qemu/hw/misc/imx25_ccm.c

342 lines
8.8 KiB
C

/*
* IMX25 Clock Control Module
*
* Copyright (C) 2012 NICTA
* Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* To get the timer frequencies right, we need to emulate at least part of
* the CCM.
*/
#include "hw/misc/imx25_ccm.h"
#ifndef DEBUG_IMX25_CCM
#define DEBUG_IMX25_CCM 0
#endif
#define DPRINTF(fmt, args...) \
do { \
if (DEBUG_IMX25_CCM) { \
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX25_CCM, \
__func__, ##args); \
} \
} while (0)
static char const *imx25_ccm_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case IMX25_CCM_MPCTL_REG:
return "mpctl";
case IMX25_CCM_UPCTL_REG:
return "upctl";
case IMX25_CCM_CCTL_REG:
return "cctl";
case IMX25_CCM_CGCR0_REG:
return "cgcr0";
case IMX25_CCM_CGCR1_REG:
return "cgcr1";
case IMX25_CCM_CGCR2_REG:
return "cgcr2";
case IMX25_CCM_PCDR0_REG:
return "pcdr0";
case IMX25_CCM_PCDR1_REG:
return "pcdr1";
case IMX25_CCM_PCDR2_REG:
return "pcdr2";
case IMX25_CCM_PCDR3_REG:
return "pcdr3";
case IMX25_CCM_RCSR_REG:
return "rcsr";
case IMX25_CCM_CRDR_REG:
return "crdr";
case IMX25_CCM_DCVR0_REG:
return "dcvr0";
case IMX25_CCM_DCVR1_REG:
return "dcvr1";
case IMX25_CCM_DCVR2_REG:
return "dcvr2";
case IMX25_CCM_DCVR3_REG:
return "dcvr3";
case IMX25_CCM_LTR0_REG:
return "ltr0";
case IMX25_CCM_LTR1_REG:
return "ltr1";
case IMX25_CCM_LTR2_REG:
return "ltr2";
case IMX25_CCM_LTR3_REG:
return "ltr3";
case IMX25_CCM_LTBR0_REG:
return "ltbr0";
case IMX25_CCM_LTBR1_REG:
return "ltbr1";
case IMX25_CCM_PMCR0_REG:
return "pmcr0";
case IMX25_CCM_PMCR1_REG:
return "pmcr1";
case IMX25_CCM_PMCR2_REG:
return "pmcr2";
case IMX25_CCM_MCR_REG:
return "mcr";
case IMX25_CCM_LPIMR0_REG:
return "lpimr0";
case IMX25_CCM_LPIMR1_REG:
return "lpimr1";
default:
sprintf(unknown, "[%d ?]", reg);
return unknown;
}
}
#define CKIH_FREQ 24000000 /* 24MHz crystal input */
static const VMStateDescription vmstate_imx25_ccm = {
.name = TYPE_IMX25_CCM,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(reg, IMX25CCMState, IMX25_CCM_MAX_REG),
VMSTATE_END_OF_LIST()
},
};
static uint32_t imx25_ccm_get_mpll_clk(IMXCCMState *dev)
{
uint32_t freq;
IMX25CCMState *s = IMX25_CCM(dev);
if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], MPLL_BYPASS)) {
freq = CKIH_FREQ;
} else {
freq = imx_ccm_calc_pll(s->reg[IMX25_CCM_MPCTL_REG], CKIH_FREQ);
}
DPRINTF("freq = %d\n", freq);
return freq;
}
static uint32_t imx25_ccm_get_upll_clk(IMXCCMState *dev)
{
uint32_t freq = 0;
IMX25CCMState *s = IMX25_CCM(dev);
if (!EXTRACT(s->reg[IMX25_CCM_CCTL_REG], UPLL_DIS)) {
freq = imx_ccm_calc_pll(s->reg[IMX25_CCM_UPCTL_REG], CKIH_FREQ);
}
DPRINTF("freq = %d\n", freq);
return freq;
}
static uint32_t imx25_ccm_get_mcu_clk(IMXCCMState *dev)
{
uint32_t freq;
IMX25CCMState *s = IMX25_CCM(dev);
freq = imx25_ccm_get_mpll_clk(dev);
if (EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_SRC)) {
freq = (freq * 3 / 4);
}
freq = freq / (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], ARM_CLK_DIV));
DPRINTF("freq = %d\n", freq);
return freq;
}
static uint32_t imx25_ccm_get_ahb_clk(IMXCCMState *dev)
{
uint32_t freq;
IMX25CCMState *s = IMX25_CCM(dev);
freq = imx25_ccm_get_mcu_clk(dev)
/ (1 + EXTRACT(s->reg[IMX25_CCM_CCTL_REG], AHB_CLK_DIV));
DPRINTF("freq = %d\n", freq);
return freq;
}
static uint32_t imx25_ccm_get_ipg_clk(IMXCCMState *dev)
{
uint32_t freq;
freq = imx25_ccm_get_ahb_clk(dev) / 2;
DPRINTF("freq = %d\n", freq);
return freq;
}
static uint32_t imx25_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
{
uint32_t freq = 0;
DPRINTF("Clock = %d)\n", clock);
switch (clock) {
case NOCLK:
break;
case CLK_MPLL:
freq = imx25_ccm_get_mpll_clk(dev);
break;
case CLK_UPLL:
freq = imx25_ccm_get_upll_clk(dev);
break;
case CLK_MCU:
freq = imx25_ccm_get_mcu_clk(dev);
break;
case CLK_AHB:
freq = imx25_ccm_get_ahb_clk(dev);
break;
case CLK_IPG:
freq = imx25_ccm_get_ipg_clk(dev);
break;
case CLK_32k:
freq = CKIL_FREQ;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
TYPE_IMX25_CCM, __func__, clock);
break;
}
DPRINTF("Clock = %d) = %d\n", clock, freq);
return freq;
}
static void imx25_ccm_reset(DeviceState *dev)
{
IMX25CCMState *s = IMX25_CCM(dev);
DPRINTF("\n");
memset(s->reg, 0, IMX25_CCM_MAX_REG * sizeof(uint32_t));
s->reg[IMX25_CCM_MPCTL_REG] = 0x800b2c01;
s->reg[IMX25_CCM_UPCTL_REG] = 0x84042800;
/*
* The value below gives:
* CPU = 133 MHz, AHB = 66,5 MHz, IPG = 33 MHz.
*/
s->reg[IMX25_CCM_CCTL_REG] = 0xd0030000;
s->reg[IMX25_CCM_CGCR0_REG] = 0x028A0100;
s->reg[IMX25_CCM_CGCR1_REG] = 0x04008100;
s->reg[IMX25_CCM_CGCR2_REG] = 0x00000438;
s->reg[IMX25_CCM_PCDR0_REG] = 0x01010101;
s->reg[IMX25_CCM_PCDR1_REG] = 0x01010101;
s->reg[IMX25_CCM_PCDR2_REG] = 0x01010101;
s->reg[IMX25_CCM_PCDR3_REG] = 0x01010101;
s->reg[IMX25_CCM_PMCR0_REG] = 0x00A00000;
s->reg[IMX25_CCM_PMCR1_REG] = 0x0000A030;
s->reg[IMX25_CCM_PMCR2_REG] = 0x0000A030;
s->reg[IMX25_CCM_MCR_REG] = 0x43000000;
/*
* default boot will change the reset values to allow:
* CPU = 399 MHz, AHB = 133 MHz, IPG = 66,5 MHz.
* For some reason, this doesn't work. With the value below, linux
* detects a 88 MHz IPG CLK instead of 66,5 MHz.
s->reg[IMX25_CCM_CCTL_REG] = 0x20032000;
*/
}
static uint64_t imx25_ccm_read(void *opaque, hwaddr offset, unsigned size)
{
uint32 value = 0;
IMX25CCMState *s = (IMX25CCMState *)opaque;
if (offset < 0x70) {
value = s->reg[offset >> 2];
} else {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
}
DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
value);
return value;
}
static void imx25_ccm_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
IMX25CCMState *s = (IMX25CCMState *)opaque;
DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx25_ccm_reg_name(offset >> 2),
(uint32_t)value);
if (offset < 0x70) {
/*
* We will do a better implementation later. In particular some bits
* cannot be written to.
*/
s->reg[offset >> 2] = value;
} else {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX25_CCM, __func__, offset);
}
}
static const struct MemoryRegionOps imx25_ccm_ops = {
.read = imx25_ccm_read,
.write = imx25_ccm_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void imx25_ccm_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
SysBusDevice *sd = SYS_BUS_DEVICE(obj);
IMX25CCMState *s = IMX25_CCM(obj);
memory_region_init_io(&s->iomem, OBJECT(dev), &imx25_ccm_ops, s,
TYPE_IMX25_CCM, 0x1000);
sysbus_init_mmio(sd, &s->iomem);
}
static void imx25_ccm_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
dc->reset = imx25_ccm_reset;
dc->vmsd = &vmstate_imx25_ccm;
dc->desc = "i.MX25 Clock Control Module";
ccm->get_clock_frequency = imx25_ccm_get_clock_frequency;
}
static const TypeInfo imx25_ccm_info = {
.name = TYPE_IMX25_CCM,
.parent = TYPE_IMX_CCM,
.instance_size = sizeof(IMX25CCMState),
.instance_init = imx25_ccm_init,
.class_init = imx25_ccm_class_init,
};
static void imx25_ccm_register_types(void)
{
type_register_static(&imx25_ccm_info);
}
type_init(imx25_ccm_register_types)