qemu/hw/pcie_host.c

177 lines
5.5 KiB
C

/*
* pcie_host.c
* utility functions for pci express host bridge.
*
* Copyright (c) 2009 Isaku Yamahata <yamahata at valinux co jp>
* VA Linux Systems Japan K.K.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw.h"
#include "pci.h"
#include "pcie_host.h"
/*
* PCI express mmcfig address
* bit 20 - 28: bus number
* bit 15 - 19: device number
* bit 12 - 14: function number
* bit 0 - 11: offset in configuration space of a given device
*/
#define PCIE_MMCFG_SIZE_MAX (1ULL << 28)
#define PCIE_MMCFG_SIZE_MIN (1ULL << 20)
#define PCIE_MMCFG_BUS_BIT 20
#define PCIE_MMCFG_BUS_MASK 0x1ff
#define PCIE_MMCFG_DEVFN_BIT 12
#define PCIE_MMCFG_DEVFN_MASK 0xff
#define PCIE_MMCFG_CONFOFFSET_MASK 0xfff
#define PCIE_MMCFG_BUS(addr) (((addr) >> PCIE_MMCFG_BUS_BIT) & \
PCIE_MMCFG_BUS_MASK)
#define PCIE_MMCFG_DEVFN(addr) (((addr) >> PCIE_MMCFG_DEVFN_BIT) & \
PCIE_MMCFG_DEVFN_MASK)
#define PCIE_MMCFG_CONFOFFSET(addr) ((addr) & PCIE_MMCFG_CONFOFFSET_MASK)
/* a helper function to get a PCIDevice for a given mmconfig address */
static inline PCIDevice *pcie_dev_find_by_mmcfg_addr(PCIBus *s,
uint32_t mmcfg_addr)
{
return pci_find_device(s, PCIE_MMCFG_BUS(mmcfg_addr),
PCI_SLOT(PCIE_MMCFG_DEVFN(mmcfg_addr)),
PCI_FUNC(PCIE_MMCFG_DEVFN(mmcfg_addr)));
}
static void pcie_mmcfg_data_write(PCIBus *s,
uint32_t mmcfg_addr, uint32_t val, int len)
{
PCIDevice *pci_dev = pcie_dev_find_by_mmcfg_addr(s, mmcfg_addr);
if (!pci_dev)
return;
pci_dev->config_write(pci_dev,
PCIE_MMCFG_CONFOFFSET(mmcfg_addr), val, len);
}
static uint32_t pcie_mmcfg_data_read(PCIBus *s, uint32_t addr, int len)
{
PCIDevice *pci_dev = pcie_dev_find_by_mmcfg_addr(s, addr);
assert(len == 1 || len == 2 || len == 4);
if (!pci_dev) {
return ~0x0;
}
return pci_dev->config_read(pci_dev, PCIE_MMCFG_CONFOFFSET(addr), len);
}
static void pcie_mmcfg_data_writeb(void *opaque,
target_phys_addr_t addr, uint32_t value)
{
PCIExpressHost *e = opaque;
pcie_mmcfg_data_write(e->pci.bus, addr - e->base_addr, value, 1);
}
static void pcie_mmcfg_data_writew(void *opaque,
target_phys_addr_t addr, uint32_t value)
{
PCIExpressHost *e = opaque;
pcie_mmcfg_data_write(e->pci.bus, addr - e->base_addr, value, 2);
}
static void pcie_mmcfg_data_writel(void *opaque,
target_phys_addr_t addr, uint32_t value)
{
PCIExpressHost *e = opaque;
pcie_mmcfg_data_write(e->pci.bus, addr - e->base_addr, value, 4);
}
static uint32_t pcie_mmcfg_data_readb(void *opaque, target_phys_addr_t addr)
{
PCIExpressHost *e = opaque;
return pcie_mmcfg_data_read(e->pci.bus, addr - e->base_addr, 1);
}
static uint32_t pcie_mmcfg_data_readw(void *opaque, target_phys_addr_t addr)
{
PCIExpressHost *e = opaque;
return pcie_mmcfg_data_read(e->pci.bus, addr - e->base_addr, 2);
}
static uint32_t pcie_mmcfg_data_readl(void *opaque, target_phys_addr_t addr)
{
PCIExpressHost *e = opaque;
return pcie_mmcfg_data_read(e->pci.bus, addr - e->base_addr, 4);
}
static CPUWriteMemoryFunc * const pcie_mmcfg_write[] =
{
pcie_mmcfg_data_writeb,
pcie_mmcfg_data_writew,
pcie_mmcfg_data_writel,
};
static CPUReadMemoryFunc * const pcie_mmcfg_read[] =
{
pcie_mmcfg_data_readb,
pcie_mmcfg_data_readw,
pcie_mmcfg_data_readl,
};
/* pcie_host::base_addr == PCIE_BASE_ADDR_UNMAPPED when it isn't mapped. */
#define PCIE_BASE_ADDR_UNMAPPED ((target_phys_addr_t)-1ULL)
int pcie_host_init(PCIExpressHost *e)
{
e->base_addr = PCIE_BASE_ADDR_UNMAPPED;
e->mmio_index =
cpu_register_io_memory(pcie_mmcfg_read, pcie_mmcfg_write, e);
if (e->mmio_index < 0) {
return -1;
}
return 0;
}
void pcie_host_mmcfg_unmap(PCIExpressHost *e)
{
if (e->base_addr != PCIE_BASE_ADDR_UNMAPPED) {
cpu_register_physical_memory(e->base_addr, e->size, IO_MEM_UNASSIGNED);
e->base_addr = PCIE_BASE_ADDR_UNMAPPED;
}
}
void pcie_host_mmcfg_map(PCIExpressHost *e,
target_phys_addr_t addr, uint32_t size)
{
assert(!(size & (size - 1))); /* power of 2 */
assert(size >= PCIE_MMCFG_SIZE_MIN);
assert(size <= PCIE_MMCFG_SIZE_MAX);
e->base_addr = addr;
e->size = size;
cpu_register_physical_memory(e->base_addr, e->size, e->mmio_index);
}
void pcie_host_mmcfg_update(PCIExpressHost *e,
int enable,
target_phys_addr_t addr, uint32_t size)
{
pcie_host_mmcfg_unmap(e);
if (enable) {
pcie_host_mmcfg_map(e, addr, size);
}
}