mirror of https://gitee.com/openkylin/qemu.git
375 lines
11 KiB
C
375 lines
11 KiB
C
/*
|
|
* defines common to all virtual CPUs
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef CPU_ALL_H
|
|
#define CPU_ALL_H
|
|
|
|
#include "qemu-common.h"
|
|
#include "exec/cpu-common.h"
|
|
#include "exec/memory.h"
|
|
#include "qemu/thread.h"
|
|
#include "qom/cpu.h"
|
|
#include "qemu/rcu.h"
|
|
|
|
#define EXCP_INTERRUPT 0x10000 /* async interruption */
|
|
#define EXCP_HLT 0x10001 /* hlt instruction reached */
|
|
#define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */
|
|
#define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */
|
|
#define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */
|
|
#define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */
|
|
|
|
/* some important defines:
|
|
*
|
|
* HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
|
|
* otherwise little endian.
|
|
*
|
|
* TARGET_WORDS_BIGENDIAN : same for target cpu
|
|
*/
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
|
|
#define BSWAP_NEEDED
|
|
#endif
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
|
|
static inline uint16_t tswap16(uint16_t s)
|
|
{
|
|
return bswap16(s);
|
|
}
|
|
|
|
static inline uint32_t tswap32(uint32_t s)
|
|
{
|
|
return bswap32(s);
|
|
}
|
|
|
|
static inline uint64_t tswap64(uint64_t s)
|
|
{
|
|
return bswap64(s);
|
|
}
|
|
|
|
static inline void tswap16s(uint16_t *s)
|
|
{
|
|
*s = bswap16(*s);
|
|
}
|
|
|
|
static inline void tswap32s(uint32_t *s)
|
|
{
|
|
*s = bswap32(*s);
|
|
}
|
|
|
|
static inline void tswap64s(uint64_t *s)
|
|
{
|
|
*s = bswap64(*s);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline uint16_t tswap16(uint16_t s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
static inline uint32_t tswap32(uint32_t s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
static inline uint64_t tswap64(uint64_t s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
static inline void tswap16s(uint16_t *s)
|
|
{
|
|
}
|
|
|
|
static inline void tswap32s(uint32_t *s)
|
|
{
|
|
}
|
|
|
|
static inline void tswap64s(uint64_t *s)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
#if TARGET_LONG_SIZE == 4
|
|
#define tswapl(s) tswap32(s)
|
|
#define tswapls(s) tswap32s((uint32_t *)(s))
|
|
#define bswaptls(s) bswap32s(s)
|
|
#else
|
|
#define tswapl(s) tswap64(s)
|
|
#define tswapls(s) tswap64s((uint64_t *)(s))
|
|
#define bswaptls(s) bswap64s(s)
|
|
#endif
|
|
|
|
/* Target-endianness CPU memory access functions. These fit into the
|
|
* {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
|
|
*/
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
#define lduw_p(p) lduw_be_p(p)
|
|
#define ldsw_p(p) ldsw_be_p(p)
|
|
#define ldl_p(p) ldl_be_p(p)
|
|
#define ldq_p(p) ldq_be_p(p)
|
|
#define ldfl_p(p) ldfl_be_p(p)
|
|
#define ldfq_p(p) ldfq_be_p(p)
|
|
#define stw_p(p, v) stw_be_p(p, v)
|
|
#define stl_p(p, v) stl_be_p(p, v)
|
|
#define stq_p(p, v) stq_be_p(p, v)
|
|
#define stfl_p(p, v) stfl_be_p(p, v)
|
|
#define stfq_p(p, v) stfq_be_p(p, v)
|
|
#define ldn_p(p, sz) ldn_be_p(p, sz)
|
|
#define stn_p(p, sz, v) stn_be_p(p, sz, v)
|
|
#else
|
|
#define lduw_p(p) lduw_le_p(p)
|
|
#define ldsw_p(p) ldsw_le_p(p)
|
|
#define ldl_p(p) ldl_le_p(p)
|
|
#define ldq_p(p) ldq_le_p(p)
|
|
#define ldfl_p(p) ldfl_le_p(p)
|
|
#define ldfq_p(p) ldfq_le_p(p)
|
|
#define stw_p(p, v) stw_le_p(p, v)
|
|
#define stl_p(p, v) stl_le_p(p, v)
|
|
#define stq_p(p, v) stq_le_p(p, v)
|
|
#define stfl_p(p, v) stfl_le_p(p, v)
|
|
#define stfq_p(p, v) stfq_le_p(p, v)
|
|
#define ldn_p(p, sz) ldn_le_p(p, sz)
|
|
#define stn_p(p, sz, v) stn_le_p(p, sz, v)
|
|
#endif
|
|
|
|
/* MMU memory access macros */
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include "exec/user/abitypes.h"
|
|
|
|
/* On some host systems the guest address space is reserved on the host.
|
|
* This allows the guest address space to be offset to a convenient location.
|
|
*/
|
|
extern unsigned long guest_base;
|
|
extern int have_guest_base;
|
|
extern unsigned long reserved_va;
|
|
|
|
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
|
|
#define GUEST_ADDR_MAX (~0ul)
|
|
#else
|
|
#define GUEST_ADDR_MAX (reserved_va ? reserved_va - 1 : \
|
|
(1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
|
|
#endif
|
|
#else
|
|
|
|
#include "exec/hwaddr.h"
|
|
|
|
#define SUFFIX
|
|
#define ARG1 as
|
|
#define ARG1_DECL AddressSpace *as
|
|
#define TARGET_ENDIANNESS
|
|
#include "exec/memory_ldst.inc.h"
|
|
|
|
#define SUFFIX _cached_slow
|
|
#define ARG1 cache
|
|
#define ARG1_DECL MemoryRegionCache *cache
|
|
#define TARGET_ENDIANNESS
|
|
#include "exec/memory_ldst.inc.h"
|
|
|
|
static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
|
|
{
|
|
address_space_stl_notdirty(as, addr, val,
|
|
MEMTXATTRS_UNSPECIFIED, NULL);
|
|
}
|
|
|
|
#define SUFFIX
|
|
#define ARG1 as
|
|
#define ARG1_DECL AddressSpace *as
|
|
#define TARGET_ENDIANNESS
|
|
#include "exec/memory_ldst_phys.inc.h"
|
|
|
|
/* Inline fast path for direct RAM access. */
|
|
#define ENDIANNESS
|
|
#include "exec/memory_ldst_cached.inc.h"
|
|
|
|
#define SUFFIX _cached
|
|
#define ARG1 cache
|
|
#define ARG1_DECL MemoryRegionCache *cache
|
|
#define TARGET_ENDIANNESS
|
|
#include "exec/memory_ldst_phys.inc.h"
|
|
#endif
|
|
|
|
/* page related stuff */
|
|
|
|
#ifdef TARGET_PAGE_BITS_VARY
|
|
extern bool target_page_bits_decided;
|
|
extern int target_page_bits;
|
|
#define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \
|
|
target_page_bits; })
|
|
#else
|
|
#define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
|
|
#endif
|
|
|
|
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
|
|
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
|
|
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
|
|
|
|
/* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
|
|
* when intptr_t is 32-bit and we are aligning a long long.
|
|
*/
|
|
extern uintptr_t qemu_host_page_size;
|
|
extern intptr_t qemu_host_page_mask;
|
|
|
|
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
|
|
#define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \
|
|
qemu_real_host_page_mask)
|
|
|
|
/* same as PROT_xxx */
|
|
#define PAGE_READ 0x0001
|
|
#define PAGE_WRITE 0x0002
|
|
#define PAGE_EXEC 0x0004
|
|
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
|
|
#define PAGE_VALID 0x0008
|
|
/* original state of the write flag (used when tracking self-modifying
|
|
code */
|
|
#define PAGE_WRITE_ORG 0x0010
|
|
/* Invalidate the TLB entry immediately, helpful for s390x
|
|
* Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs() */
|
|
#define PAGE_WRITE_INV 0x0040
|
|
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
|
|
/* FIXME: Code that sets/uses this is broken and needs to go away. */
|
|
#define PAGE_RESERVED 0x0020
|
|
#endif
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void page_dump(FILE *f);
|
|
|
|
typedef int (*walk_memory_regions_fn)(void *, target_ulong,
|
|
target_ulong, unsigned long);
|
|
int walk_memory_regions(void *, walk_memory_regions_fn);
|
|
|
|
int page_get_flags(target_ulong address);
|
|
void page_set_flags(target_ulong start, target_ulong end, int flags);
|
|
int page_check_range(target_ulong start, target_ulong len, int flags);
|
|
#endif
|
|
|
|
CPUArchState *cpu_copy(CPUArchState *env);
|
|
|
|
/* Flags for use in ENV->INTERRUPT_PENDING.
|
|
|
|
The numbers assigned here are non-sequential in order to preserve
|
|
binary compatibility with the vmstate dump. Bit 0 (0x0001) was
|
|
previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
|
|
the vmstate dump. */
|
|
|
|
/* External hardware interrupt pending. This is typically used for
|
|
interrupts from devices. */
|
|
#define CPU_INTERRUPT_HARD 0x0002
|
|
|
|
/* Exit the current TB. This is typically used when some system-level device
|
|
makes some change to the memory mapping. E.g. the a20 line change. */
|
|
#define CPU_INTERRUPT_EXITTB 0x0004
|
|
|
|
/* Halt the CPU. */
|
|
#define CPU_INTERRUPT_HALT 0x0020
|
|
|
|
/* Debug event pending. */
|
|
#define CPU_INTERRUPT_DEBUG 0x0080
|
|
|
|
/* Reset signal. */
|
|
#define CPU_INTERRUPT_RESET 0x0400
|
|
|
|
/* Several target-specific external hardware interrupts. Each target/cpu.h
|
|
should define proper names based on these defines. */
|
|
#define CPU_INTERRUPT_TGT_EXT_0 0x0008
|
|
#define CPU_INTERRUPT_TGT_EXT_1 0x0010
|
|
#define CPU_INTERRUPT_TGT_EXT_2 0x0040
|
|
#define CPU_INTERRUPT_TGT_EXT_3 0x0200
|
|
#define CPU_INTERRUPT_TGT_EXT_4 0x1000
|
|
|
|
/* Several target-specific internal interrupts. These differ from the
|
|
preceding target-specific interrupts in that they are intended to
|
|
originate from within the cpu itself, typically in response to some
|
|
instruction being executed. These, therefore, are not masked while
|
|
single-stepping within the debugger. */
|
|
#define CPU_INTERRUPT_TGT_INT_0 0x0100
|
|
#define CPU_INTERRUPT_TGT_INT_1 0x0800
|
|
#define CPU_INTERRUPT_TGT_INT_2 0x2000
|
|
|
|
/* First unused bit: 0x4000. */
|
|
|
|
/* The set of all bits that should be masked when single-stepping. */
|
|
#define CPU_INTERRUPT_SSTEP_MASK \
|
|
(CPU_INTERRUPT_HARD \
|
|
| CPU_INTERRUPT_TGT_EXT_0 \
|
|
| CPU_INTERRUPT_TGT_EXT_1 \
|
|
| CPU_INTERRUPT_TGT_EXT_2 \
|
|
| CPU_INTERRUPT_TGT_EXT_3 \
|
|
| CPU_INTERRUPT_TGT_EXT_4)
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
/* Flags stored in the low bits of the TLB virtual address. These are
|
|
* defined so that fast path ram access is all zeros.
|
|
* The flags all must be between TARGET_PAGE_BITS and
|
|
* maximum address alignment bit.
|
|
*/
|
|
/* Zero if TLB entry is valid. */
|
|
#define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS - 1))
|
|
/* Set if TLB entry references a clean RAM page. The iotlb entry will
|
|
contain the page physical address. */
|
|
#define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS - 2))
|
|
/* Set if TLB entry is an IO callback. */
|
|
#define TLB_MMIO (1 << (TARGET_PAGE_BITS - 3))
|
|
/* Set if TLB entry must have MMU lookup repeated for every access */
|
|
#define TLB_RECHECK (1 << (TARGET_PAGE_BITS - 4))
|
|
|
|
/* Use this mask to check interception with an alignment mask
|
|
* in a TCG backend.
|
|
*/
|
|
#define TLB_FLAGS_MASK (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
|
|
| TLB_RECHECK)
|
|
|
|
/**
|
|
* tlb_hit_page: return true if page aligned @addr is a hit against the
|
|
* TLB entry @tlb_addr
|
|
*
|
|
* @addr: virtual address to test (must be page aligned)
|
|
* @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
|
|
*/
|
|
static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
|
|
{
|
|
return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
|
|
}
|
|
|
|
/**
|
|
* tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
|
|
*
|
|
* @addr: virtual address to test (need not be page aligned)
|
|
* @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
|
|
*/
|
|
static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
|
|
{
|
|
return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
|
|
}
|
|
|
|
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
|
|
void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf);
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write);
|
|
|
|
int cpu_exec(CPUState *cpu);
|
|
|
|
#endif /* CPU_ALL_H */
|