qemu/hw/ppc/ppc4xx_devs.c

737 lines
21 KiB
C

/*
* QEMU PowerPC 4xx embedded processors shared devices emulation
*
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "hw/hw.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/ppc4xx.h"
#include "hw/boards.h"
#include "qemu/log.h"
#include "exec/address-spaces.h"
#define DEBUG_UIC
#ifdef DEBUG_UIC
# define LOG_UIC(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#else
# define LOG_UIC(...) do { } while (0)
#endif
static void ppc4xx_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
/*****************************************************************************/
/* Generic PowerPC 4xx processor instantiation */
PowerPCCPU *ppc4xx_init(const char *cpu_model,
clk_setup_t *cpu_clk, clk_setup_t *tb_clk,
uint32_t sysclk)
{
PowerPCCPU *cpu;
CPUPPCState *env;
/* init CPUs */
cpu = cpu_ppc_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to find PowerPC %s CPU definition\n",
cpu_model);
exit(1);
}
env = &cpu->env;
cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */
cpu_clk->opaque = env;
/* Set time-base frequency to sysclk */
tb_clk->cb = ppc_40x_timers_init(env, sysclk, PPC_INTERRUPT_PIT);
tb_clk->opaque = env;
ppc_dcr_init(env, NULL, NULL);
/* Register qemu callbacks */
qemu_register_reset(ppc4xx_reset, cpu);
return cpu;
}
/*****************************************************************************/
/* "Universal" Interrupt controller */
enum {
DCR_UICSR = 0x000,
DCR_UICSRS = 0x001,
DCR_UICER = 0x002,
DCR_UICCR = 0x003,
DCR_UICPR = 0x004,
DCR_UICTR = 0x005,
DCR_UICMSR = 0x006,
DCR_UICVR = 0x007,
DCR_UICVCR = 0x008,
DCR_UICMAX = 0x009,
};
#define UIC_MAX_IRQ 32
typedef struct ppcuic_t ppcuic_t;
struct ppcuic_t {
uint32_t dcr_base;
int use_vectors;
uint32_t level; /* Remembers the state of level-triggered interrupts. */
uint32_t uicsr; /* Status register */
uint32_t uicer; /* Enable register */
uint32_t uiccr; /* Critical register */
uint32_t uicpr; /* Polarity register */
uint32_t uictr; /* Triggering register */
uint32_t uicvcr; /* Vector configuration register */
uint32_t uicvr;
qemu_irq *irqs;
};
static void ppcuic_trigger_irq (ppcuic_t *uic)
{
uint32_t ir, cr;
int start, end, inc, i;
/* Trigger interrupt if any is pending */
ir = uic->uicsr & uic->uicer & (~uic->uiccr);
cr = uic->uicsr & uic->uicer & uic->uiccr;
LOG_UIC("%s: uicsr %08" PRIx32 " uicer %08" PRIx32
" uiccr %08" PRIx32 "\n"
" %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n",
__func__, uic->uicsr, uic->uicer, uic->uiccr,
uic->uicsr & uic->uicer, ir, cr);
if (ir != 0x0000000) {
LOG_UIC("Raise UIC interrupt\n");
qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]);
} else {
LOG_UIC("Lower UIC interrupt\n");
qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]);
}
/* Trigger critical interrupt if any is pending and update vector */
if (cr != 0x0000000) {
qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]);
if (uic->use_vectors) {
/* Compute critical IRQ vector */
if (uic->uicvcr & 1) {
start = 31;
end = 0;
inc = -1;
} else {
start = 0;
end = 31;
inc = 1;
}
uic->uicvr = uic->uicvcr & 0xFFFFFFFC;
for (i = start; i <= end; i += inc) {
if (cr & (1 << i)) {
uic->uicvr += (i - start) * 512 * inc;
break;
}
}
}
LOG_UIC("Raise UIC critical interrupt - "
"vector %08" PRIx32 "\n", uic->uicvr);
} else {
LOG_UIC("Lower UIC critical interrupt\n");
qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]);
uic->uicvr = 0x00000000;
}
}
static void ppcuic_set_irq (void *opaque, int irq_num, int level)
{
ppcuic_t *uic;
uint32_t mask, sr;
uic = opaque;
mask = 1U << (31-irq_num);
LOG_UIC("%s: irq %d level %d uicsr %08" PRIx32
" mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n",
__func__, irq_num, level,
uic->uicsr, mask, uic->uicsr & mask, level << irq_num);
if (irq_num < 0 || irq_num > 31)
return;
sr = uic->uicsr;
/* Update status register */
if (uic->uictr & mask) {
/* Edge sensitive interrupt */
if (level == 1)
uic->uicsr |= mask;
} else {
/* Level sensitive interrupt */
if (level == 1) {
uic->uicsr |= mask;
uic->level |= mask;
} else {
uic->uicsr &= ~mask;
uic->level &= ~mask;
}
}
LOG_UIC("%s: irq %d level %d sr %" PRIx32 " => "
"%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr);
if (sr != uic->uicsr)
ppcuic_trigger_irq(uic);
}
static uint32_t dcr_read_uic (void *opaque, int dcrn)
{
ppcuic_t *uic;
uint32_t ret;
uic = opaque;
dcrn -= uic->dcr_base;
switch (dcrn) {
case DCR_UICSR:
case DCR_UICSRS:
ret = uic->uicsr;
break;
case DCR_UICER:
ret = uic->uicer;
break;
case DCR_UICCR:
ret = uic->uiccr;
break;
case DCR_UICPR:
ret = uic->uicpr;
break;
case DCR_UICTR:
ret = uic->uictr;
break;
case DCR_UICMSR:
ret = uic->uicsr & uic->uicer;
break;
case DCR_UICVR:
if (!uic->use_vectors)
goto no_read;
ret = uic->uicvr;
break;
case DCR_UICVCR:
if (!uic->use_vectors)
goto no_read;
ret = uic->uicvcr;
break;
default:
no_read:
ret = 0x00000000;
break;
}
return ret;
}
static void dcr_write_uic (void *opaque, int dcrn, uint32_t val)
{
ppcuic_t *uic;
uic = opaque;
dcrn -= uic->dcr_base;
LOG_UIC("%s: dcr %d val 0x%x\n", __func__, dcrn, val);
switch (dcrn) {
case DCR_UICSR:
uic->uicsr &= ~val;
uic->uicsr |= uic->level;
ppcuic_trigger_irq(uic);
break;
case DCR_UICSRS:
uic->uicsr |= val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICER:
uic->uicer = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICCR:
uic->uiccr = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICPR:
uic->uicpr = val;
break;
case DCR_UICTR:
uic->uictr = val;
ppcuic_trigger_irq(uic);
break;
case DCR_UICMSR:
break;
case DCR_UICVR:
break;
case DCR_UICVCR:
uic->uicvcr = val & 0xFFFFFFFD;
ppcuic_trigger_irq(uic);
break;
}
}
static void ppcuic_reset (void *opaque)
{
ppcuic_t *uic;
uic = opaque;
uic->uiccr = 0x00000000;
uic->uicer = 0x00000000;
uic->uicpr = 0x00000000;
uic->uicsr = 0x00000000;
uic->uictr = 0x00000000;
if (uic->use_vectors) {
uic->uicvcr = 0x00000000;
uic->uicvr = 0x0000000;
}
}
qemu_irq *ppcuic_init (CPUPPCState *env, qemu_irq *irqs,
uint32_t dcr_base, int has_ssr, int has_vr)
{
ppcuic_t *uic;
int i;
uic = g_malloc0(sizeof(ppcuic_t));
uic->dcr_base = dcr_base;
uic->irqs = irqs;
if (has_vr)
uic->use_vectors = 1;
for (i = 0; i < DCR_UICMAX; i++) {
ppc_dcr_register(env, dcr_base + i, uic,
&dcr_read_uic, &dcr_write_uic);
}
qemu_register_reset(ppcuic_reset, uic);
return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ);
}
/*****************************************************************************/
/* SDRAM controller */
typedef struct ppc4xx_sdram_t ppc4xx_sdram_t;
struct ppc4xx_sdram_t {
uint32_t addr;
int nbanks;
MemoryRegion containers[4]; /* used for clipping */
MemoryRegion *ram_memories;
hwaddr ram_bases[4];
hwaddr ram_sizes[4];
uint32_t besr0;
uint32_t besr1;
uint32_t bear;
uint32_t cfg;
uint32_t status;
uint32_t rtr;
uint32_t pmit;
uint32_t bcr[4];
uint32_t tr;
uint32_t ecccfg;
uint32_t eccesr;
qemu_irq irq;
};
enum {
SDRAM0_CFGADDR = 0x010,
SDRAM0_CFGDATA = 0x011,
};
/* XXX: TOFIX: some patches have made this code become inconsistent:
* there are type inconsistencies, mixing hwaddr, target_ulong
* and uint32_t
*/
static uint32_t sdram_bcr (hwaddr ram_base,
hwaddr ram_size)
{
uint32_t bcr;
switch (ram_size) {
case (4 * 1024 * 1024):
bcr = 0x00000000;
break;
case (8 * 1024 * 1024):
bcr = 0x00020000;
break;
case (16 * 1024 * 1024):
bcr = 0x00040000;
break;
case (32 * 1024 * 1024):
bcr = 0x00060000;
break;
case (64 * 1024 * 1024):
bcr = 0x00080000;
break;
case (128 * 1024 * 1024):
bcr = 0x000A0000;
break;
case (256 * 1024 * 1024):
bcr = 0x000C0000;
break;
default:
printf("%s: invalid RAM size " TARGET_FMT_plx "\n", __func__,
ram_size);
return 0x00000000;
}
bcr |= ram_base & 0xFF800000;
bcr |= 1;
return bcr;
}
static inline hwaddr sdram_base(uint32_t bcr)
{
return bcr & 0xFF800000;
}
static target_ulong sdram_size (uint32_t bcr)
{
target_ulong size;
int sh;
sh = (bcr >> 17) & 0x7;
if (sh == 7)
size = -1;
else
size = (4 * 1024 * 1024) << sh;
return size;
}
static void sdram_set_bcr(ppc4xx_sdram_t *sdram,
uint32_t *bcrp, uint32_t bcr, int enabled)
{
unsigned n = bcrp - sdram->bcr;
if (*bcrp & 0x00000001) {
/* Unmap RAM */
#ifdef DEBUG_SDRAM
printf("%s: unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
__func__, sdram_base(*bcrp), sdram_size(*bcrp));
#endif
memory_region_del_subregion(get_system_memory(),
&sdram->containers[n]);
memory_region_del_subregion(&sdram->containers[n],
&sdram->ram_memories[n]);
object_unparent(OBJECT(&sdram->containers[n]));
}
*bcrp = bcr & 0xFFDEE001;
if (enabled && (bcr & 0x00000001)) {
#ifdef DEBUG_SDRAM
printf("%s: Map RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
__func__, sdram_base(bcr), sdram_size(bcr));
#endif
memory_region_init(&sdram->containers[n], NULL, "sdram-containers",
sdram_size(bcr));
memory_region_add_subregion(&sdram->containers[n], 0,
&sdram->ram_memories[n]);
memory_region_add_subregion(get_system_memory(),
sdram_base(bcr),
&sdram->containers[n]);
}
}
static void sdram_map_bcr (ppc4xx_sdram_t *sdram)
{
int i;
for (i = 0; i < sdram->nbanks; i++) {
if (sdram->ram_sizes[i] != 0) {
sdram_set_bcr(sdram,
&sdram->bcr[i],
sdram_bcr(sdram->ram_bases[i], sdram->ram_sizes[i]),
1);
} else {
sdram_set_bcr(sdram, &sdram->bcr[i], 0x00000000, 0);
}
}
}
static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram)
{
int i;
for (i = 0; i < sdram->nbanks; i++) {
#ifdef DEBUG_SDRAM
printf("%s: Unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n",
__func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]));
#endif
memory_region_del_subregion(get_system_memory(),
&sdram->ram_memories[i]);
}
}
static uint32_t dcr_read_sdram (void *opaque, int dcrn)
{
ppc4xx_sdram_t *sdram;
uint32_t ret;
sdram = opaque;
switch (dcrn) {
case SDRAM0_CFGADDR:
ret = sdram->addr;
break;
case SDRAM0_CFGDATA:
switch (sdram->addr) {
case 0x00: /* SDRAM_BESR0 */
ret = sdram->besr0;
break;
case 0x08: /* SDRAM_BESR1 */
ret = sdram->besr1;
break;
case 0x10: /* SDRAM_BEAR */
ret = sdram->bear;
break;
case 0x20: /* SDRAM_CFG */
ret = sdram->cfg;
break;
case 0x24: /* SDRAM_STATUS */
ret = sdram->status;
break;
case 0x30: /* SDRAM_RTR */
ret = sdram->rtr;
break;
case 0x34: /* SDRAM_PMIT */
ret = sdram->pmit;
break;
case 0x40: /* SDRAM_B0CR */
ret = sdram->bcr[0];
break;
case 0x44: /* SDRAM_B1CR */
ret = sdram->bcr[1];
break;
case 0x48: /* SDRAM_B2CR */
ret = sdram->bcr[2];
break;
case 0x4C: /* SDRAM_B3CR */
ret = sdram->bcr[3];
break;
case 0x80: /* SDRAM_TR */
ret = -1; /* ? */
break;
case 0x94: /* SDRAM_ECCCFG */
ret = sdram->ecccfg;
break;
case 0x98: /* SDRAM_ECCESR */
ret = sdram->eccesr;
break;
default: /* Error */
ret = -1;
break;
}
break;
default:
/* Avoid gcc warning */
ret = 0x00000000;
break;
}
return ret;
}
static void dcr_write_sdram (void *opaque, int dcrn, uint32_t val)
{
ppc4xx_sdram_t *sdram;
sdram = opaque;
switch (dcrn) {
case SDRAM0_CFGADDR:
sdram->addr = val;
break;
case SDRAM0_CFGDATA:
switch (sdram->addr) {
case 0x00: /* SDRAM_BESR0 */
sdram->besr0 &= ~val;
break;
case 0x08: /* SDRAM_BESR1 */
sdram->besr1 &= ~val;
break;
case 0x10: /* SDRAM_BEAR */
sdram->bear = val;
break;
case 0x20: /* SDRAM_CFG */
val &= 0xFFE00000;
if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) {
#ifdef DEBUG_SDRAM
printf("%s: enable SDRAM controller\n", __func__);
#endif
/* validate all RAM mappings */
sdram_map_bcr(sdram);
sdram->status &= ~0x80000000;
} else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) {
#ifdef DEBUG_SDRAM
printf("%s: disable SDRAM controller\n", __func__);
#endif
/* invalidate all RAM mappings */
sdram_unmap_bcr(sdram);
sdram->status |= 0x80000000;
}
if (!(sdram->cfg & 0x40000000) && (val & 0x40000000))
sdram->status |= 0x40000000;
else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000))
sdram->status &= ~0x40000000;
sdram->cfg = val;
break;
case 0x24: /* SDRAM_STATUS */
/* Read-only register */
break;
case 0x30: /* SDRAM_RTR */
sdram->rtr = val & 0x3FF80000;
break;
case 0x34: /* SDRAM_PMIT */
sdram->pmit = (val & 0xF8000000) | 0x07C00000;
break;
case 0x40: /* SDRAM_B0CR */
sdram_set_bcr(sdram, &sdram->bcr[0], val, sdram->cfg & 0x80000000);
break;
case 0x44: /* SDRAM_B1CR */
sdram_set_bcr(sdram, &sdram->bcr[1], val, sdram->cfg & 0x80000000);
break;
case 0x48: /* SDRAM_B2CR */
sdram_set_bcr(sdram, &sdram->bcr[2], val, sdram->cfg & 0x80000000);
break;
case 0x4C: /* SDRAM_B3CR */
sdram_set_bcr(sdram, &sdram->bcr[3], val, sdram->cfg & 0x80000000);
break;
case 0x80: /* SDRAM_TR */
sdram->tr = val & 0x018FC01F;
break;
case 0x94: /* SDRAM_ECCCFG */
sdram->ecccfg = val & 0x00F00000;
break;
case 0x98: /* SDRAM_ECCESR */
val &= 0xFFF0F000;
if (sdram->eccesr == 0 && val != 0)
qemu_irq_raise(sdram->irq);
else if (sdram->eccesr != 0 && val == 0)
qemu_irq_lower(sdram->irq);
sdram->eccesr = val;
break;
default: /* Error */
break;
}
break;
}
}
static void sdram_reset (void *opaque)
{
ppc4xx_sdram_t *sdram;
sdram = opaque;
sdram->addr = 0x00000000;
sdram->bear = 0x00000000;
sdram->besr0 = 0x00000000; /* No error */
sdram->besr1 = 0x00000000; /* No error */
sdram->cfg = 0x00000000;
sdram->ecccfg = 0x00000000; /* No ECC */
sdram->eccesr = 0x00000000; /* No error */
sdram->pmit = 0x07C00000;
sdram->rtr = 0x05F00000;
sdram->tr = 0x00854009;
/* We pre-initialize RAM banks */
sdram->status = 0x00000000;
sdram->cfg = 0x00800000;
}
void ppc4xx_sdram_init (CPUPPCState *env, qemu_irq irq, int nbanks,
MemoryRegion *ram_memories,
hwaddr *ram_bases,
hwaddr *ram_sizes,
int do_init)
{
ppc4xx_sdram_t *sdram;
sdram = g_malloc0(sizeof(ppc4xx_sdram_t));
sdram->irq = irq;
sdram->nbanks = nbanks;
sdram->ram_memories = ram_memories;
memset(sdram->ram_bases, 0, 4 * sizeof(hwaddr));
memcpy(sdram->ram_bases, ram_bases,
nbanks * sizeof(hwaddr));
memset(sdram->ram_sizes, 0, 4 * sizeof(hwaddr));
memcpy(sdram->ram_sizes, ram_sizes,
nbanks * sizeof(hwaddr));
qemu_register_reset(&sdram_reset, sdram);
ppc_dcr_register(env, SDRAM0_CFGADDR,
sdram, &dcr_read_sdram, &dcr_write_sdram);
ppc_dcr_register(env, SDRAM0_CFGDATA,
sdram, &dcr_read_sdram, &dcr_write_sdram);
if (do_init)
sdram_map_bcr(sdram);
}
/* Fill in consecutive SDRAM banks with 'ram_size' bytes of memory.
*
* sdram_bank_sizes[] must be 0-terminated.
*
* The 4xx SDRAM controller supports a small number of banks, and each bank
* must be one of a small set of sizes. The number of banks and the supported
* sizes varies by SoC. */
ram_addr_t ppc4xx_sdram_adjust(ram_addr_t ram_size, int nr_banks,
MemoryRegion ram_memories[],
hwaddr ram_bases[],
hwaddr ram_sizes[],
const unsigned int sdram_bank_sizes[])
{
MemoryRegion *ram = g_malloc0(sizeof(*ram));
ram_addr_t size_left = ram_size;
ram_addr_t base = 0;
unsigned int bank_size;
int i;
int j;
for (i = 0; i < nr_banks; i++) {
for (j = 0; sdram_bank_sizes[j] != 0; j++) {
bank_size = sdram_bank_sizes[j];
if (bank_size <= size_left) {
size_left -= bank_size;
}
}
if (!size_left) {
/* No need to use the remaining banks. */
break;
}
}
ram_size -= size_left;
if (size_left) {
printf("Truncating memory to %d MiB to fit SDRAM controller limits.\n",
(int)(ram_size >> 20));
}
memory_region_allocate_system_memory(ram, NULL, "ppc4xx.sdram", ram_size);
size_left = ram_size;
for (i = 0; i < nr_banks && size_left; i++) {
for (j = 0; sdram_bank_sizes[j] != 0; j++) {
bank_size = sdram_bank_sizes[j];
if (bank_size <= size_left) {
char name[32];
snprintf(name, sizeof(name), "ppc4xx.sdram%d", i);
memory_region_init_alias(&ram_memories[i], NULL, name, ram,
base, bank_size);
ram_bases[i] = base;
ram_sizes[i] = bank_size;
base += bank_size;
size_left -= bank_size;
break;
}
}
}
return ram_size;
}