qemu/hw/apic.c

1008 lines
26 KiB
C

/*
* APIC support
*
* Copyright (c) 2004-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>
*/
#include "hw.h"
#include "apic.h"
#include "qemu-timer.h"
#include "host-utils.h"
#include "sysbus.h"
#include "trace.h"
/* APIC Local Vector Table */
#define APIC_LVT_TIMER 0
#define APIC_LVT_THERMAL 1
#define APIC_LVT_PERFORM 2
#define APIC_LVT_LINT0 3
#define APIC_LVT_LINT1 4
#define APIC_LVT_ERROR 5
#define APIC_LVT_NB 6
/* APIC delivery modes */
#define APIC_DM_FIXED 0
#define APIC_DM_LOWPRI 1
#define APIC_DM_SMI 2
#define APIC_DM_NMI 4
#define APIC_DM_INIT 5
#define APIC_DM_SIPI 6
#define APIC_DM_EXTINT 7
/* APIC destination mode */
#define APIC_DESTMODE_FLAT 0xf
#define APIC_DESTMODE_CLUSTER 1
#define APIC_TRIGGER_EDGE 0
#define APIC_TRIGGER_LEVEL 1
#define APIC_LVT_TIMER_PERIODIC (1<<17)
#define APIC_LVT_MASKED (1<<16)
#define APIC_LVT_LEVEL_TRIGGER (1<<15)
#define APIC_LVT_REMOTE_IRR (1<<14)
#define APIC_INPUT_POLARITY (1<<13)
#define APIC_SEND_PENDING (1<<12)
#define ESR_ILLEGAL_ADDRESS (1 << 7)
#define APIC_SV_ENABLE (1 << 8)
#define MAX_APICS 255
#define MAX_APIC_WORDS 8
/* Intel APIC constants: from include/asm/msidef.h */
#define MSI_DATA_VECTOR_SHIFT 0
#define MSI_DATA_VECTOR_MASK 0x000000ff
#define MSI_DATA_DELIVERY_MODE_SHIFT 8
#define MSI_DATA_TRIGGER_SHIFT 15
#define MSI_DATA_LEVEL_SHIFT 14
#define MSI_ADDR_DEST_MODE_SHIFT 2
#define MSI_ADDR_DEST_ID_SHIFT 12
#define MSI_ADDR_DEST_ID_MASK 0x00ffff0
#define MSI_ADDR_SIZE 0x100000
typedef struct APICState APICState;
struct APICState {
SysBusDevice busdev;
void *cpu_env;
uint32_t apicbase;
uint8_t id;
uint8_t arb_id;
uint8_t tpr;
uint32_t spurious_vec;
uint8_t log_dest;
uint8_t dest_mode;
uint32_t isr[8]; /* in service register */
uint32_t tmr[8]; /* trigger mode register */
uint32_t irr[8]; /* interrupt request register */
uint32_t lvt[APIC_LVT_NB];
uint32_t esr; /* error register */
uint32_t icr[2];
uint32_t divide_conf;
int count_shift;
uint32_t initial_count;
int64_t initial_count_load_time, next_time;
uint32_t idx;
QEMUTimer *timer;
int sipi_vector;
int wait_for_sipi;
};
static APICState *local_apics[MAX_APICS + 1];
static int apic_irq_delivered;
static void apic_set_irq(APICState *s, int vector_num, int trigger_mode);
static void apic_update_irq(APICState *s);
static void apic_get_delivery_bitmask(uint32_t *deliver_bitmask,
uint8_t dest, uint8_t dest_mode);
/* Find first bit starting from msb */
static int fls_bit(uint32_t value)
{
return 31 - clz32(value);
}
/* Find first bit starting from lsb */
static int ffs_bit(uint32_t value)
{
return ctz32(value);
}
static inline void set_bit(uint32_t *tab, int index)
{
int i, mask;
i = index >> 5;
mask = 1 << (index & 0x1f);
tab[i] |= mask;
}
static inline void reset_bit(uint32_t *tab, int index)
{
int i, mask;
i = index >> 5;
mask = 1 << (index & 0x1f);
tab[i] &= ~mask;
}
static inline int get_bit(uint32_t *tab, int index)
{
int i, mask;
i = index >> 5;
mask = 1 << (index & 0x1f);
return !!(tab[i] & mask);
}
static void apic_local_deliver(APICState *s, int vector)
{
uint32_t lvt = s->lvt[vector];
int trigger_mode;
trace_apic_local_deliver(vector, (lvt >> 8) & 7);
if (lvt & APIC_LVT_MASKED)
return;
switch ((lvt >> 8) & 7) {
case APIC_DM_SMI:
cpu_interrupt(s->cpu_env, CPU_INTERRUPT_SMI);
break;
case APIC_DM_NMI:
cpu_interrupt(s->cpu_env, CPU_INTERRUPT_NMI);
break;
case APIC_DM_EXTINT:
cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
break;
case APIC_DM_FIXED:
trigger_mode = APIC_TRIGGER_EDGE;
if ((vector == APIC_LVT_LINT0 || vector == APIC_LVT_LINT1) &&
(lvt & APIC_LVT_LEVEL_TRIGGER))
trigger_mode = APIC_TRIGGER_LEVEL;
apic_set_irq(s, lvt & 0xff, trigger_mode);
}
}
void apic_deliver_pic_intr(DeviceState *d, int level)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
if (level) {
apic_local_deliver(s, APIC_LVT_LINT0);
} else {
uint32_t lvt = s->lvt[APIC_LVT_LINT0];
switch ((lvt >> 8) & 7) {
case APIC_DM_FIXED:
if (!(lvt & APIC_LVT_LEVEL_TRIGGER))
break;
reset_bit(s->irr, lvt & 0xff);
/* fall through */
case APIC_DM_EXTINT:
cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
break;
}
}
}
#define foreach_apic(apic, deliver_bitmask, code) \
{\
int __i, __j, __mask;\
for(__i = 0; __i < MAX_APIC_WORDS; __i++) {\
__mask = deliver_bitmask[__i];\
if (__mask) {\
for(__j = 0; __j < 32; __j++) {\
if (__mask & (1 << __j)) {\
apic = local_apics[__i * 32 + __j];\
if (apic) {\
code;\
}\
}\
}\
}\
}\
}
static void apic_bus_deliver(const uint32_t *deliver_bitmask,
uint8_t delivery_mode,
uint8_t vector_num, uint8_t polarity,
uint8_t trigger_mode)
{
APICState *apic_iter;
switch (delivery_mode) {
case APIC_DM_LOWPRI:
/* XXX: search for focus processor, arbitration */
{
int i, d;
d = -1;
for(i = 0; i < MAX_APIC_WORDS; i++) {
if (deliver_bitmask[i]) {
d = i * 32 + ffs_bit(deliver_bitmask[i]);
break;
}
}
if (d >= 0) {
apic_iter = local_apics[d];
if (apic_iter) {
apic_set_irq(apic_iter, vector_num, trigger_mode);
}
}
}
return;
case APIC_DM_FIXED:
break;
case APIC_DM_SMI:
foreach_apic(apic_iter, deliver_bitmask,
cpu_interrupt(apic_iter->cpu_env, CPU_INTERRUPT_SMI) );
return;
case APIC_DM_NMI:
foreach_apic(apic_iter, deliver_bitmask,
cpu_interrupt(apic_iter->cpu_env, CPU_INTERRUPT_NMI) );
return;
case APIC_DM_INIT:
/* normal INIT IPI sent to processors */
foreach_apic(apic_iter, deliver_bitmask,
cpu_interrupt(apic_iter->cpu_env, CPU_INTERRUPT_INIT) );
return;
case APIC_DM_EXTINT:
/* handled in I/O APIC code */
break;
default:
return;
}
foreach_apic(apic_iter, deliver_bitmask,
apic_set_irq(apic_iter, vector_num, trigger_mode) );
}
void apic_deliver_irq(uint8_t dest, uint8_t dest_mode,
uint8_t delivery_mode, uint8_t vector_num,
uint8_t polarity, uint8_t trigger_mode)
{
uint32_t deliver_bitmask[MAX_APIC_WORDS];
trace_apic_deliver_irq(dest, dest_mode, delivery_mode, vector_num,
polarity, trigger_mode);
apic_get_delivery_bitmask(deliver_bitmask, dest, dest_mode);
apic_bus_deliver(deliver_bitmask, delivery_mode, vector_num, polarity,
trigger_mode);
}
void cpu_set_apic_base(DeviceState *d, uint64_t val)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
trace_cpu_set_apic_base(val);
if (!s)
return;
s->apicbase = (val & 0xfffff000) |
(s->apicbase & (MSR_IA32_APICBASE_BSP | MSR_IA32_APICBASE_ENABLE));
/* if disabled, cannot be enabled again */
if (!(val & MSR_IA32_APICBASE_ENABLE)) {
s->apicbase &= ~MSR_IA32_APICBASE_ENABLE;
cpu_clear_apic_feature(s->cpu_env);
s->spurious_vec &= ~APIC_SV_ENABLE;
}
}
uint64_t cpu_get_apic_base(DeviceState *d)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
trace_cpu_get_apic_base(s ? (uint64_t)s->apicbase: 0);
return s ? s->apicbase : 0;
}
void cpu_set_apic_tpr(DeviceState *d, uint8_t val)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
if (!s)
return;
s->tpr = (val & 0x0f) << 4;
apic_update_irq(s);
}
uint8_t cpu_get_apic_tpr(DeviceState *d)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
return s ? s->tpr >> 4 : 0;
}
/* return -1 if no bit is set */
static int get_highest_priority_int(uint32_t *tab)
{
int i;
for(i = 7; i >= 0; i--) {
if (tab[i] != 0) {
return i * 32 + fls_bit(tab[i]);
}
}
return -1;
}
static int apic_get_ppr(APICState *s)
{
int tpr, isrv, ppr;
tpr = (s->tpr >> 4);
isrv = get_highest_priority_int(s->isr);
if (isrv < 0)
isrv = 0;
isrv >>= 4;
if (tpr >= isrv)
ppr = s->tpr;
else
ppr = isrv << 4;
return ppr;
}
static int apic_get_arb_pri(APICState *s)
{
/* XXX: arbitration */
return 0;
}
/* signal the CPU if an irq is pending */
static void apic_update_irq(APICState *s)
{
int irrv, ppr;
if (!(s->spurious_vec & APIC_SV_ENABLE))
return;
irrv = get_highest_priority_int(s->irr);
if (irrv < 0)
return;
ppr = apic_get_ppr(s);
if (ppr && (irrv & 0xf0) <= (ppr & 0xf0))
return;
cpu_interrupt(s->cpu_env, CPU_INTERRUPT_HARD);
}
void apic_reset_irq_delivered(void)
{
trace_apic_reset_irq_delivered(apic_irq_delivered);
apic_irq_delivered = 0;
}
int apic_get_irq_delivered(void)
{
trace_apic_get_irq_delivered(apic_irq_delivered);
return apic_irq_delivered;
}
static void apic_set_irq(APICState *s, int vector_num, int trigger_mode)
{
apic_irq_delivered += !get_bit(s->irr, vector_num);
trace_apic_set_irq(apic_irq_delivered);
set_bit(s->irr, vector_num);
if (trigger_mode)
set_bit(s->tmr, vector_num);
else
reset_bit(s->tmr, vector_num);
apic_update_irq(s);
}
static void apic_eoi(APICState *s)
{
int isrv;
isrv = get_highest_priority_int(s->isr);
if (isrv < 0)
return;
reset_bit(s->isr, isrv);
/* XXX: send the EOI packet to the APIC bus to allow the I/O APIC to
set the remote IRR bit for level triggered interrupts. */
apic_update_irq(s);
}
static int apic_find_dest(uint8_t dest)
{
APICState *apic = local_apics[dest];
int i;
if (apic && apic->id == dest)
return dest; /* shortcut in case apic->id == apic->idx */
for (i = 0; i < MAX_APICS; i++) {
apic = local_apics[i];
if (apic && apic->id == dest)
return i;
}
return -1;
}
static void apic_get_delivery_bitmask(uint32_t *deliver_bitmask,
uint8_t dest, uint8_t dest_mode)
{
APICState *apic_iter;
int i;
if (dest_mode == 0) {
if (dest == 0xff) {
memset(deliver_bitmask, 0xff, MAX_APIC_WORDS * sizeof(uint32_t));
} else {
int idx = apic_find_dest(dest);
memset(deliver_bitmask, 0x00, MAX_APIC_WORDS * sizeof(uint32_t));
if (idx >= 0)
set_bit(deliver_bitmask, idx);
}
} else {
/* XXX: cluster mode */
memset(deliver_bitmask, 0x00, MAX_APIC_WORDS * sizeof(uint32_t));
for(i = 0; i < MAX_APICS; i++) {
apic_iter = local_apics[i];
if (apic_iter) {
if (apic_iter->dest_mode == 0xf) {
if (dest & apic_iter->log_dest)
set_bit(deliver_bitmask, i);
} else if (apic_iter->dest_mode == 0x0) {
if ((dest & 0xf0) == (apic_iter->log_dest & 0xf0) &&
(dest & apic_iter->log_dest & 0x0f)) {
set_bit(deliver_bitmask, i);
}
}
}
}
}
}
void apic_init_reset(DeviceState *d)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
int i;
if (!s)
return;
s->tpr = 0;
s->spurious_vec = 0xff;
s->log_dest = 0;
s->dest_mode = 0xf;
memset(s->isr, 0, sizeof(s->isr));
memset(s->tmr, 0, sizeof(s->tmr));
memset(s->irr, 0, sizeof(s->irr));
for(i = 0; i < APIC_LVT_NB; i++)
s->lvt[i] = 1 << 16; /* mask LVT */
s->esr = 0;
memset(s->icr, 0, sizeof(s->icr));
s->divide_conf = 0;
s->count_shift = 0;
s->initial_count = 0;
s->initial_count_load_time = 0;
s->next_time = 0;
s->wait_for_sipi = 1;
}
static void apic_startup(APICState *s, int vector_num)
{
s->sipi_vector = vector_num;
cpu_interrupt(s->cpu_env, CPU_INTERRUPT_SIPI);
}
void apic_sipi(DeviceState *d)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
cpu_reset_interrupt(s->cpu_env, CPU_INTERRUPT_SIPI);
if (!s->wait_for_sipi)
return;
cpu_x86_load_seg_cache_sipi(s->cpu_env, s->sipi_vector);
s->wait_for_sipi = 0;
}
static void apic_deliver(DeviceState *d, uint8_t dest, uint8_t dest_mode,
uint8_t delivery_mode, uint8_t vector_num,
uint8_t polarity, uint8_t trigger_mode)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
uint32_t deliver_bitmask[MAX_APIC_WORDS];
int dest_shorthand = (s->icr[0] >> 18) & 3;
APICState *apic_iter;
switch (dest_shorthand) {
case 0:
apic_get_delivery_bitmask(deliver_bitmask, dest, dest_mode);
break;
case 1:
memset(deliver_bitmask, 0x00, sizeof(deliver_bitmask));
set_bit(deliver_bitmask, s->idx);
break;
case 2:
memset(deliver_bitmask, 0xff, sizeof(deliver_bitmask));
break;
case 3:
memset(deliver_bitmask, 0xff, sizeof(deliver_bitmask));
reset_bit(deliver_bitmask, s->idx);
break;
}
switch (delivery_mode) {
case APIC_DM_INIT:
{
int trig_mode = (s->icr[0] >> 15) & 1;
int level = (s->icr[0] >> 14) & 1;
if (level == 0 && trig_mode == 1) {
foreach_apic(apic_iter, deliver_bitmask,
apic_iter->arb_id = apic_iter->id );
return;
}
}
break;
case APIC_DM_SIPI:
foreach_apic(apic_iter, deliver_bitmask,
apic_startup(apic_iter, vector_num) );
return;
}
apic_bus_deliver(deliver_bitmask, delivery_mode, vector_num, polarity,
trigger_mode);
}
int apic_get_interrupt(DeviceState *d)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
int intno;
/* if the APIC is installed or enabled, we let the 8259 handle the
IRQs */
if (!s)
return -1;
if (!(s->spurious_vec & APIC_SV_ENABLE))
return -1;
/* XXX: spurious IRQ handling */
intno = get_highest_priority_int(s->irr);
if (intno < 0)
return -1;
if (s->tpr && intno <= s->tpr)
return s->spurious_vec & 0xff;
reset_bit(s->irr, intno);
set_bit(s->isr, intno);
apic_update_irq(s);
return intno;
}
int apic_accept_pic_intr(DeviceState *d)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
uint32_t lvt0;
if (!s)
return -1;
lvt0 = s->lvt[APIC_LVT_LINT0];
if ((s->apicbase & MSR_IA32_APICBASE_ENABLE) == 0 ||
(lvt0 & APIC_LVT_MASKED) == 0)
return 1;
return 0;
}
static uint32_t apic_get_current_count(APICState *s)
{
int64_t d;
uint32_t val;
d = (qemu_get_clock(vm_clock) - s->initial_count_load_time) >>
s->count_shift;
if (s->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) {
/* periodic */
val = s->initial_count - (d % ((uint64_t)s->initial_count + 1));
} else {
if (d >= s->initial_count)
val = 0;
else
val = s->initial_count - d;
}
return val;
}
static void apic_timer_update(APICState *s, int64_t current_time)
{
int64_t next_time, d;
if (!(s->lvt[APIC_LVT_TIMER] & APIC_LVT_MASKED)) {
d = (current_time - s->initial_count_load_time) >>
s->count_shift;
if (s->lvt[APIC_LVT_TIMER] & APIC_LVT_TIMER_PERIODIC) {
if (!s->initial_count)
goto no_timer;
d = ((d / ((uint64_t)s->initial_count + 1)) + 1) * ((uint64_t)s->initial_count + 1);
} else {
if (d >= s->initial_count)
goto no_timer;
d = (uint64_t)s->initial_count + 1;
}
next_time = s->initial_count_load_time + (d << s->count_shift);
qemu_mod_timer(s->timer, next_time);
s->next_time = next_time;
} else {
no_timer:
qemu_del_timer(s->timer);
}
}
static void apic_timer(void *opaque)
{
APICState *s = opaque;
apic_local_deliver(s, APIC_LVT_TIMER);
apic_timer_update(s, s->next_time);
}
static uint32_t apic_mem_readb(void *opaque, target_phys_addr_t addr)
{
return 0;
}
static uint32_t apic_mem_readw(void *opaque, target_phys_addr_t addr)
{
return 0;
}
static void apic_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}
static void apic_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
}
static uint32_t apic_mem_readl(void *opaque, target_phys_addr_t addr)
{
DeviceState *d;
APICState *s;
uint32_t val;
int index;
d = cpu_get_current_apic();
if (!d) {
return 0;
}
s = DO_UPCAST(APICState, busdev.qdev, d);
index = (addr >> 4) & 0xff;
switch(index) {
case 0x02: /* id */
val = s->id << 24;
break;
case 0x03: /* version */
val = 0x11 | ((APIC_LVT_NB - 1) << 16); /* version 0x11 */
break;
case 0x08:
val = s->tpr;
break;
case 0x09:
val = apic_get_arb_pri(s);
break;
case 0x0a:
/* ppr */
val = apic_get_ppr(s);
break;
case 0x0b:
val = 0;
break;
case 0x0d:
val = s->log_dest << 24;
break;
case 0x0e:
val = s->dest_mode << 28;
break;
case 0x0f:
val = s->spurious_vec;
break;
case 0x10 ... 0x17:
val = s->isr[index & 7];
break;
case 0x18 ... 0x1f:
val = s->tmr[index & 7];
break;
case 0x20 ... 0x27:
val = s->irr[index & 7];
break;
case 0x28:
val = s->esr;
break;
case 0x30:
case 0x31:
val = s->icr[index & 1];
break;
case 0x32 ... 0x37:
val = s->lvt[index - 0x32];
break;
case 0x38:
val = s->initial_count;
break;
case 0x39:
val = apic_get_current_count(s);
break;
case 0x3e:
val = s->divide_conf;
break;
default:
s->esr |= ESR_ILLEGAL_ADDRESS;
val = 0;
break;
}
trace_apic_mem_readl(addr, val);
return val;
}
static void apic_send_msi(target_phys_addr_t addr, uint32 data)
{
uint8_t dest = (addr & MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT;
uint8_t vector = (data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT;
uint8_t dest_mode = (addr >> MSI_ADDR_DEST_MODE_SHIFT) & 0x1;
uint8_t trigger_mode = (data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
uint8_t delivery = (data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 0x7;
/* XXX: Ignore redirection hint. */
apic_deliver_irq(dest, dest_mode, delivery, vector, 0, trigger_mode);
}
static void apic_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
DeviceState *d;
APICState *s;
int index = (addr >> 4) & 0xff;
if (addr > 0xfff || !index) {
/* MSI and MMIO APIC are at the same memory location,
* but actually not on the global bus: MSI is on PCI bus
* APIC is connected directly to the CPU.
* Mapping them on the global bus happens to work because
* MSI registers are reserved in APIC MMIO and vice versa. */
apic_send_msi(addr, val);
return;
}
d = cpu_get_current_apic();
if (!d) {
return;
}
s = DO_UPCAST(APICState, busdev.qdev, d);
trace_apic_mem_writel(addr, val);
switch(index) {
case 0x02:
s->id = (val >> 24);
break;
case 0x03:
break;
case 0x08:
s->tpr = val;
apic_update_irq(s);
break;
case 0x09:
case 0x0a:
break;
case 0x0b: /* EOI */
apic_eoi(s);
break;
case 0x0d:
s->log_dest = val >> 24;
break;
case 0x0e:
s->dest_mode = val >> 28;
break;
case 0x0f:
s->spurious_vec = val & 0x1ff;
apic_update_irq(s);
break;
case 0x10 ... 0x17:
case 0x18 ... 0x1f:
case 0x20 ... 0x27:
case 0x28:
break;
case 0x30:
s->icr[0] = val;
apic_deliver(d, (s->icr[1] >> 24) & 0xff, (s->icr[0] >> 11) & 1,
(s->icr[0] >> 8) & 7, (s->icr[0] & 0xff),
(s->icr[0] >> 14) & 1, (s->icr[0] >> 15) & 1);
break;
case 0x31:
s->icr[1] = val;
break;
case 0x32 ... 0x37:
{
int n = index - 0x32;
s->lvt[n] = val;
if (n == APIC_LVT_TIMER)
apic_timer_update(s, qemu_get_clock(vm_clock));
}
break;
case 0x38:
s->initial_count = val;
s->initial_count_load_time = qemu_get_clock(vm_clock);
apic_timer_update(s, s->initial_count_load_time);
break;
case 0x39:
break;
case 0x3e:
{
int v;
s->divide_conf = val & 0xb;
v = (s->divide_conf & 3) | ((s->divide_conf >> 1) & 4);
s->count_shift = (v + 1) & 7;
}
break;
default:
s->esr |= ESR_ILLEGAL_ADDRESS;
break;
}
}
/* This function is only used for old state version 1 and 2 */
static int apic_load_old(QEMUFile *f, void *opaque, int version_id)
{
APICState *s = opaque;
int i;
if (version_id > 2)
return -EINVAL;
/* XXX: what if the base changes? (registered memory regions) */
qemu_get_be32s(f, &s->apicbase);
qemu_get_8s(f, &s->id);
qemu_get_8s(f, &s->arb_id);
qemu_get_8s(f, &s->tpr);
qemu_get_be32s(f, &s->spurious_vec);
qemu_get_8s(f, &s->log_dest);
qemu_get_8s(f, &s->dest_mode);
for (i = 0; i < 8; i++) {
qemu_get_be32s(f, &s->isr[i]);
qemu_get_be32s(f, &s->tmr[i]);
qemu_get_be32s(f, &s->irr[i]);
}
for (i = 0; i < APIC_LVT_NB; i++) {
qemu_get_be32s(f, &s->lvt[i]);
}
qemu_get_be32s(f, &s->esr);
qemu_get_be32s(f, &s->icr[0]);
qemu_get_be32s(f, &s->icr[1]);
qemu_get_be32s(f, &s->divide_conf);
s->count_shift=qemu_get_be32(f);
qemu_get_be32s(f, &s->initial_count);
s->initial_count_load_time=qemu_get_be64(f);
s->next_time=qemu_get_be64(f);
if (version_id >= 2)
qemu_get_timer(f, s->timer);
return 0;
}
static const VMStateDescription vmstate_apic = {
.name = "apic",
.version_id = 3,
.minimum_version_id = 3,
.minimum_version_id_old = 1,
.load_state_old = apic_load_old,
.fields = (VMStateField []) {
VMSTATE_UINT32(apicbase, APICState),
VMSTATE_UINT8(id, APICState),
VMSTATE_UINT8(arb_id, APICState),
VMSTATE_UINT8(tpr, APICState),
VMSTATE_UINT32(spurious_vec, APICState),
VMSTATE_UINT8(log_dest, APICState),
VMSTATE_UINT8(dest_mode, APICState),
VMSTATE_UINT32_ARRAY(isr, APICState, 8),
VMSTATE_UINT32_ARRAY(tmr, APICState, 8),
VMSTATE_UINT32_ARRAY(irr, APICState, 8),
VMSTATE_UINT32_ARRAY(lvt, APICState, APIC_LVT_NB),
VMSTATE_UINT32(esr, APICState),
VMSTATE_UINT32_ARRAY(icr, APICState, 2),
VMSTATE_UINT32(divide_conf, APICState),
VMSTATE_INT32(count_shift, APICState),
VMSTATE_UINT32(initial_count, APICState),
VMSTATE_INT64(initial_count_load_time, APICState),
VMSTATE_INT64(next_time, APICState),
VMSTATE_TIMER(timer, APICState),
VMSTATE_END_OF_LIST()
}
};
static void apic_reset(DeviceState *d)
{
APICState *s = DO_UPCAST(APICState, busdev.qdev, d);
int bsp;
bsp = cpu_is_bsp(s->cpu_env);
s->apicbase = 0xfee00000 |
(bsp ? MSR_IA32_APICBASE_BSP : 0) | MSR_IA32_APICBASE_ENABLE;
apic_init_reset(d);
if (bsp) {
/*
* LINT0 delivery mode on CPU #0 is set to ExtInt at initialization
* time typically by BIOS, so PIC interrupt can be delivered to the
* processor when local APIC is enabled.
*/
s->lvt[APIC_LVT_LINT0] = 0x700;
}
}
static CPUReadMemoryFunc * const apic_mem_read[3] = {
apic_mem_readb,
apic_mem_readw,
apic_mem_readl,
};
static CPUWriteMemoryFunc * const apic_mem_write[3] = {
apic_mem_writeb,
apic_mem_writew,
apic_mem_writel,
};
static int apic_init1(SysBusDevice *dev)
{
APICState *s = FROM_SYSBUS(APICState, dev);
int apic_io_memory;
static int last_apic_idx;
if (last_apic_idx >= MAX_APICS) {
return -1;
}
apic_io_memory = cpu_register_io_memory(apic_mem_read,
apic_mem_write, NULL);
sysbus_init_mmio(dev, MSI_ADDR_SIZE, apic_io_memory);
s->timer = qemu_new_timer(vm_clock, apic_timer, s);
s->idx = last_apic_idx++;
local_apics[s->idx] = s;
return 0;
}
static SysBusDeviceInfo apic_info = {
.init = apic_init1,
.qdev.name = "apic",
.qdev.size = sizeof(APICState),
.qdev.vmsd = &vmstate_apic,
.qdev.reset = apic_reset,
.qdev.no_user = 1,
.qdev.props = (Property[]) {
DEFINE_PROP_UINT8("id", APICState, id, -1),
DEFINE_PROP_PTR("cpu_env", APICState, cpu_env),
DEFINE_PROP_END_OF_LIST(),
}
};
static void apic_register_devices(void)
{
sysbus_register_withprop(&apic_info);
}
device_init(apic_register_devices)