qemu/target-sh4/op_helper.c

669 lines
12 KiB
C

/*
* SH4 emulation
*
* Copyright (c) 2005 Samuel Tardieu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <stdlib.h>
#include "exec.h"
#include "helper.h"
#ifndef CONFIG_USER_ONLY
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
unsigned long pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long) retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
}
}
cpu_loop_exit();
}
env = saved_env;
}
#endif
void helper_ldtlb(void)
{
#ifdef CONFIG_USER_ONLY
/* XXXXX */
cpu_abort(env, "Unhandled ldtlb");
#else
cpu_load_tlb(env);
#endif
}
void helper_raise_illegal_instruction(void)
{
env->exception_index = 0x180;
cpu_loop_exit();
}
void helper_raise_slot_illegal_instruction(void)
{
env->exception_index = 0x1a0;
cpu_loop_exit();
}
void helper_raise_fpu_disable(void)
{
env->exception_index = 0x800;
cpu_loop_exit();
}
void helper_raise_slot_fpu_disable(void)
{
env->exception_index = 0x820;
cpu_loop_exit();
}
void helper_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void helper_sleep(uint32_t next_pc)
{
env->halted = 1;
env->exception_index = EXCP_HLT;
env->pc = next_pc;
cpu_loop_exit();
}
void helper_trapa(uint32_t tra)
{
env->tra = tra << 2;
env->exception_index = 0x160;
cpu_loop_exit();
}
void helper_movcal(uint32_t address, uint32_t value)
{
if (cpu_sh4_is_cached (env, address))
{
memory_content *r = malloc (sizeof(memory_content));
r->address = address;
r->value = value;
r->next = NULL;
*(env->movcal_backup_tail) = r;
env->movcal_backup_tail = &(r->next);
}
}
void helper_discard_movcal_backup(void)
{
memory_content *current = env->movcal_backup;
while(current)
{
memory_content *next = current->next;
free (current);
env->movcal_backup = current = next;
if (current == NULL)
env->movcal_backup_tail = &(env->movcal_backup);
}
}
void helper_ocbi(uint32_t address)
{
memory_content **current = &(env->movcal_backup);
while (*current)
{
uint32_t a = (*current)->address;
if ((a & ~0x1F) == (address & ~0x1F))
{
memory_content *next = (*current)->next;
stl(a, (*current)->value);
if (next == NULL)
{
env->movcal_backup_tail = current;
}
free (*current);
*current = next;
break;
}
}
}
uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
{
uint32_t tmp0, tmp1;
tmp1 = arg0 + arg1;
tmp0 = arg1;
arg1 = tmp1 + (env->sr & 1);
if (tmp0 > tmp1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (tmp1 > arg1)
env->sr |= SR_T;
return arg1;
}
uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
{
uint32_t dest, src, ans;
if ((int32_t) arg1 >= 0)
dest = 0;
else
dest = 1;
if ((int32_t) arg0 >= 0)
src = 0;
else
src = 1;
src += dest;
arg1 += arg0;
if ((int32_t) arg1 >= 0)
ans = 0;
else
ans = 1;
ans += dest;
if (src == 0 || src == 2) {
if (ans == 1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
} else
env->sr &= ~SR_T;
return arg1;
}
#define T (env->sr & SR_T)
#define Q (env->sr & SR_Q ? 1 : 0)
#define M (env->sr & SR_M ? 1 : 0)
#define SETT env->sr |= SR_T
#define CLRT env->sr &= ~SR_T
#define SETQ env->sr |= SR_Q
#define CLRQ env->sr &= ~SR_Q
#define SETM env->sr |= SR_M
#define CLRM env->sr &= ~SR_M
uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
{
uint32_t tmp0, tmp2;
uint8_t old_q, tmp1 = 0xff;
//printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
old_q = Q;
if ((0x80000000 & arg1) != 0)
SETQ;
else
CLRQ;
tmp2 = arg0;
arg1 <<= 1;
arg1 |= T;
switch (old_q) {
case 0:
switch (M) {
case 0:
tmp0 = arg1;
arg1 -= tmp2;
tmp1 = arg1 > tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = arg1;
arg1 += tmp2;
tmp1 = arg1 < tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
case 1:
switch (M) {
case 0:
tmp0 = arg1;
arg1 += tmp2;
tmp1 = arg1 < tmp0;
switch (Q) {
case 0:
if (tmp1)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
}
break;
case 1:
tmp0 = arg1;
arg1 -= tmp2;
tmp1 = arg1 > tmp0;
switch (Q) {
case 0:
if (tmp1 == 0)
SETQ;
else
CLRQ;
break;
case 1:
if (tmp1)
SETQ;
else
CLRQ;
break;
}
break;
}
break;
}
if (Q == M)
SETT;
else
CLRT;
//printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
return arg1;
}
void helper_macl(uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < 0)
env->mach |= 0xffff0000;
else
env->mach &= 0x00007fff;
}
}
void helper_macw(uint32_t arg0, uint32_t arg1)
{
int64_t res;
res = ((uint64_t) env->mach << 32) | env->macl;
res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
env->mach = (res >> 32) & 0xffffffff;
env->macl = res & 0xffffffff;
if (env->sr & SR_S) {
if (res < -0x80000000) {
env->mach = 1;
env->macl = 0x80000000;
} else if (res > 0x000000007fffffff) {
env->mach = 1;
env->macl = 0x7fffffff;
}
}
}
uint32_t helper_negc(uint32_t arg)
{
uint32_t temp;
temp = -arg;
arg = temp - (env->sr & SR_T);
if (0 < temp)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (temp < arg)
env->sr |= SR_T;
return arg;
}
uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
{
uint32_t tmp0, tmp1;
tmp1 = arg1 - arg0;
tmp0 = arg1;
arg1 = tmp1 - (env->sr & SR_T);
if (tmp0 < tmp1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
if (tmp1 < arg1)
env->sr |= SR_T;
return arg1;
}
uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
{
int32_t dest, src, ans;
if ((int32_t) arg1 >= 0)
dest = 0;
else
dest = 1;
if ((int32_t) arg0 >= 0)
src = 0;
else
src = 1;
src += dest;
arg1 -= arg0;
if ((int32_t) arg1 >= 0)
ans = 0;
else
ans = 1;
ans += dest;
if (src == 1) {
if (ans == 1)
env->sr |= SR_T;
else
env->sr &= ~SR_T;
} else
env->sr &= ~SR_T;
return arg1;
}
static inline void set_t(void)
{
env->sr |= SR_T;
}
static inline void clr_t(void)
{
env->sr &= ~SR_T;
}
void helper_ld_fpscr(uint32_t val)
{
env->fpscr = val & 0x003fffff;
if (val & 0x01)
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
else
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
}
uint32_t helper_fabs_FT(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
f.f = float32_abs(f.f);
return f.l;
}
uint64_t helper_fabs_DT(uint64_t t0)
{
CPU_DoubleU d;
d.ll = t0;
d.d = float64_abs(d.d);
return d.ll;
}
uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_add(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_add(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
if (float32_compare(f0.f, f1.f, &env->fp_status) == 0)
set_t();
else
clr_t();
}
void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
if (float64_compare(d0.d, d1.d, &env->fp_status) == 0)
set_t();
else
clr_t();
}
void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
if (float32_compare(f0.f, f1.f, &env->fp_status) == 1)
set_t();
else
clr_t();
}
void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
if (float64_compare(d0.d, d1.d, &env->fp_status) == 1)
set_t();
else
clr_t();
}
uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
{
CPU_DoubleU d;
CPU_FloatU f;
f.l = t0;
d.d = float32_to_float64(f.f, &env->fp_status);
return d.ll;
}
uint32_t helper_fcnvds_DT_FT(uint64_t t0)
{
CPU_DoubleU d;
CPU_FloatU f;
d.ll = t0;
f.f = float64_to_float32(d.d, &env->fp_status);
return f.l;
}
uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_div(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_div(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
uint32_t helper_float_FT(uint32_t t0)
{
CPU_FloatU f;
f.f = int32_to_float32(t0, &env->fp_status);
return f.l;
}
uint64_t helper_float_DT(uint32_t t0)
{
CPU_DoubleU d;
d.d = int32_to_float64(t0, &env->fp_status);
return d.ll;
}
uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
{
CPU_FloatU f0, f1, f2;
f0.l = t0;
f1.l = t1;
f2.l = t2;
f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
f0.f = float32_add(f0.f, f2.f, &env->fp_status);
return f0.l;
}
uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
uint32_t helper_fneg_T(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
f.f = float32_chs(f.f);
return f.l;
}
uint32_t helper_fsqrt_FT(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
f.f = float32_sqrt(f.f, &env->fp_status);
return f.l;
}
uint64_t helper_fsqrt_DT(uint64_t t0)
{
CPU_DoubleU d;
d.ll = t0;
d.d = float64_sqrt(d.d, &env->fp_status);
return d.ll;
}
uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
{
CPU_FloatU f0, f1;
f0.l = t0;
f1.l = t1;
f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
return f0.l;
}
uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
{
CPU_DoubleU d0, d1;
d0.ll = t0;
d1.ll = t1;
d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
return d0.ll;
}
uint32_t helper_ftrc_FT(uint32_t t0)
{
CPU_FloatU f;
f.l = t0;
return float32_to_int32_round_to_zero(f.f, &env->fp_status);
}
uint32_t helper_ftrc_DT(uint64_t t0)
{
CPU_DoubleU d;
d.ll = t0;
return float64_to_int32_round_to_zero(d.d, &env->fp_status);
}