
|
|
/* The B bit is set -- Data Memory Break Fault. */
|
|
ret = EXCP_DMB;
|
|
}
|
|
prot &= PAGE_READ | PAGE_EXEC;
|
|
}
|
|
if (unlikely(ent->t)) {
|
|
if (!(type & PAGE_EXEC)) {
|
|
/* The T bit is set -- Page Reference Fault. */
|
|
ret = EXCP_PAGE_REF;
|
|
}
|
|
prot &= PAGE_EXEC;
|
|
}
|
|
|
|
egress:
|
|
*pphys = phys;
|
|
*pprot = prot;
|
|
trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
|
|
return ret;
|
|
}
|
|
|
|
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
|
{
|
|
HPPACPU *cpu = HPPA_CPU(cs);
|
|
hwaddr phys;
|
|
int prot, excp;
|
|
|
|
/* If the (data) mmu is disabled, bypass translation. */
|
|
/* ??? We really ought to know if the code mmu is disabled too,
|
|
in order to get the correct debugging dumps. */
|
|
if (!(cpu->env.psw & PSW_D)) {
|
|
return addr;
|
|
}
|
|
|
|
excp = hppa_get_physical_address(&cpu->env, addr, MMU_KERNEL_IDX, 0,
|
|
&phys, &prot);
|
|
|
|
/* Since we're translating for debugging, the only error that is a
|
|
hard error is no translation at all. Otherwise, while a real cpu
|
|
access might not have permission, the debugger does. */
|
|
return excp == EXCP_DTLB_MISS ? -1 : phys;
|
|
}
|
|
|
|
void tlb_fill(CPUState *cs, target_ulong addr, int size,
|
|
MMUAccessType type, int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
HPPACPU *cpu = HPPA_CPU(cs);
|
|
CPUHPPAState *env = &cpu->env;
|
|
int prot, excp, a_prot;
|
|
hwaddr phys;
|
|
|
|
switch (type) {
|
|
case MMU_INST_FETCH:
|
|
a_prot = PAGE_EXEC;
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
a_prot = PAGE_WRITE;
|
|
break;
|
|
default:
|
|
a_prot = PAGE_READ;
|
|
break;
|
|
}
|
|
|
|
excp = hppa_get_physical_address(env, addr, mmu_idx,
|
|
a_prot, &phys, &prot);
|
|
if (unlikely(excp >= 0)) {
|
|
trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
|
|
/* Failure. Raise the indicated exception. */
|
|
cs->exception_index = excp;
|
|
if (cpu->env.psw & PSW_Q) {
|
|
/* ??? Needs tweaking for hppa64. */
|
|
cpu->env.cr[CR_IOR] = addr;
|
|
cpu->env.cr[CR_ISR] = addr >> 32;
|
|
}
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
|
|
trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
|
|
phys & TARGET_PAGE_MASK, size, type, mmu_idx);
|
|
/* Success! Store the translation into the QEMU TLB. */
|
|
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
|
|
prot, mmu_idx, TARGET_PAGE_SIZE);
|
|
}
|
|
|
|
/* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */
|
|
void HELPER(itlba)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
|
|
{
|
|
hppa_tlb_entry *empty = NULL;
|
|
int i;
|
|
|
|
/* Zap any old entries covering ADDR; notice empty entries on the way. */
|
|
for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
|
|
hppa_tlb_entry *ent = &env->tlb[i];
|
|
if (ent->va_b <= addr && addr <= ent->va_e) {
|
|
if (ent->entry_valid) {
|
|
hppa_flush_tlb_ent(env, ent);
|
|
}
|
|
if (!empty) {
|
|
empty = ent;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we didn't see an empty entry, evict one. */
|
|
if (empty == NULL) {
|
|
empty = hppa_alloc_tlb_ent(env);
|
|
}
|
|
|
|
/* Note that empty->entry_valid == 0 already. */
|
|
empty->va_b = addr & TARGET_PAGE_MASK;
|
|
empty->va_e = empty->va_b + TARGET_PAGE_SIZE - 1;
|
|
empty->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
|
|
trace_hppa_tlb_itlba(env, empty, empty->va_b, empty->va_e, empty->pa);
|
|
}
|
|
|
|
/* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
|
|
void HELPER(itlbp)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
|
|
{
|
|
hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
|
|
|
|
if (unlikely(ent == NULL)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
|
|
return;
|
|
}
|
|
|
|
ent->access_id = extract32(reg, 1, 18);
|
|
ent->u = extract32(reg, 19, 1);
|
|
ent->ar_pl2 = extract32(reg, 20, 2);
|
|
ent->ar_pl1 = extract32(reg, 22, 2);
|
|
ent->ar_type = extract32(reg, 24, 3);
|
|
ent->b = extract32(reg, 27, 1);
|
|
ent->d = extract32(reg, 28, 1);
|
|
ent->t = extract32(reg, 29, 1);
|
|
ent->entry_valid = 1;
|
|
trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
|
|
ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
|
|
}
|
|
|
|
/* Purge (Insn/Data) TLB. This is explicitly page-based, and is
|
|
synchronous across all processors. */
|
|
static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
|
|
{
|
|
CPUHPPAState *env = cpu->env_ptr;
|
|
target_ulong addr = (target_ulong) data.target_ptr;
|
|
hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
|
|
|
|
if (ent && ent->entry_valid) {
|
|
hppa_flush_tlb_ent(env, ent);
|
|
}
|
|
}
|
|
|
|
void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
|
|
{
|
|
CPUState *src = CPU(hppa_env_get_cpu(env));
|
|
CPUState *cpu;
|
|
trace_hppa_tlb_ptlb(env);
|
|
run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu != src) {
|
|
async_run_on_cpu(cpu, ptlb_work, data);
|
|
}
|
|
}
|
|
async_safe_run_on_cpu(src, ptlb_work, data);
|
|
}
|
|
|
|
/* Purge (Insn/Data) TLB entry. This affects an implementation-defined
|
|
number of pages/entries (we choose all), and is local to the cpu. */
|
|
void HELPER(ptlbe)(CPUHPPAState *env)
|
|
{
|
|
CPUState *src = CPU(hppa_env_get_cpu(env));
|
|
trace_hppa_tlb_ptlbe(env);
|
|
memset(env->tlb, 0, sizeof(env->tlb));
|
|
tlb_flush_by_mmuidx(src, 0xf);
|
|
}
|
|
|
|
void cpu_hppa_change_prot_id(CPUHPPAState *env)
|
|
{
|
|
if (env->psw & PSW_P) {
|
|
CPUState *src = CPU(hppa_env_get_cpu(env));
|
|
tlb_flush_by_mmuidx(src, 0xf);
|
|
}
|
|
}
|
|
|
|
void HELPER(change_prot_id)(CPUHPPAState *env)
|
|
{
|
|
cpu_hppa_change_prot_id(env);
|
|
}
|
|
|
|
target_ureg HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
|
|
{
|
|
hwaddr phys;
|
|
int prot, excp;
|
|
|
|
excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
|
|
&phys, &prot);
|
|
if (excp >= 0) {
|
|
if (env->psw & PSW_Q) {
|
|
/* ??? Needs tweaking for hppa64. */
|
|
env->cr[CR_IOR] = addr;
|
|
env->cr[CR_ISR] = addr >> 32;
|
|
}
|
|
if (excp == EXCP_DTLB_MISS) {
|
|
excp = EXCP_NA_DTLB_MISS;
|
|
}
|
|
trace_hppa_tlb_lpa_failed(env, addr);
|
|
hppa_dynamic_excp(env, excp, GETPC());
|
|
}
|
|
trace_hppa_tlb_lpa_success(env, addr, phys);
|
|
return phys;
|
|
}
|
|
|
|
/* Return the ar_type of the TLB at VADDR, or -1. */
|
|
int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
|
|
{
|
|
hppa_tlb_entry *ent = hppa_find_tlb(env, vaddr);
|
|
return ent ? ent->ar_type : -1;
|
|
}
|
|
#endif /* CONFIG_USER_ONLY */
|