qemu/hw/net/ftgmac100.c

1096 lines
34 KiB
C

/*
* Faraday FTGMAC100 Gigabit Ethernet
*
* Copyright (C) 2016-2017, IBM Corporation.
*
* Based on Coldfire Fast Ethernet Controller emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/net/ftgmac100.h"
#include "sysemu/dma.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "net/checksum.h"
#include "net/eth.h"
#include "hw/net/mii.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
/* For crc32 */
#include <zlib.h>
/*
* FTGMAC100 registers
*/
#define FTGMAC100_ISR 0x00
#define FTGMAC100_IER 0x04
#define FTGMAC100_MAC_MADR 0x08
#define FTGMAC100_MAC_LADR 0x0c
#define FTGMAC100_MATH0 0x10
#define FTGMAC100_MATH1 0x14
#define FTGMAC100_NPTXPD 0x18
#define FTGMAC100_RXPD 0x1C
#define FTGMAC100_NPTXR_BADR 0x20
#define FTGMAC100_RXR_BADR 0x24
#define FTGMAC100_HPTXPD 0x28
#define FTGMAC100_HPTXR_BADR 0x2c
#define FTGMAC100_ITC 0x30
#define FTGMAC100_APTC 0x34
#define FTGMAC100_DBLAC 0x38
#define FTGMAC100_REVR 0x40
#define FTGMAC100_FEAR1 0x44
#define FTGMAC100_RBSR 0x4c
#define FTGMAC100_TPAFCR 0x48
#define FTGMAC100_MACCR 0x50
#define FTGMAC100_MACSR 0x54
#define FTGMAC100_PHYCR 0x60
#define FTGMAC100_PHYDATA 0x64
#define FTGMAC100_FCR 0x68
/*
* Interrupt status register & interrupt enable register
*/
#define FTGMAC100_INT_RPKT_BUF (1 << 0)
#define FTGMAC100_INT_RPKT_FIFO (1 << 1)
#define FTGMAC100_INT_NO_RXBUF (1 << 2)
#define FTGMAC100_INT_RPKT_LOST (1 << 3)
#define FTGMAC100_INT_XPKT_ETH (1 << 4)
#define FTGMAC100_INT_XPKT_FIFO (1 << 5)
#define FTGMAC100_INT_NO_NPTXBUF (1 << 6)
#define FTGMAC100_INT_XPKT_LOST (1 << 7)
#define FTGMAC100_INT_AHB_ERR (1 << 8)
#define FTGMAC100_INT_PHYSTS_CHG (1 << 9)
#define FTGMAC100_INT_NO_HPTXBUF (1 << 10)
/*
* Automatic polling timer control register
*/
#define FTGMAC100_APTC_RXPOLL_CNT(x) ((x) & 0xf)
#define FTGMAC100_APTC_RXPOLL_TIME_SEL (1 << 4)
#define FTGMAC100_APTC_TXPOLL_CNT(x) (((x) >> 8) & 0xf)
#define FTGMAC100_APTC_TXPOLL_TIME_SEL (1 << 12)
/*
* PHY control register
*/
#define FTGMAC100_PHYCR_MIIRD (1 << 26)
#define FTGMAC100_PHYCR_MIIWR (1 << 27)
#define FTGMAC100_PHYCR_DEV(x) (((x) >> 16) & 0x1f)
#define FTGMAC100_PHYCR_REG(x) (((x) >> 21) & 0x1f)
/*
* PHY data register
*/
#define FTGMAC100_PHYDATA_MIIWDATA(x) ((x) & 0xffff)
#define FTGMAC100_PHYDATA_MIIRDATA(x) (((x) >> 16) & 0xffff)
/*
* PHY control register - New MDC/MDIO interface
*/
#define FTGMAC100_PHYCR_NEW_DATA(x) (((x) >> 16) & 0xffff)
#define FTGMAC100_PHYCR_NEW_FIRE (1 << 15)
#define FTGMAC100_PHYCR_NEW_ST_22 (1 << 12)
#define FTGMAC100_PHYCR_NEW_OP(x) (((x) >> 10) & 3)
#define FTGMAC100_PHYCR_NEW_OP_WRITE 0x1
#define FTGMAC100_PHYCR_NEW_OP_READ 0x2
#define FTGMAC100_PHYCR_NEW_DEV(x) (((x) >> 5) & 0x1f)
#define FTGMAC100_PHYCR_NEW_REG(x) ((x) & 0x1f)
/*
* Feature Register
*/
#define FTGMAC100_REVR_NEW_MDIO_INTERFACE (1 << 31)
/*
* MAC control register
*/
#define FTGMAC100_MACCR_TXDMA_EN (1 << 0)
#define FTGMAC100_MACCR_RXDMA_EN (1 << 1)
#define FTGMAC100_MACCR_TXMAC_EN (1 << 2)
#define FTGMAC100_MACCR_RXMAC_EN (1 << 3)
#define FTGMAC100_MACCR_RM_VLAN (1 << 4)
#define FTGMAC100_MACCR_HPTXR_EN (1 << 5)
#define FTGMAC100_MACCR_LOOP_EN (1 << 6)
#define FTGMAC100_MACCR_ENRX_IN_HALFTX (1 << 7)
#define FTGMAC100_MACCR_FULLDUP (1 << 8)
#define FTGMAC100_MACCR_GIGA_MODE (1 << 9)
#define FTGMAC100_MACCR_CRC_APD (1 << 10) /* not needed */
#define FTGMAC100_MACCR_RX_RUNT (1 << 12)
#define FTGMAC100_MACCR_JUMBO_LF (1 << 13)
#define FTGMAC100_MACCR_RX_ALL (1 << 14)
#define FTGMAC100_MACCR_HT_MULTI_EN (1 << 15)
#define FTGMAC100_MACCR_RX_MULTIPKT (1 << 16)
#define FTGMAC100_MACCR_RX_BROADPKT (1 << 17)
#define FTGMAC100_MACCR_DISCARD_CRCERR (1 << 18)
#define FTGMAC100_MACCR_FAST_MODE (1 << 19)
#define FTGMAC100_MACCR_SW_RST (1 << 31)
/*
* Transmit descriptor
*/
#define FTGMAC100_TXDES0_TXBUF_SIZE(x) ((x) & 0x3fff)
#define FTGMAC100_TXDES0_EDOTR (1 << 15)
#define FTGMAC100_TXDES0_CRC_ERR (1 << 19)
#define FTGMAC100_TXDES0_LTS (1 << 28)
#define FTGMAC100_TXDES0_FTS (1 << 29)
#define FTGMAC100_TXDES0_EDOTR_ASPEED (1 << 30)
#define FTGMAC100_TXDES0_TXDMA_OWN (1 << 31)
#define FTGMAC100_TXDES1_VLANTAG_CI(x) ((x) & 0xffff)
#define FTGMAC100_TXDES1_INS_VLANTAG (1 << 16)
#define FTGMAC100_TXDES1_TCP_CHKSUM (1 << 17)
#define FTGMAC100_TXDES1_UDP_CHKSUM (1 << 18)
#define FTGMAC100_TXDES1_IP_CHKSUM (1 << 19)
#define FTGMAC100_TXDES1_LLC (1 << 22)
#define FTGMAC100_TXDES1_TX2FIC (1 << 30)
#define FTGMAC100_TXDES1_TXIC (1 << 31)
/*
* Receive descriptor
*/
#define FTGMAC100_RXDES0_VDBC 0x3fff
#define FTGMAC100_RXDES0_EDORR (1 << 15)
#define FTGMAC100_RXDES0_MULTICAST (1 << 16)
#define FTGMAC100_RXDES0_BROADCAST (1 << 17)
#define FTGMAC100_RXDES0_RX_ERR (1 << 18)
#define FTGMAC100_RXDES0_CRC_ERR (1 << 19)
#define FTGMAC100_RXDES0_FTL (1 << 20)
#define FTGMAC100_RXDES0_RUNT (1 << 21)
#define FTGMAC100_RXDES0_RX_ODD_NB (1 << 22)
#define FTGMAC100_RXDES0_FIFO_FULL (1 << 23)
#define FTGMAC100_RXDES0_PAUSE_OPCODE (1 << 24)
#define FTGMAC100_RXDES0_PAUSE_FRAME (1 << 25)
#define FTGMAC100_RXDES0_LRS (1 << 28)
#define FTGMAC100_RXDES0_FRS (1 << 29)
#define FTGMAC100_RXDES0_EDORR_ASPEED (1 << 30)
#define FTGMAC100_RXDES0_RXPKT_RDY (1 << 31)
#define FTGMAC100_RXDES1_VLANTAG_CI 0xffff
#define FTGMAC100_RXDES1_PROT_MASK (0x3 << 20)
#define FTGMAC100_RXDES1_PROT_NONIP (0x0 << 20)
#define FTGMAC100_RXDES1_PROT_IP (0x1 << 20)
#define FTGMAC100_RXDES1_PROT_TCPIP (0x2 << 20)
#define FTGMAC100_RXDES1_PROT_UDPIP (0x3 << 20)
#define FTGMAC100_RXDES1_LLC (1 << 22)
#define FTGMAC100_RXDES1_DF (1 << 23)
#define FTGMAC100_RXDES1_VLANTAG_AVAIL (1 << 24)
#define FTGMAC100_RXDES1_TCP_CHKSUM_ERR (1 << 25)
#define FTGMAC100_RXDES1_UDP_CHKSUM_ERR (1 << 26)
#define FTGMAC100_RXDES1_IP_CHKSUM_ERR (1 << 27)
/*
* Receive and transmit Buffer Descriptor
*/
typedef struct {
uint32_t des0;
uint32_t des1;
uint32_t des2; /* not used by HW */
uint32_t des3;
} FTGMAC100Desc;
/*
* Specific RTL8211E MII Registers
*/
#define RTL8211E_MII_PHYCR 16 /* PHY Specific Control */
#define RTL8211E_MII_PHYSR 17 /* PHY Specific Status */
#define RTL8211E_MII_INER 18 /* Interrupt Enable */
#define RTL8211E_MII_INSR 19 /* Interrupt Status */
#define RTL8211E_MII_RXERC 24 /* Receive Error Counter */
#define RTL8211E_MII_LDPSR 27 /* Link Down Power Saving */
#define RTL8211E_MII_EPAGSR 30 /* Extension Page Select */
#define RTL8211E_MII_PAGSEL 31 /* Page Select */
/*
* RTL8211E Interrupt Status
*/
#define PHY_INT_AUTONEG_ERROR (1 << 15)
#define PHY_INT_PAGE_RECV (1 << 12)
#define PHY_INT_AUTONEG_COMPLETE (1 << 11)
#define PHY_INT_LINK_STATUS (1 << 10)
#define PHY_INT_ERROR (1 << 9)
#define PHY_INT_DOWN (1 << 8)
#define PHY_INT_JABBER (1 << 0)
/*
* Max frame size for the receiving buffer
*/
#define FTGMAC100_MAX_FRAME_SIZE 9220
/* Limits depending on the type of the frame
*
* 9216 for Jumbo frames (+ 4 for VLAN)
* 1518 for other frames (+ 4 for VLAN)
*/
static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto)
{
int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518);
return max + (proto == ETH_P_VLAN ? 4 : 0);
}
static void ftgmac100_update_irq(FTGMAC100State *s)
{
qemu_set_irq(s->irq, s->isr & s->ier);
}
/*
* The MII phy could raise a GPIO to the processor which in turn
* could be handled as an interrpt by the OS.
* For now we don't handle any GPIO/interrupt line, so the OS will
* have to poll for the PHY status.
*/
static void phy_update_irq(FTGMAC100State *s)
{
ftgmac100_update_irq(s);
}
static void phy_update_link(FTGMAC100State *s)
{
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
s->phy_int |= PHY_INT_DOWN;
} else {
s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
}
phy_update_irq(s);
}
static void ftgmac100_set_link(NetClientState *nc)
{
phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc)));
}
static void phy_reset(FTGMAC100State *s)
{
s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS |
MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST |
MII_BMSR_EXTCAP);
s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000);
s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD |
MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
MII_ANAR_CSMACD);
s->phy_int_mask = 0;
s->phy_int = 0;
}
static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg)
{
uint16_t val;
switch (reg) {
case MII_BMCR: /* Basic Control */
val = s->phy_control;
break;
case MII_BMSR: /* Basic Status */
val = s->phy_status;
break;
case MII_PHYID1: /* ID1 */
val = RTL8211E_PHYID1;
break;
case MII_PHYID2: /* ID2 */
val = RTL8211E_PHYID2;
break;
case MII_ANAR: /* Auto-neg advertisement */
val = s->phy_advertise;
break;
case MII_ANLPAR: /* Auto-neg Link Partner Ability */
val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD |
MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 |
MII_ANLPAR_CSMACD);
break;
case MII_ANER: /* Auto-neg Expansion */
val = MII_ANER_NWAY;
break;
case MII_CTRL1000: /* 1000BASE-T control */
val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL);
break;
case MII_STAT1000: /* 1000BASE-T status */
val = MII_STAT1000_FULL;
break;
case RTL8211E_MII_INSR: /* Interrupt status. */
val = s->phy_int;
s->phy_int = 0;
phy_update_irq(s);
break;
case RTL8211E_MII_INER: /* Interrupt enable */
val = s->phy_int_mask;
break;
case RTL8211E_MII_PHYCR:
case RTL8211E_MII_PHYSR:
case RTL8211E_MII_RXERC:
case RTL8211E_MII_LDPSR:
case RTL8211E_MII_EPAGSR:
case RTL8211E_MII_PAGSEL:
qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
__func__, reg);
val = 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
__func__, reg);
val = 0;
break;
}
return val;
}
#define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 | \
MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \
MII_BMCR_FD | MII_BMCR_CTST)
#define MII_ANAR_MASK 0x2d7f
static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val)
{
switch (reg) {
case MII_BMCR: /* Basic Control */
if (val & MII_BMCR_RESET) {
phy_reset(s);
} else {
s->phy_control = val & MII_BMCR_MASK;
/* Complete autonegotiation immediately. */
if (val & MII_BMCR_AUTOEN) {
s->phy_status |= MII_BMSR_AN_COMP;
}
}
break;
case MII_ANAR: /* Auto-neg advertisement */
s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX;
break;
case RTL8211E_MII_INER: /* Interrupt enable */
s->phy_int_mask = val & 0xff;
phy_update_irq(s);
break;
case RTL8211E_MII_PHYCR:
case RTL8211E_MII_PHYSR:
case RTL8211E_MII_RXERC:
case RTL8211E_MII_LDPSR:
case RTL8211E_MII_EPAGSR:
case RTL8211E_MII_PAGSEL:
qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
__func__, reg);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
__func__, reg);
break;
}
}
static void do_phy_new_ctl(FTGMAC100State *s)
{
uint8_t reg;
uint16_t data;
if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) {
qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
return;
}
/* Nothing to do */
if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) {
return;
}
reg = FTGMAC100_PHYCR_NEW_REG(s->phycr);
data = FTGMAC100_PHYCR_NEW_DATA(s->phycr);
switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) {
case FTGMAC100_PHYCR_NEW_OP_WRITE:
do_phy_write(s, reg, data);
break;
case FTGMAC100_PHYCR_NEW_OP_READ:
s->phydata = do_phy_read(s, reg) & 0xffff;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
__func__, s->phycr);
}
s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE;
}
static void do_phy_ctl(FTGMAC100State *s)
{
uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr);
if (s->phycr & FTGMAC100_PHYCR_MIIWR) {
do_phy_write(s, reg, s->phydata & 0xffff);
s->phycr &= ~FTGMAC100_PHYCR_MIIWR;
} else if (s->phycr & FTGMAC100_PHYCR_MIIRD) {
s->phydata = do_phy_read(s, reg) << 16;
s->phycr &= ~FTGMAC100_PHYCR_MIIRD;
} else {
qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n",
__func__, s->phycr);
}
}
static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr)
{
if (dma_memory_read(&address_space_memory, addr, bd, sizeof(*bd))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
bd->des0 = le32_to_cpu(bd->des0);
bd->des1 = le32_to_cpu(bd->des1);
bd->des2 = le32_to_cpu(bd->des2);
bd->des3 = le32_to_cpu(bd->des3);
return 0;
}
static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr)
{
FTGMAC100Desc lebd;
lebd.des0 = cpu_to_le32(bd->des0);
lebd.des1 = cpu_to_le32(bd->des1);
lebd.des2 = cpu_to_le32(bd->des2);
lebd.des3 = cpu_to_le32(bd->des3);
if (dma_memory_write(&address_space_memory, addr, &lebd, sizeof(lebd))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
return 0;
}
static void ftgmac100_do_tx(FTGMAC100State *s, uint32_t tx_ring,
uint32_t tx_descriptor)
{
int frame_size = 0;
uint8_t *ptr = s->frame;
uint32_t addr = tx_descriptor;
uint32_t flags = 0;
while (1) {
FTGMAC100Desc bd;
int len;
if (ftgmac100_read_bd(&bd, addr) ||
((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) {
/* Run out of descriptors to transmit. */
s->isr |= FTGMAC100_INT_NO_NPTXBUF;
break;
}
/* record transmit flags as they are valid only on the first
* segment */
if (bd.des0 & FTGMAC100_TXDES0_FTS) {
flags = bd.des1;
}
len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0);
if (frame_size + len > sizeof(s->frame)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
__func__, len);
s->isr |= FTGMAC100_INT_XPKT_LOST;
len = sizeof(s->frame) - frame_size;
}
if (dma_memory_read(&address_space_memory, bd.des3, ptr, len)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n",
__func__, bd.des3);
s->isr |= FTGMAC100_INT_NO_NPTXBUF;
break;
}
/* Check for VLAN */
if (bd.des0 & FTGMAC100_TXDES0_FTS &&
bd.des1 & FTGMAC100_TXDES1_INS_VLANTAG &&
be16_to_cpu(PKT_GET_ETH_HDR(ptr)->h_proto) != ETH_P_VLAN) {
if (frame_size + len + 4 > sizeof(s->frame)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
__func__, len);
s->isr |= FTGMAC100_INT_XPKT_LOST;
len = sizeof(s->frame) - frame_size - 4;
}
memmove(ptr + 16, ptr + 12, len - 12);
stw_be_p(ptr + 12, ETH_P_VLAN);
stw_be_p(ptr + 14, bd.des1);
len += 4;
}
ptr += len;
frame_size += len;
if (bd.des0 & FTGMAC100_TXDES0_LTS) {
if (flags & FTGMAC100_TXDES1_IP_CHKSUM) {
net_checksum_calculate(s->frame, frame_size);
}
/* Last buffer in frame. */
qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
ptr = s->frame;
frame_size = 0;
if (flags & FTGMAC100_TXDES1_TXIC) {
s->isr |= FTGMAC100_INT_XPKT_ETH;
}
}
if (flags & FTGMAC100_TXDES1_TX2FIC) {
s->isr |= FTGMAC100_INT_XPKT_FIFO;
}
bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN;
/* Write back the modified descriptor. */
ftgmac100_write_bd(&bd, addr);
/* Advance to the next descriptor. */
if (bd.des0 & s->txdes0_edotr) {
addr = tx_ring;
} else {
addr += sizeof(FTGMAC100Desc);
}
}
s->tx_descriptor = addr;
ftgmac100_update_irq(s);
}
static int ftgmac100_can_receive(NetClientState *nc)
{
FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
FTGMAC100Desc bd;
if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
!= (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
return 0;
}
if (ftgmac100_read_bd(&bd, s->rx_descriptor)) {
return 0;
}
return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY);
}
/*
* This is purely informative. The HW can poll the RW (and RX) ring
* buffers for available descriptors but we don't need to trigger a
* timer for that in qemu.
*/
static uint32_t ftgmac100_rxpoll(FTGMAC100State *s)
{
/* Polling times :
*
* Speed TIME_SEL=0 TIME_SEL=1
*
* 10 51.2 ms 819.2 ms
* 100 5.12 ms 81.92 ms
* 1000 1.024 ms 16.384 ms
*/
static const int div[] = { 20, 200, 1000 };
uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr);
uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0;
if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) {
cnt <<= 4;
}
if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) {
speed = 2;
}
return cnt / div[speed];
}
static void ftgmac100_reset(DeviceState *d)
{
FTGMAC100State *s = FTGMAC100(d);
/* Reset the FTGMAC100 */
s->isr = 0;
s->ier = 0;
s->rx_enabled = 0;
s->rx_ring = 0;
s->rbsr = 0x640;
s->rx_descriptor = 0;
s->tx_ring = 0;
s->tx_descriptor = 0;
s->math[0] = 0;
s->math[1] = 0;
s->itc = 0;
s->aptcr = 1;
s->dblac = 0x00022f00;
s->revr = 0;
s->fear1 = 0;
s->tpafcr = 0xf1;
s->maccr = 0;
s->phycr = 0;
s->phydata = 0;
s->fcr = 0x400;
/* and the PHY */
phy_reset(s);
}
static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size)
{
FTGMAC100State *s = FTGMAC100(opaque);
switch (addr & 0xff) {
case FTGMAC100_ISR:
return s->isr;
case FTGMAC100_IER:
return s->ier;
case FTGMAC100_MAC_MADR:
return (s->conf.macaddr.a[0] << 8) | s->conf.macaddr.a[1];
case FTGMAC100_MAC_LADR:
return ((uint32_t) s->conf.macaddr.a[2] << 24) |
(s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) |
s->conf.macaddr.a[5];
case FTGMAC100_MATH0:
return s->math[0];
case FTGMAC100_MATH1:
return s->math[1];
case FTGMAC100_ITC:
return s->itc;
case FTGMAC100_DBLAC:
return s->dblac;
case FTGMAC100_REVR:
return s->revr;
case FTGMAC100_FEAR1:
return s->fear1;
case FTGMAC100_TPAFCR:
return s->tpafcr;
case FTGMAC100_FCR:
return s->fcr;
case FTGMAC100_MACCR:
return s->maccr;
case FTGMAC100_PHYCR:
return s->phycr;
case FTGMAC100_PHYDATA:
return s->phydata;
/* We might want to support these one day */
case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
HWADDR_PRIx "\n", __func__, addr);
return 0;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
HWADDR_PRIx "\n", __func__, addr);
return 0;
}
}
static void ftgmac100_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
FTGMAC100State *s = FTGMAC100(opaque);
switch (addr & 0xff) {
case FTGMAC100_ISR: /* Interrupt status */
s->isr &= ~value;
break;
case FTGMAC100_IER: /* Interrupt control */
s->ier = value;
break;
case FTGMAC100_MAC_MADR: /* MAC */
s->conf.macaddr.a[0] = value >> 8;
s->conf.macaddr.a[1] = value;
break;
case FTGMAC100_MAC_LADR:
s->conf.macaddr.a[2] = value >> 24;
s->conf.macaddr.a[3] = value >> 16;
s->conf.macaddr.a[4] = value >> 8;
s->conf.macaddr.a[5] = value;
break;
case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */
s->math[0] = value;
break;
case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */
s->math[1] = value;
break;
case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */
s->itc = value;
break;
case FTGMAC100_RXR_BADR: /* Ring buffer address */
s->rx_ring = value;
s->rx_descriptor = s->rx_ring;
break;
case FTGMAC100_RBSR: /* DMA buffer size */
s->rbsr = value;
break;
case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */
s->tx_ring = value;
s->tx_descriptor = s->tx_ring;
break;
case FTGMAC100_NPTXPD: /* Trigger transmit */
if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN))
== (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) {
/* TODO: high priority tx ring */
ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor);
}
if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case FTGMAC100_RXPD: /* Receive Poll Demand Register */
if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case FTGMAC100_APTC: /* Automatic polling */
s->aptcr = value;
if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) {
ftgmac100_rxpoll(s);
}
if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) {
qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__);
}
break;
case FTGMAC100_MACCR: /* MAC Device control */
s->maccr = value;
if (value & FTGMAC100_MACCR_SW_RST) {
ftgmac100_reset(DEVICE(s));
}
if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case FTGMAC100_PHYCR: /* PHY Device control */
s->phycr = value;
if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) {
do_phy_new_ctl(s);
} else {
do_phy_ctl(s);
}
break;
case FTGMAC100_PHYDATA:
s->phydata = value & 0xffff;
break;
case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
s->dblac = value;
break;
case FTGMAC100_REVR: /* Feature Register */
s->revr = value;
break;
case FTGMAC100_FEAR1: /* Feature Register 1 */
s->fear1 = value;
break;
case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */
s->tpafcr = value;
break;
case FTGMAC100_FCR: /* Flow Control */
s->fcr = value;
break;
case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
HWADDR_PRIx "\n", __func__, addr);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
HWADDR_PRIx "\n", __func__, addr);
break;
}
ftgmac100_update_irq(s);
}
static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len)
{
unsigned mcast_idx;
if (s->maccr & FTGMAC100_MACCR_RX_ALL) {
return 1;
}
switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
case ETH_PKT_BCAST:
if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) {
return 0;
}
break;
case ETH_PKT_MCAST:
if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) {
if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) {
return 0;
}
mcast_idx = net_crc32_le(buf, ETH_ALEN);
mcast_idx = (~(mcast_idx >> 2)) & 0x3f;
if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) {
return 0;
}
}
break;
case ETH_PKT_UCAST:
if (memcmp(s->conf.macaddr.a, buf, 6)) {
return 0;
}
break;
}
return 1;
}
static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
size_t len)
{
FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
FTGMAC100Desc bd;
uint32_t flags = 0;
uint32_t addr;
uint32_t crc;
uint32_t buf_addr;
uint8_t *crc_ptr;
uint32_t buf_len;
size_t size = len;
uint32_t first = FTGMAC100_RXDES0_FRS;
uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto);
int max_frame_size = ftgmac100_max_frame_size(s, proto);
if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
!= (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
return -1;
}
/* TODO : Pad to minimum Ethernet frame length */
/* handle small packets. */
if (size < 10) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: dropped frame of %zd bytes\n",
__func__, size);
return size;
}
if (!ftgmac100_filter(s, buf, size)) {
return size;
}
/* 4 bytes for the CRC. */
size += 4;
crc = cpu_to_be32(crc32(~0, buf, size));
crc_ptr = (uint8_t *) &crc;
/* Huge frames are truncated. */
if (size > max_frame_size) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n",
__func__, size);
size = max_frame_size;
flags |= FTGMAC100_RXDES0_FTL;
}
switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
case ETH_PKT_BCAST:
flags |= FTGMAC100_RXDES0_BROADCAST;
break;
case ETH_PKT_MCAST:
flags |= FTGMAC100_RXDES0_MULTICAST;
break;
case ETH_PKT_UCAST:
break;
}
addr = s->rx_descriptor;
while (size > 0) {
if (!ftgmac100_can_receive(nc)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
return -1;
}
if (ftgmac100_read_bd(&bd, addr) ||
(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) {
/* No descriptors available. Bail out. */
qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n",
__func__);
s->isr |= FTGMAC100_INT_NO_RXBUF;
break;
}
buf_len = (size <= s->rbsr) ? size : s->rbsr;
bd.des0 |= buf_len & 0x3fff;
size -= buf_len;
/* The last 4 bytes are the CRC. */
if (size < 4) {
buf_len += size - 4;
}
buf_addr = bd.des3;
if (first && proto == ETH_P_VLAN && buf_len >= 18) {
bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL;
if (s->maccr & FTGMAC100_MACCR_RM_VLAN) {
dma_memory_write(&address_space_memory, buf_addr, buf, 12);
dma_memory_write(&address_space_memory, buf_addr + 12, buf + 16,
buf_len - 16);
} else {
dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
}
} else {
bd.des1 = 0;
dma_memory_write(&address_space_memory, buf_addr, buf, buf_len);
}
buf += buf_len;
if (size < 4) {
dma_memory_write(&address_space_memory, buf_addr + buf_len,
crc_ptr, 4 - size);
crc_ptr += 4 - size;
}
bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY;
first = 0;
if (size == 0) {
/* Last buffer in frame. */
bd.des0 |= flags | FTGMAC100_RXDES0_LRS;
s->isr |= FTGMAC100_INT_RPKT_BUF;
} else {
s->isr |= FTGMAC100_INT_RPKT_FIFO;
}
ftgmac100_write_bd(&bd, addr);
if (bd.des0 & s->rxdes0_edorr) {
addr = s->rx_ring;
} else {
addr += sizeof(FTGMAC100Desc);
}
}
s->rx_descriptor = addr;
ftgmac100_update_irq(s);
return len;
}
static const MemoryRegionOps ftgmac100_ops = {
.read = ftgmac100_read,
.write = ftgmac100_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void ftgmac100_cleanup(NetClientState *nc)
{
FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
s->nic = NULL;
}
static NetClientInfo net_ftgmac100_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = ftgmac100_can_receive,
.receive = ftgmac100_receive,
.cleanup = ftgmac100_cleanup,
.link_status_changed = ftgmac100_set_link,
};
static void ftgmac100_realize(DeviceState *dev, Error **errp)
{
FTGMAC100State *s = FTGMAC100(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
if (s->aspeed) {
s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED;
s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED;
} else {
s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR;
s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR;
}
memory_region_init_io(&s->iomem, OBJECT(dev), &ftgmac100_ops, s,
TYPE_FTGMAC100, 0x2000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf,
object_get_typename(OBJECT(dev)), DEVICE(dev)->id,
s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static const VMStateDescription vmstate_ftgmac100 = {
.name = TYPE_FTGMAC100,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(irq_state, FTGMAC100State),
VMSTATE_UINT32(isr, FTGMAC100State),
VMSTATE_UINT32(ier, FTGMAC100State),
VMSTATE_UINT32(rx_enabled, FTGMAC100State),
VMSTATE_UINT32(rx_ring, FTGMAC100State),
VMSTATE_UINT32(rbsr, FTGMAC100State),
VMSTATE_UINT32(tx_ring, FTGMAC100State),
VMSTATE_UINT32(rx_descriptor, FTGMAC100State),
VMSTATE_UINT32(tx_descriptor, FTGMAC100State),
VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2),
VMSTATE_UINT32(itc, FTGMAC100State),
VMSTATE_UINT32(aptcr, FTGMAC100State),
VMSTATE_UINT32(dblac, FTGMAC100State),
VMSTATE_UINT32(revr, FTGMAC100State),
VMSTATE_UINT32(fear1, FTGMAC100State),
VMSTATE_UINT32(tpafcr, FTGMAC100State),
VMSTATE_UINT32(maccr, FTGMAC100State),
VMSTATE_UINT32(phycr, FTGMAC100State),
VMSTATE_UINT32(phydata, FTGMAC100State),
VMSTATE_UINT32(fcr, FTGMAC100State),
VMSTATE_UINT32(phy_status, FTGMAC100State),
VMSTATE_UINT32(phy_control, FTGMAC100State),
VMSTATE_UINT32(phy_advertise, FTGMAC100State),
VMSTATE_UINT32(phy_int, FTGMAC100State),
VMSTATE_UINT32(phy_int_mask, FTGMAC100State),
VMSTATE_UINT32(txdes0_edotr, FTGMAC100State),
VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State),
VMSTATE_END_OF_LIST()
}
};
static Property ftgmac100_properties[] = {
DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false),
DEFINE_NIC_PROPERTIES(FTGMAC100State, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void ftgmac100_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_ftgmac100;
dc->reset = ftgmac100_reset;
dc->props = ftgmac100_properties;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->realize = ftgmac100_realize;
dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation";
}
static const TypeInfo ftgmac100_info = {
.name = TYPE_FTGMAC100,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(FTGMAC100State),
.class_init = ftgmac100_class_init,
};
static void ftgmac100_register_types(void)
{
type_register_static(&ftgmac100_info);
}
type_init(ftgmac100_register_types)