mirror of https://gitee.com/openkylin/qemu.git
1406 lines
42 KiB
C
1406 lines
42 KiB
C
/*
|
|
* QEMU NVM Express Controller
|
|
*
|
|
* Copyright (c) 2012, Intel Corporation
|
|
*
|
|
* Written by Keith Busch <keith.busch@intel.com>
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*/
|
|
|
|
/**
|
|
* Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
|
|
*
|
|
* http://www.nvmexpress.org/resources/
|
|
*/
|
|
|
|
/**
|
|
* Usage: add options:
|
|
* -drive file=<file>,if=none,id=<drive_id>
|
|
* -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
|
|
* cmb_size_mb=<cmb_size_mb[optional]>, \
|
|
* num_queues=<N[optional]>
|
|
*
|
|
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
|
|
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "hw/block/block.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/pci/msix.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/visitor.h"
|
|
#include "sysemu/block-backend.h"
|
|
|
|
#include "qemu/log.h"
|
|
#include "qemu/cutils.h"
|
|
#include "trace.h"
|
|
#include "nvme.h"
|
|
|
|
#define NVME_GUEST_ERR(trace, fmt, ...) \
|
|
do { \
|
|
(trace_##trace)(__VA_ARGS__); \
|
|
qemu_log_mask(LOG_GUEST_ERROR, #trace \
|
|
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static void nvme_process_sq(void *opaque);
|
|
|
|
static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
|
|
{
|
|
if (n->cmbsz && addr >= n->ctrl_mem.addr &&
|
|
addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
|
|
memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
|
|
} else {
|
|
pci_dma_read(&n->parent_obj, addr, buf, size);
|
|
}
|
|
}
|
|
|
|
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
|
|
{
|
|
return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
|
|
}
|
|
|
|
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
|
|
{
|
|
return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
|
|
}
|
|
|
|
static void nvme_inc_cq_tail(NvmeCQueue *cq)
|
|
{
|
|
cq->tail++;
|
|
if (cq->tail >= cq->size) {
|
|
cq->tail = 0;
|
|
cq->phase = !cq->phase;
|
|
}
|
|
}
|
|
|
|
static void nvme_inc_sq_head(NvmeSQueue *sq)
|
|
{
|
|
sq->head = (sq->head + 1) % sq->size;
|
|
}
|
|
|
|
static uint8_t nvme_cq_full(NvmeCQueue *cq)
|
|
{
|
|
return (cq->tail + 1) % cq->size == cq->head;
|
|
}
|
|
|
|
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
|
|
{
|
|
return sq->head == sq->tail;
|
|
}
|
|
|
|
static void nvme_irq_check(NvmeCtrl *n)
|
|
{
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
return;
|
|
}
|
|
if (~n->bar.intms & n->irq_status) {
|
|
pci_irq_assert(&n->parent_obj);
|
|
} else {
|
|
pci_irq_deassert(&n->parent_obj);
|
|
}
|
|
}
|
|
|
|
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
|
|
{
|
|
if (cq->irq_enabled) {
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
trace_nvme_irq_msix(cq->vector);
|
|
msix_notify(&(n->parent_obj), cq->vector);
|
|
} else {
|
|
trace_nvme_irq_pin();
|
|
assert(cq->cqid < 64);
|
|
n->irq_status |= 1 << cq->cqid;
|
|
nvme_irq_check(n);
|
|
}
|
|
} else {
|
|
trace_nvme_irq_masked();
|
|
}
|
|
}
|
|
|
|
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
|
|
{
|
|
if (cq->irq_enabled) {
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
return;
|
|
} else {
|
|
assert(cq->cqid < 64);
|
|
n->irq_status &= ~(1 << cq->cqid);
|
|
nvme_irq_check(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
|
|
uint64_t prp2, uint32_t len, NvmeCtrl *n)
|
|
{
|
|
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
|
|
trans_len = MIN(len, trans_len);
|
|
int num_prps = (len >> n->page_bits) + 1;
|
|
|
|
if (unlikely(!prp1)) {
|
|
trace_nvme_err_invalid_prp();
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
} else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
|
|
prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
|
|
qsg->nsg = 0;
|
|
qemu_iovec_init(iov, num_prps);
|
|
qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
|
|
} else {
|
|
pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
|
|
qemu_sglist_add(qsg, prp1, trans_len);
|
|
}
|
|
len -= trans_len;
|
|
if (len) {
|
|
if (unlikely(!prp2)) {
|
|
trace_nvme_err_invalid_prp2_missing();
|
|
goto unmap;
|
|
}
|
|
if (len > n->page_size) {
|
|
uint64_t prp_list[n->max_prp_ents];
|
|
uint32_t nents, prp_trans;
|
|
int i = 0;
|
|
|
|
nents = (len + n->page_size - 1) >> n->page_bits;
|
|
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
|
|
nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
|
|
while (len != 0) {
|
|
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
|
|
|
|
if (i == n->max_prp_ents - 1 && len > n->page_size) {
|
|
if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
|
|
trace_nvme_err_invalid_prplist_ent(prp_ent);
|
|
goto unmap;
|
|
}
|
|
|
|
i = 0;
|
|
nents = (len + n->page_size - 1) >> n->page_bits;
|
|
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
|
|
nvme_addr_read(n, prp_ent, (void *)prp_list,
|
|
prp_trans);
|
|
prp_ent = le64_to_cpu(prp_list[i]);
|
|
}
|
|
|
|
if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
|
|
trace_nvme_err_invalid_prplist_ent(prp_ent);
|
|
goto unmap;
|
|
}
|
|
|
|
trans_len = MIN(len, n->page_size);
|
|
if (qsg->nsg){
|
|
qemu_sglist_add(qsg, prp_ent, trans_len);
|
|
} else {
|
|
qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
|
|
}
|
|
len -= trans_len;
|
|
i++;
|
|
}
|
|
} else {
|
|
if (unlikely(prp2 & (n->page_size - 1))) {
|
|
trace_nvme_err_invalid_prp2_align(prp2);
|
|
goto unmap;
|
|
}
|
|
if (qsg->nsg) {
|
|
qemu_sglist_add(qsg, prp2, len);
|
|
} else {
|
|
qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
|
|
}
|
|
}
|
|
}
|
|
return NVME_SUCCESS;
|
|
|
|
unmap:
|
|
qemu_sglist_destroy(qsg);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
|
|
uint64_t prp1, uint64_t prp2)
|
|
{
|
|
QEMUSGList qsg;
|
|
QEMUIOVector iov;
|
|
uint16_t status = NVME_SUCCESS;
|
|
|
|
trace_nvme_dma_read(prp1, prp2);
|
|
|
|
if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
if (qsg.nsg > 0) {
|
|
if (unlikely(dma_buf_read(ptr, len, &qsg))) {
|
|
trace_nvme_err_invalid_dma();
|
|
status = NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
qemu_sglist_destroy(&qsg);
|
|
} else {
|
|
if (unlikely(qemu_iovec_to_buf(&iov, 0, ptr, len) != len)) {
|
|
trace_nvme_err_invalid_dma();
|
|
status = NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
qemu_iovec_destroy(&iov);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static void nvme_post_cqes(void *opaque)
|
|
{
|
|
NvmeCQueue *cq = opaque;
|
|
NvmeCtrl *n = cq->ctrl;
|
|
NvmeRequest *req, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
|
|
NvmeSQueue *sq;
|
|
hwaddr addr;
|
|
|
|
if (nvme_cq_full(cq)) {
|
|
break;
|
|
}
|
|
|
|
QTAILQ_REMOVE(&cq->req_list, req, entry);
|
|
sq = req->sq;
|
|
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
|
|
req->cqe.sq_id = cpu_to_le16(sq->sqid);
|
|
req->cqe.sq_head = cpu_to_le16(sq->head);
|
|
addr = cq->dma_addr + cq->tail * n->cqe_size;
|
|
nvme_inc_cq_tail(cq);
|
|
pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
|
|
sizeof(req->cqe));
|
|
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
|
|
}
|
|
if (cq->tail != cq->head) {
|
|
nvme_irq_assert(n, cq);
|
|
}
|
|
}
|
|
|
|
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
|
|
{
|
|
assert(cq->cqid == req->sq->cqid);
|
|
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
|
|
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
|
|
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
static void nvme_rw_cb(void *opaque, int ret)
|
|
{
|
|
NvmeRequest *req = opaque;
|
|
NvmeSQueue *sq = req->sq;
|
|
NvmeCtrl *n = sq->ctrl;
|
|
NvmeCQueue *cq = n->cq[sq->cqid];
|
|
|
|
if (!ret) {
|
|
block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
|
|
req->status = NVME_SUCCESS;
|
|
} else {
|
|
block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
|
|
req->status = NVME_INTERNAL_DEV_ERROR;
|
|
}
|
|
if (req->has_sg) {
|
|
qemu_sglist_destroy(&req->qsg);
|
|
}
|
|
nvme_enqueue_req_completion(cq, req);
|
|
}
|
|
|
|
static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
|
|
NvmeRequest *req)
|
|
{
|
|
req->has_sg = false;
|
|
block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
|
|
BLOCK_ACCT_FLUSH);
|
|
req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
|
|
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
|
|
NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
|
|
const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
|
|
const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
|
|
uint64_t slba = le64_to_cpu(rw->slba);
|
|
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
|
|
uint64_t aio_slba = slba << (data_shift - BDRV_SECTOR_BITS);
|
|
uint32_t aio_nlb = nlb << (data_shift - BDRV_SECTOR_BITS);
|
|
|
|
if (unlikely(slba + nlb > ns->id_ns.nsze)) {
|
|
trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
|
|
return NVME_LBA_RANGE | NVME_DNR;
|
|
}
|
|
|
|
req->has_sg = false;
|
|
block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
|
|
BLOCK_ACCT_WRITE);
|
|
req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, aio_slba, aio_nlb,
|
|
BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
|
|
NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
|
|
uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
|
|
uint64_t slba = le64_to_cpu(rw->slba);
|
|
uint64_t prp1 = le64_to_cpu(rw->prp1);
|
|
uint64_t prp2 = le64_to_cpu(rw->prp2);
|
|
|
|
uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
|
|
uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
|
|
uint64_t data_size = (uint64_t)nlb << data_shift;
|
|
uint64_t data_offset = slba << data_shift;
|
|
int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
|
|
enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
|
|
|
|
trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
|
|
|
|
if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
|
|
block_acct_invalid(blk_get_stats(n->conf.blk), acct);
|
|
trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
|
|
return NVME_LBA_RANGE | NVME_DNR;
|
|
}
|
|
|
|
if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
|
|
block_acct_invalid(blk_get_stats(n->conf.blk), acct);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
|
|
if (req->qsg.nsg > 0) {
|
|
req->has_sg = true;
|
|
req->aiocb = is_write ?
|
|
dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
|
|
nvme_rw_cb, req) :
|
|
dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
|
|
nvme_rw_cb, req);
|
|
} else {
|
|
req->has_sg = false;
|
|
req->aiocb = is_write ?
|
|
blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
|
|
req) :
|
|
blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
|
|
req);
|
|
}
|
|
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns;
|
|
uint32_t nsid = le32_to_cpu(cmd->nsid);
|
|
|
|
if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
|
|
trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = &n->namespaces[nsid - 1];
|
|
switch (cmd->opcode) {
|
|
case NVME_CMD_FLUSH:
|
|
return nvme_flush(n, ns, cmd, req);
|
|
case NVME_CMD_WRITE_ZEROS:
|
|
return nvme_write_zeros(n, ns, cmd, req);
|
|
case NVME_CMD_WRITE:
|
|
case NVME_CMD_READ:
|
|
return nvme_rw(n, ns, cmd, req);
|
|
default:
|
|
trace_nvme_err_invalid_opc(cmd->opcode);
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
|
|
{
|
|
n->sq[sq->sqid] = NULL;
|
|
timer_del(sq->timer);
|
|
timer_free(sq->timer);
|
|
g_free(sq->io_req);
|
|
if (sq->sqid) {
|
|
g_free(sq);
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
|
|
{
|
|
NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
|
|
NvmeRequest *req, *next;
|
|
NvmeSQueue *sq;
|
|
NvmeCQueue *cq;
|
|
uint16_t qid = le16_to_cpu(c->qid);
|
|
|
|
if (unlikely(!qid || nvme_check_sqid(n, qid))) {
|
|
trace_nvme_err_invalid_del_sq(qid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
|
|
trace_nvme_del_sq(qid);
|
|
|
|
sq = n->sq[qid];
|
|
while (!QTAILQ_EMPTY(&sq->out_req_list)) {
|
|
req = QTAILQ_FIRST(&sq->out_req_list);
|
|
assert(req->aiocb);
|
|
blk_aio_cancel(req->aiocb);
|
|
}
|
|
if (!nvme_check_cqid(n, sq->cqid)) {
|
|
cq = n->cq[sq->cqid];
|
|
QTAILQ_REMOVE(&cq->sq_list, sq, entry);
|
|
|
|
nvme_post_cqes(cq);
|
|
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
|
|
if (req->sq == sq) {
|
|
QTAILQ_REMOVE(&cq->req_list, req, entry);
|
|
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
nvme_free_sq(sq, n);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
|
|
uint16_t sqid, uint16_t cqid, uint16_t size)
|
|
{
|
|
int i;
|
|
NvmeCQueue *cq;
|
|
|
|
sq->ctrl = n;
|
|
sq->dma_addr = dma_addr;
|
|
sq->sqid = sqid;
|
|
sq->size = size;
|
|
sq->cqid = cqid;
|
|
sq->head = sq->tail = 0;
|
|
sq->io_req = g_new(NvmeRequest, sq->size);
|
|
|
|
QTAILQ_INIT(&sq->req_list);
|
|
QTAILQ_INIT(&sq->out_req_list);
|
|
for (i = 0; i < sq->size; i++) {
|
|
sq->io_req[i].sq = sq;
|
|
QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
|
|
}
|
|
sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
|
|
|
|
assert(n->cq[cqid]);
|
|
cq = n->cq[cqid];
|
|
QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
|
|
n->sq[sqid] = sq;
|
|
}
|
|
|
|
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
|
|
{
|
|
NvmeSQueue *sq;
|
|
NvmeCreateSq *c = (NvmeCreateSq *)cmd;
|
|
|
|
uint16_t cqid = le16_to_cpu(c->cqid);
|
|
uint16_t sqid = le16_to_cpu(c->sqid);
|
|
uint16_t qsize = le16_to_cpu(c->qsize);
|
|
uint16_t qflags = le16_to_cpu(c->sq_flags);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
|
|
trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
|
|
|
|
if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
|
|
trace_nvme_err_invalid_create_sq_cqid(cqid);
|
|
return NVME_INVALID_CQID | NVME_DNR;
|
|
}
|
|
if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
|
|
trace_nvme_err_invalid_create_sq_sqid(sqid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
|
|
trace_nvme_err_invalid_create_sq_size(qsize);
|
|
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
|
|
}
|
|
if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
|
|
trace_nvme_err_invalid_create_sq_addr(prp1);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
|
|
trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
sq = g_malloc0(sizeof(*sq));
|
|
nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
|
|
{
|
|
n->cq[cq->cqid] = NULL;
|
|
timer_del(cq->timer);
|
|
timer_free(cq->timer);
|
|
msix_vector_unuse(&n->parent_obj, cq->vector);
|
|
if (cq->cqid) {
|
|
g_free(cq);
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
|
|
{
|
|
NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
|
|
NvmeCQueue *cq;
|
|
uint16_t qid = le16_to_cpu(c->qid);
|
|
|
|
if (unlikely(!qid || nvme_check_cqid(n, qid))) {
|
|
trace_nvme_err_invalid_del_cq_cqid(qid);
|
|
return NVME_INVALID_CQID | NVME_DNR;
|
|
}
|
|
|
|
cq = n->cq[qid];
|
|
if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
|
|
trace_nvme_err_invalid_del_cq_notempty(qid);
|
|
return NVME_INVALID_QUEUE_DEL;
|
|
}
|
|
nvme_irq_deassert(n, cq);
|
|
trace_nvme_del_cq(qid);
|
|
nvme_free_cq(cq, n);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
|
|
uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
|
|
{
|
|
cq->ctrl = n;
|
|
cq->cqid = cqid;
|
|
cq->size = size;
|
|
cq->dma_addr = dma_addr;
|
|
cq->phase = 1;
|
|
cq->irq_enabled = irq_enabled;
|
|
cq->vector = vector;
|
|
cq->head = cq->tail = 0;
|
|
QTAILQ_INIT(&cq->req_list);
|
|
QTAILQ_INIT(&cq->sq_list);
|
|
msix_vector_use(&n->parent_obj, cq->vector);
|
|
n->cq[cqid] = cq;
|
|
cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
|
|
}
|
|
|
|
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
|
|
{
|
|
NvmeCQueue *cq;
|
|
NvmeCreateCq *c = (NvmeCreateCq *)cmd;
|
|
uint16_t cqid = le16_to_cpu(c->cqid);
|
|
uint16_t vector = le16_to_cpu(c->irq_vector);
|
|
uint16_t qsize = le16_to_cpu(c->qsize);
|
|
uint16_t qflags = le16_to_cpu(c->cq_flags);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
|
|
trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
|
|
NVME_CQ_FLAGS_IEN(qflags) != 0);
|
|
|
|
if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
|
|
trace_nvme_err_invalid_create_cq_cqid(cqid);
|
|
return NVME_INVALID_CQID | NVME_DNR;
|
|
}
|
|
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
|
|
trace_nvme_err_invalid_create_cq_size(qsize);
|
|
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
|
|
}
|
|
if (unlikely(!prp1)) {
|
|
trace_nvme_err_invalid_create_cq_addr(prp1);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
if (unlikely(vector > n->num_queues)) {
|
|
trace_nvme_err_invalid_create_cq_vector(vector);
|
|
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
|
|
}
|
|
if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
|
|
trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
cq = g_malloc0(sizeof(*cq));
|
|
nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
|
|
NVME_CQ_FLAGS_IEN(qflags));
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
|
|
{
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
uint64_t prp2 = le64_to_cpu(c->prp2);
|
|
|
|
trace_nvme_identify_ctrl();
|
|
|
|
return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
|
|
prp1, prp2);
|
|
}
|
|
|
|
static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
|
|
{
|
|
NvmeNamespace *ns;
|
|
uint32_t nsid = le32_to_cpu(c->nsid);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
uint64_t prp2 = le64_to_cpu(c->prp2);
|
|
|
|
trace_nvme_identify_ns(nsid);
|
|
|
|
if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
|
|
trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = &n->namespaces[nsid - 1];
|
|
|
|
return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
|
|
prp1, prp2);
|
|
}
|
|
|
|
static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
|
|
{
|
|
static const int data_len = 4 * KiB;
|
|
uint32_t min_nsid = le32_to_cpu(c->nsid);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
uint64_t prp2 = le64_to_cpu(c->prp2);
|
|
uint32_t *list;
|
|
uint16_t ret;
|
|
int i, j = 0;
|
|
|
|
trace_nvme_identify_nslist(min_nsid);
|
|
|
|
list = g_malloc0(data_len);
|
|
for (i = 0; i < n->num_namespaces; i++) {
|
|
if (i < min_nsid) {
|
|
continue;
|
|
}
|
|
list[j++] = cpu_to_le32(i + 1);
|
|
if (j == data_len / sizeof(uint32_t)) {
|
|
break;
|
|
}
|
|
}
|
|
ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
|
|
g_free(list);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
|
|
{
|
|
NvmeIdentify *c = (NvmeIdentify *)cmd;
|
|
|
|
switch (le32_to_cpu(c->cns)) {
|
|
case 0x00:
|
|
return nvme_identify_ns(n, c);
|
|
case 0x01:
|
|
return nvme_identify_ctrl(n, c);
|
|
case 0x02:
|
|
return nvme_identify_nslist(n, c);
|
|
default:
|
|
trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
|
|
{
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t result;
|
|
|
|
switch (dw10) {
|
|
case NVME_VOLATILE_WRITE_CACHE:
|
|
result = blk_enable_write_cache(n->conf.blk);
|
|
trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
|
|
break;
|
|
case NVME_NUMBER_OF_QUEUES:
|
|
result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
|
|
trace_nvme_getfeat_numq(result);
|
|
break;
|
|
default:
|
|
trace_nvme_err_invalid_getfeat(dw10);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
req->cqe.result = result;
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
|
|
{
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
|
|
|
|
switch (dw10) {
|
|
case NVME_VOLATILE_WRITE_CACHE:
|
|
blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
|
|
break;
|
|
case NVME_NUMBER_OF_QUEUES:
|
|
trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
|
|
((dw11 >> 16) & 0xFFFF) + 1,
|
|
n->num_queues - 1, n->num_queues - 1);
|
|
req->cqe.result =
|
|
cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
|
|
break;
|
|
default:
|
|
trace_nvme_err_invalid_setfeat(dw10);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
|
|
{
|
|
switch (cmd->opcode) {
|
|
case NVME_ADM_CMD_DELETE_SQ:
|
|
return nvme_del_sq(n, cmd);
|
|
case NVME_ADM_CMD_CREATE_SQ:
|
|
return nvme_create_sq(n, cmd);
|
|
case NVME_ADM_CMD_DELETE_CQ:
|
|
return nvme_del_cq(n, cmd);
|
|
case NVME_ADM_CMD_CREATE_CQ:
|
|
return nvme_create_cq(n, cmd);
|
|
case NVME_ADM_CMD_IDENTIFY:
|
|
return nvme_identify(n, cmd);
|
|
case NVME_ADM_CMD_SET_FEATURES:
|
|
return nvme_set_feature(n, cmd, req);
|
|
case NVME_ADM_CMD_GET_FEATURES:
|
|
return nvme_get_feature(n, cmd, req);
|
|
default:
|
|
trace_nvme_err_invalid_admin_opc(cmd->opcode);
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static void nvme_process_sq(void *opaque)
|
|
{
|
|
NvmeSQueue *sq = opaque;
|
|
NvmeCtrl *n = sq->ctrl;
|
|
NvmeCQueue *cq = n->cq[sq->cqid];
|
|
|
|
uint16_t status;
|
|
hwaddr addr;
|
|
NvmeCmd cmd;
|
|
NvmeRequest *req;
|
|
|
|
while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
|
|
addr = sq->dma_addr + sq->head * n->sqe_size;
|
|
nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
|
|
nvme_inc_sq_head(sq);
|
|
|
|
req = QTAILQ_FIRST(&sq->req_list);
|
|
QTAILQ_REMOVE(&sq->req_list, req, entry);
|
|
QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
|
|
memset(&req->cqe, 0, sizeof(req->cqe));
|
|
req->cqe.cid = cmd.cid;
|
|
|
|
status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
|
|
nvme_admin_cmd(n, &cmd, req);
|
|
if (status != NVME_NO_COMPLETE) {
|
|
req->status = status;
|
|
nvme_enqueue_req_completion(cq, req);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nvme_clear_ctrl(NvmeCtrl *n)
|
|
{
|
|
int i;
|
|
|
|
blk_drain(n->conf.blk);
|
|
|
|
for (i = 0; i < n->num_queues; i++) {
|
|
if (n->sq[i] != NULL) {
|
|
nvme_free_sq(n->sq[i], n);
|
|
}
|
|
}
|
|
for (i = 0; i < n->num_queues; i++) {
|
|
if (n->cq[i] != NULL) {
|
|
nvme_free_cq(n->cq[i], n);
|
|
}
|
|
}
|
|
|
|
blk_flush(n->conf.blk);
|
|
n->bar.cc = 0;
|
|
}
|
|
|
|
static int nvme_start_ctrl(NvmeCtrl *n)
|
|
{
|
|
uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
|
|
uint32_t page_size = 1 << page_bits;
|
|
|
|
if (unlikely(n->cq[0])) {
|
|
trace_nvme_err_startfail_cq();
|
|
return -1;
|
|
}
|
|
if (unlikely(n->sq[0])) {
|
|
trace_nvme_err_startfail_sq();
|
|
return -1;
|
|
}
|
|
if (unlikely(!n->bar.asq)) {
|
|
trace_nvme_err_startfail_nbarasq();
|
|
return -1;
|
|
}
|
|
if (unlikely(!n->bar.acq)) {
|
|
trace_nvme_err_startfail_nbaracq();
|
|
return -1;
|
|
}
|
|
if (unlikely(n->bar.asq & (page_size - 1))) {
|
|
trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
|
|
return -1;
|
|
}
|
|
if (unlikely(n->bar.acq & (page_size - 1))) {
|
|
trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_MPS(n->bar.cc) <
|
|
NVME_CAP_MPSMIN(n->bar.cap))) {
|
|
trace_nvme_err_startfail_page_too_small(
|
|
NVME_CC_MPS(n->bar.cc),
|
|
NVME_CAP_MPSMIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_MPS(n->bar.cc) >
|
|
NVME_CAP_MPSMAX(n->bar.cap))) {
|
|
trace_nvme_err_startfail_page_too_large(
|
|
NVME_CC_MPS(n->bar.cc),
|
|
NVME_CAP_MPSMAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
|
|
NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
|
|
trace_nvme_err_startfail_cqent_too_small(
|
|
NVME_CC_IOCQES(n->bar.cc),
|
|
NVME_CTRL_CQES_MIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
|
|
NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
|
|
trace_nvme_err_startfail_cqent_too_large(
|
|
NVME_CC_IOCQES(n->bar.cc),
|
|
NVME_CTRL_CQES_MAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
|
|
NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
|
|
trace_nvme_err_startfail_sqent_too_small(
|
|
NVME_CC_IOSQES(n->bar.cc),
|
|
NVME_CTRL_SQES_MIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
|
|
NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
|
|
trace_nvme_err_startfail_sqent_too_large(
|
|
NVME_CC_IOSQES(n->bar.cc),
|
|
NVME_CTRL_SQES_MAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
|
|
trace_nvme_err_startfail_asqent_sz_zero();
|
|
return -1;
|
|
}
|
|
if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
|
|
trace_nvme_err_startfail_acqent_sz_zero();
|
|
return -1;
|
|
}
|
|
|
|
n->page_bits = page_bits;
|
|
n->page_size = page_size;
|
|
n->max_prp_ents = n->page_size / sizeof(uint64_t);
|
|
n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
|
|
n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
|
|
nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
|
|
NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
|
|
nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
|
|
NVME_AQA_ASQS(n->bar.aqa) + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
if (unlikely(offset & (sizeof(uint32_t) - 1))) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
|
|
"MMIO write not 32-bit aligned,"
|
|
" offset=0x%"PRIx64"", offset);
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
|
|
if (unlikely(size < sizeof(uint32_t))) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
|
|
"MMIO write smaller than 32-bits,"
|
|
" offset=0x%"PRIx64", size=%u",
|
|
offset, size);
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
|
|
switch (offset) {
|
|
case 0xc: /* INTMS */
|
|
if (unlikely(msix_enabled(&(n->parent_obj)))) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
|
|
"undefined access to interrupt mask set"
|
|
" when MSI-X is enabled");
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
n->bar.intms |= data & 0xffffffff;
|
|
n->bar.intmc = n->bar.intms;
|
|
trace_nvme_mmio_intm_set(data & 0xffffffff,
|
|
n->bar.intmc);
|
|
nvme_irq_check(n);
|
|
break;
|
|
case 0x10: /* INTMC */
|
|
if (unlikely(msix_enabled(&(n->parent_obj)))) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
|
|
"undefined access to interrupt mask clr"
|
|
" when MSI-X is enabled");
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
n->bar.intms &= ~(data & 0xffffffff);
|
|
n->bar.intmc = n->bar.intms;
|
|
trace_nvme_mmio_intm_clr(data & 0xffffffff,
|
|
n->bar.intmc);
|
|
nvme_irq_check(n);
|
|
break;
|
|
case 0x14: /* CC */
|
|
trace_nvme_mmio_cfg(data & 0xffffffff);
|
|
/* Windows first sends data, then sends enable bit */
|
|
if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
|
|
!NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
|
|
{
|
|
n->bar.cc = data;
|
|
}
|
|
|
|
if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
|
|
n->bar.cc = data;
|
|
if (unlikely(nvme_start_ctrl(n))) {
|
|
trace_nvme_err_startfail();
|
|
n->bar.csts = NVME_CSTS_FAILED;
|
|
} else {
|
|
trace_nvme_mmio_start_success();
|
|
n->bar.csts = NVME_CSTS_READY;
|
|
}
|
|
} else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
|
|
trace_nvme_mmio_stopped();
|
|
nvme_clear_ctrl(n);
|
|
n->bar.csts &= ~NVME_CSTS_READY;
|
|
}
|
|
if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
|
|
trace_nvme_mmio_shutdown_set();
|
|
nvme_clear_ctrl(n);
|
|
n->bar.cc = data;
|
|
n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
|
|
} else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
|
|
trace_nvme_mmio_shutdown_cleared();
|
|
n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
|
|
n->bar.cc = data;
|
|
}
|
|
break;
|
|
case 0x1C: /* CSTS */
|
|
if (data & (1 << 4)) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
|
|
"attempted to W1C CSTS.NSSRO"
|
|
" but CAP.NSSRS is zero (not supported)");
|
|
} else if (data != 0) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
|
|
"attempted to set a read only bit"
|
|
" of controller status");
|
|
}
|
|
break;
|
|
case 0x20: /* NSSR */
|
|
if (data == 0x4E564D65) {
|
|
trace_nvme_ub_mmiowr_ssreset_unsupported();
|
|
} else {
|
|
/* The spec says that writes of other values have no effect */
|
|
return;
|
|
}
|
|
break;
|
|
case 0x24: /* AQA */
|
|
n->bar.aqa = data & 0xffffffff;
|
|
trace_nvme_mmio_aqattr(data & 0xffffffff);
|
|
break;
|
|
case 0x28: /* ASQ */
|
|
n->bar.asq = data;
|
|
trace_nvme_mmio_asqaddr(data);
|
|
break;
|
|
case 0x2c: /* ASQ hi */
|
|
n->bar.asq |= data << 32;
|
|
trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
|
|
break;
|
|
case 0x30: /* ACQ */
|
|
trace_nvme_mmio_acqaddr(data);
|
|
n->bar.acq = data;
|
|
break;
|
|
case 0x34: /* ACQ hi */
|
|
n->bar.acq |= data << 32;
|
|
trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
|
|
break;
|
|
case 0x38: /* CMBLOC */
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
|
|
"invalid write to reserved CMBLOC"
|
|
" when CMBSZ is zero, ignored");
|
|
return;
|
|
case 0x3C: /* CMBSZ */
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
|
|
"invalid write to read only CMBSZ, ignored");
|
|
return;
|
|
default:
|
|
NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
|
|
"invalid MMIO write,"
|
|
" offset=0x%"PRIx64", data=%"PRIx64"",
|
|
offset, data);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
uint8_t *ptr = (uint8_t *)&n->bar;
|
|
uint64_t val = 0;
|
|
|
|
if (unlikely(addr & (sizeof(uint32_t) - 1))) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
|
|
"MMIO read not 32-bit aligned,"
|
|
" offset=0x%"PRIx64"", addr);
|
|
/* should RAZ, fall through for now */
|
|
} else if (unlikely(size < sizeof(uint32_t))) {
|
|
NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
|
|
"MMIO read smaller than 32-bits,"
|
|
" offset=0x%"PRIx64"", addr);
|
|
/* should RAZ, fall through for now */
|
|
}
|
|
|
|
if (addr < sizeof(n->bar)) {
|
|
memcpy(&val, ptr + addr, size);
|
|
} else {
|
|
NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
|
|
"MMIO read beyond last register,"
|
|
" offset=0x%"PRIx64", returning 0", addr);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
|
|
{
|
|
uint32_t qid;
|
|
|
|
if (unlikely(addr & ((1 << 2) - 1))) {
|
|
NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
|
|
"doorbell write not 32-bit aligned,"
|
|
" offset=0x%"PRIx64", ignoring", addr);
|
|
return;
|
|
}
|
|
|
|
if (((addr - 0x1000) >> 2) & 1) {
|
|
/* Completion queue doorbell write */
|
|
|
|
uint16_t new_head = val & 0xffff;
|
|
int start_sqs;
|
|
NvmeCQueue *cq;
|
|
|
|
qid = (addr - (0x1000 + (1 << 2))) >> 3;
|
|
if (unlikely(nvme_check_cqid(n, qid))) {
|
|
NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
|
|
"completion queue doorbell write"
|
|
" for nonexistent queue,"
|
|
" sqid=%"PRIu32", ignoring", qid);
|
|
return;
|
|
}
|
|
|
|
cq = n->cq[qid];
|
|
if (unlikely(new_head >= cq->size)) {
|
|
NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
|
|
"completion queue doorbell write value"
|
|
" beyond queue size, sqid=%"PRIu32","
|
|
" new_head=%"PRIu16", ignoring",
|
|
qid, new_head);
|
|
return;
|
|
}
|
|
|
|
start_sqs = nvme_cq_full(cq) ? 1 : 0;
|
|
cq->head = new_head;
|
|
if (start_sqs) {
|
|
NvmeSQueue *sq;
|
|
QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
|
|
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
if (cq->tail == cq->head) {
|
|
nvme_irq_deassert(n, cq);
|
|
}
|
|
} else {
|
|
/* Submission queue doorbell write */
|
|
|
|
uint16_t new_tail = val & 0xffff;
|
|
NvmeSQueue *sq;
|
|
|
|
qid = (addr - 0x1000) >> 3;
|
|
if (unlikely(nvme_check_sqid(n, qid))) {
|
|
NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
|
|
"submission queue doorbell write"
|
|
" for nonexistent queue,"
|
|
" sqid=%"PRIu32", ignoring", qid);
|
|
return;
|
|
}
|
|
|
|
sq = n->sq[qid];
|
|
if (unlikely(new_tail >= sq->size)) {
|
|
NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
|
|
"submission queue doorbell write value"
|
|
" beyond queue size, sqid=%"PRIu32","
|
|
" new_tail=%"PRIu16", ignoring",
|
|
qid, new_tail);
|
|
return;
|
|
}
|
|
|
|
sq->tail = new_tail;
|
|
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
}
|
|
|
|
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
if (addr < sizeof(n->bar)) {
|
|
nvme_write_bar(n, addr, data, size);
|
|
} else if (addr >= 0x1000) {
|
|
nvme_process_db(n, addr, data);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps nvme_mmio_ops = {
|
|
.read = nvme_mmio_read,
|
|
.write = nvme_mmio_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 2,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
stn_le_p(&n->cmbuf[addr], size, data);
|
|
}
|
|
|
|
static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
return ldn_le_p(&n->cmbuf[addr], size);
|
|
}
|
|
|
|
static const MemoryRegionOps nvme_cmb_ops = {
|
|
.read = nvme_cmb_read,
|
|
.write = nvme_cmb_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static void nvme_realize(PCIDevice *pci_dev, Error **errp)
|
|
{
|
|
NvmeCtrl *n = NVME(pci_dev);
|
|
NvmeIdCtrl *id = &n->id_ctrl;
|
|
|
|
int i;
|
|
int64_t bs_size;
|
|
uint8_t *pci_conf;
|
|
|
|
if (!n->num_queues) {
|
|
error_setg(errp, "num_queues can't be zero");
|
|
return;
|
|
}
|
|
|
|
if (!n->conf.blk) {
|
|
error_setg(errp, "drive property not set");
|
|
return;
|
|
}
|
|
|
|
bs_size = blk_getlength(n->conf.blk);
|
|
if (bs_size < 0) {
|
|
error_setg(errp, "could not get backing file size");
|
|
return;
|
|
}
|
|
|
|
if (!n->serial) {
|
|
error_setg(errp, "serial property not set");
|
|
return;
|
|
}
|
|
blkconf_blocksizes(&n->conf);
|
|
if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
|
|
false, errp)) {
|
|
return;
|
|
}
|
|
|
|
pci_conf = pci_dev->config;
|
|
pci_conf[PCI_INTERRUPT_PIN] = 1;
|
|
pci_config_set_prog_interface(pci_dev->config, 0x2);
|
|
pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
|
|
pcie_endpoint_cap_init(pci_dev, 0x80);
|
|
|
|
n->num_namespaces = 1;
|
|
n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
|
|
n->ns_size = bs_size / (uint64_t)n->num_namespaces;
|
|
|
|
n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
|
|
n->sq = g_new0(NvmeSQueue *, n->num_queues);
|
|
n->cq = g_new0(NvmeCQueue *, n->num_queues);
|
|
|
|
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
|
|
"nvme", n->reg_size);
|
|
pci_register_bar(pci_dev, 0,
|
|
PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
|
|
&n->iomem);
|
|
msix_init_exclusive_bar(pci_dev, n->num_queues, 4, NULL);
|
|
|
|
id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
|
|
id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
|
|
strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
|
|
strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
|
|
strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
|
|
id->rab = 6;
|
|
id->ieee[0] = 0x00;
|
|
id->ieee[1] = 0x02;
|
|
id->ieee[2] = 0xb3;
|
|
id->oacs = cpu_to_le16(0);
|
|
id->frmw = 7 << 1;
|
|
id->lpa = 1 << 0;
|
|
id->sqes = (0x6 << 4) | 0x6;
|
|
id->cqes = (0x4 << 4) | 0x4;
|
|
id->nn = cpu_to_le32(n->num_namespaces);
|
|
id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
|
|
id->psd[0].mp = cpu_to_le16(0x9c4);
|
|
id->psd[0].enlat = cpu_to_le32(0x10);
|
|
id->psd[0].exlat = cpu_to_le32(0x4);
|
|
if (blk_enable_write_cache(n->conf.blk)) {
|
|
id->vwc = 1;
|
|
}
|
|
|
|
n->bar.cap = 0;
|
|
NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
|
|
NVME_CAP_SET_CQR(n->bar.cap, 1);
|
|
NVME_CAP_SET_AMS(n->bar.cap, 1);
|
|
NVME_CAP_SET_TO(n->bar.cap, 0xf);
|
|
NVME_CAP_SET_CSS(n->bar.cap, 1);
|
|
NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
|
|
|
|
n->bar.vs = 0x00010200;
|
|
n->bar.intmc = n->bar.intms = 0;
|
|
|
|
if (n->cmb_size_mb) {
|
|
|
|
NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
|
|
NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
|
|
|
|
NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
|
|
NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
|
|
NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
|
|
NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
|
|
|
|
n->cmbloc = n->bar.cmbloc;
|
|
n->cmbsz = n->bar.cmbsz;
|
|
|
|
n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
|
|
memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
|
|
"nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
|
|
pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
|
|
PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
|
|
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
|
|
|
|
}
|
|
|
|
for (i = 0; i < n->num_namespaces; i++) {
|
|
NvmeNamespace *ns = &n->namespaces[i];
|
|
NvmeIdNs *id_ns = &ns->id_ns;
|
|
id_ns->nsfeat = 0;
|
|
id_ns->nlbaf = 0;
|
|
id_ns->flbas = 0;
|
|
id_ns->mc = 0;
|
|
id_ns->dpc = 0;
|
|
id_ns->dps = 0;
|
|
id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
|
|
id_ns->ncap = id_ns->nuse = id_ns->nsze =
|
|
cpu_to_le64(n->ns_size >>
|
|
id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
|
|
}
|
|
}
|
|
|
|
static void nvme_exit(PCIDevice *pci_dev)
|
|
{
|
|
NvmeCtrl *n = NVME(pci_dev);
|
|
|
|
nvme_clear_ctrl(n);
|
|
g_free(n->namespaces);
|
|
g_free(n->cq);
|
|
g_free(n->sq);
|
|
|
|
if (n->cmb_size_mb) {
|
|
g_free(n->cmbuf);
|
|
}
|
|
msix_uninit_exclusive_bar(pci_dev);
|
|
}
|
|
|
|
static Property nvme_props[] = {
|
|
DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
|
|
DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
|
|
DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
|
|
DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static const VMStateDescription nvme_vmstate = {
|
|
.name = "nvme",
|
|
.unmigratable = 1,
|
|
};
|
|
|
|
static void nvme_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
|
|
|
|
pc->realize = nvme_realize;
|
|
pc->exit = nvme_exit;
|
|
pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
|
|
pc->vendor_id = PCI_VENDOR_ID_INTEL;
|
|
pc->device_id = 0x5845;
|
|
pc->revision = 2;
|
|
|
|
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
|
|
dc->desc = "Non-Volatile Memory Express";
|
|
dc->props = nvme_props;
|
|
dc->vmsd = &nvme_vmstate;
|
|
}
|
|
|
|
static void nvme_instance_init(Object *obj)
|
|
{
|
|
NvmeCtrl *s = NVME(obj);
|
|
|
|
device_add_bootindex_property(obj, &s->conf.bootindex,
|
|
"bootindex", "/namespace@1,0",
|
|
DEVICE(obj), &error_abort);
|
|
}
|
|
|
|
static const TypeInfo nvme_info = {
|
|
.name = TYPE_NVME,
|
|
.parent = TYPE_PCI_DEVICE,
|
|
.instance_size = sizeof(NvmeCtrl),
|
|
.class_init = nvme_class_init,
|
|
.instance_init = nvme_instance_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ INTERFACE_PCIE_DEVICE },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static void nvme_register_types(void)
|
|
{
|
|
type_register_static(&nvme_info);
|
|
}
|
|
|
|
type_init(nvme_register_types)
|