qemu/hw/sparc/sun4m.c

1495 lines
47 KiB
C

/*
* QEMU Sun4m & Sun4d & Sun4c System Emulator
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu/datadir.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/sysbus.h"
#include "qemu/error-report.h"
#include "qemu/timer.h"
#include "hw/sparc/sun4m_iommu.h"
#include "hw/rtc/m48t59.h"
#include "migration/vmstate.h"
#include "hw/sparc/sparc32_dma.h"
#include "hw/block/fdc.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "sysemu/sysemu.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/scsi/esp.h"
#include "hw/nvram/sun_nvram.h"
#include "hw/qdev-properties.h"
#include "hw/nvram/chrp_nvram.h"
#include "hw/nvram/fw_cfg.h"
#include "hw/char/escc.h"
#include "hw/misc/empty_slot.h"
#include "hw/misc/unimp.h"
#include "hw/irq.h"
#include "hw/or-irq.h"
#include "hw/loader.h"
#include "elf.h"
#include "trace.h"
#include "qom/object.h"
/*
* Sun4m architecture was used in the following machines:
*
* SPARCserver 6xxMP/xx
* SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
* SPARCclassic X (4/10)
* SPARCstation LX/ZX (4/30)
* SPARCstation Voyager
* SPARCstation 10/xx, SPARCserver 10/xx
* SPARCstation 5, SPARCserver 5
* SPARCstation 20/xx, SPARCserver 20
* SPARCstation 4
*
* See for example: http://www.sunhelp.org/faq/sunref1.html
*/
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define PROM_SIZE_MAX (1 * MiB)
#define PROM_VADDR 0xffd00000
#define PROM_FILENAME "openbios-sparc32"
#define CFG_ADDR 0xd00000510ULL
#define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00)
#define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01)
#define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02)
#define MAX_CPUS 16
#define MAX_PILS 16
#define MAX_VSIMMS 4
#define ESCC_CLOCK 4915200
struct sun4m_hwdef {
hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
hwaddr serial_base, fd_base;
hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
hwaddr bpp_base, dbri_base, sx_base;
struct {
hwaddr reg_base, vram_base;
} vsimm[MAX_VSIMMS];
hwaddr ecc_base;
uint64_t max_mem;
uint32_t ecc_version;
uint32_t iommu_version;
uint16_t machine_id;
uint8_t nvram_machine_id;
};
struct Sun4mMachineClass {
/*< private >*/
MachineClass parent_obj;
/*< public >*/
const struct sun4m_hwdef *hwdef;
};
typedef struct Sun4mMachineClass Sun4mMachineClass;
#define TYPE_SUN4M_MACHINE MACHINE_TYPE_NAME("sun4m-common")
DECLARE_CLASS_CHECKERS(Sun4mMachineClass, SUN4M_MACHINE, TYPE_SUN4M_MACHINE)
const char *fw_cfg_arch_key_name(uint16_t key)
{
static const struct {
uint16_t key;
const char *name;
} fw_cfg_arch_wellknown_keys[] = {
{FW_CFG_SUN4M_DEPTH, "depth"},
{FW_CFG_SUN4M_WIDTH, "width"},
{FW_CFG_SUN4M_HEIGHT, "height"},
};
for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
if (fw_cfg_arch_wellknown_keys[i].key == key) {
return fw_cfg_arch_wellknown_keys[i].name;
}
}
return NULL;
}
static void fw_cfg_boot_set(void *opaque, const char *boot_device,
Error **errp)
{
fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
}
static void nvram_init(Nvram *nvram, uint8_t *macaddr,
const char *cmdline, const char *boot_devices,
ram_addr_t RAM_size, uint32_t kernel_size,
int width, int height, int depth,
int nvram_machine_id, const char *arch)
{
unsigned int i;
int sysp_end;
uint8_t image[0x1ff0];
NvramClass *k = NVRAM_GET_CLASS(nvram);
memset(image, '\0', sizeof(image));
/* OpenBIOS nvram variables partition */
sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0);
/* Free space partition */
chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
nvram_machine_id);
for (i = 0; i < sizeof(image); i++) {
(k->write)(nvram, i, image[i]);
}
}
static void cpu_kick_irq(SPARCCPU *cpu)
{
CPUSPARCState *env = &cpu->env;
CPUState *cs = CPU(cpu);
cs->halted = 0;
cpu_check_irqs(env);
qemu_cpu_kick(cs);
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
SPARCCPU *cpu = opaque;
CPUSPARCState *env = &cpu->env;
if (level) {
trace_sun4m_cpu_set_irq_raise(irq);
env->pil_in |= 1 << irq;
cpu_kick_irq(cpu);
} else {
trace_sun4m_cpu_set_irq_lower(irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
static void dummy_cpu_set_irq(void *opaque, int irq, int level)
{
}
static void sun4m_cpu_reset(void *opaque)
{
SPARCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
}
static void cpu_halt_signal(void *opaque, int irq, int level)
{
if (level && current_cpu) {
cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
}
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return addr - 0xf0000000ULL;
}
static unsigned long sun4m_load_kernel(const char *kernel_filename,
const char *initrd_filename,
ram_addr_t RAM_size,
uint32_t *initrd_size)
{
int linux_boot;
unsigned int i;
long kernel_size;
uint8_t *ptr;
linux_boot = (kernel_filename != NULL);
kernel_size = 0;
if (linux_boot) {
int bswap_needed;
#ifdef BSWAP_NEEDED
bswap_needed = 1;
#else
bswap_needed = 0;
#endif
kernel_size = load_elf(kernel_filename, NULL,
translate_kernel_address, NULL,
NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
TARGET_PAGE_SIZE);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
/* load initrd */
*initrd_size = 0;
if (initrd_filename) {
*initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
RAM_size - INITRD_LOAD_ADDR);
if ((int)*initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
}
if (*initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
stl_p(ptr + 16, INITRD_LOAD_ADDR);
stl_p(ptr + 20, *initrd_size);
break;
}
}
}
}
return kernel_size;
}
static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new(TYPE_SUN4M_IOMMU);
qdev_prop_set_uint32(dev, "version", version);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, addr);
return s;
}
static void *sparc32_dma_init(hwaddr dma_base,
hwaddr esp_base, qemu_irq espdma_irq,
hwaddr le_base, qemu_irq ledma_irq, NICInfo *nd)
{
DeviceState *dma;
ESPDMADeviceState *espdma;
LEDMADeviceState *ledma;
SysBusESPState *esp;
SysBusPCNetState *lance;
dma = qdev_new(TYPE_SPARC32_DMA);
espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
OBJECT(dma), "espdma"));
sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
esp = SYSBUS_ESP(object_resolve_path_component(OBJECT(espdma), "esp"));
ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
OBJECT(dma), "ledma"));
sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
lance = SYSBUS_PCNET(object_resolve_path_component(
OBJECT(ledma), "lance"));
qdev_set_nic_properties(DEVICE(lance), nd);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
return dma;
}
static DeviceState *slavio_intctl_init(hwaddr addr,
hwaddr addrg,
qemu_irq **parent_irq)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i, j;
dev = qdev_new("slavio_intctl");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
for (i = 0; i < MAX_CPUS; i++) {
for (j = 0; j < MAX_PILS; j++) {
sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
}
}
sysbus_mmio_map(s, 0, addrg);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
}
return dev;
}
#define SYS_TIMER_OFFSET 0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
DeviceState *dev;
SysBusDevice *s;
unsigned int i;
dev = qdev_new("slavio_timer");
qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, master_irq);
sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
for (i = 0; i < MAX_CPUS; i++) {
sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
}
}
static qemu_irq slavio_system_powerdown;
static void slavio_powerdown_req(Notifier *n, void *opaque)
{
qemu_irq_raise(slavio_system_powerdown);
}
static Notifier slavio_system_powerdown_notifier = {
.notify = slavio_powerdown_req
};
#define MISC_LEDS 0x01600000
#define MISC_CFG 0x01800000
#define MISC_DIAG 0x01a00000
#define MISC_MDM 0x01b00000
#define MISC_SYS 0x01f00000
static void slavio_misc_init(hwaddr base,
hwaddr aux1_base,
hwaddr aux2_base, qemu_irq irq,
qemu_irq fdc_tc)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("slavio_misc");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
if (base) {
/* 8 bit registers */
/* Slavio control */
sysbus_mmio_map(s, 0, base + MISC_CFG);
/* Diagnostics */
sysbus_mmio_map(s, 1, base + MISC_DIAG);
/* Modem control */
sysbus_mmio_map(s, 2, base + MISC_MDM);
/* 16 bit registers */
/* ss600mp diag LEDs */
sysbus_mmio_map(s, 3, base + MISC_LEDS);
/* 32 bit registers */
/* System control */
sysbus_mmio_map(s, 4, base + MISC_SYS);
}
if (aux1_base) {
/* AUX 1 (Misc System Functions) */
sysbus_mmio_map(s, 5, aux1_base);
}
if (aux2_base) {
/* AUX 2 (Software Powerdown Control) */
sysbus_mmio_map(s, 6, aux2_base);
}
sysbus_connect_irq(s, 0, irq);
sysbus_connect_irq(s, 1, fdc_tc);
slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
}
static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("eccmemctl");
qdev_prop_set_uint32(dev, "version", version);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, irq);
sysbus_mmio_map(s, 0, base);
if (version == 0) { // SS-600MP only
sysbus_mmio_map(s, 1, base + 0x1000);
}
}
static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("apc");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
/* Power management (APC) XXX: not a Slavio device */
sysbus_mmio_map(s, 0, power_base);
sysbus_connect_irq(s, 0, cpu_halt);
}
static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
int height, int depth)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("sun-tcx");
qdev_prop_set_uint32(dev, "vram_size", vram_size);
qdev_prop_set_uint16(dev, "width", width);
qdev_prop_set_uint16(dev, "height", height);
qdev_prop_set_uint16(dev, "depth", depth);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
/* 10/ROM : FCode ROM */
sysbus_mmio_map(s, 0, addr);
/* 2/STIP : Stipple */
sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
/* 3/BLIT : Blitter */
sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
/* 5/RSTIP : Raw Stipple */
sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
/* 6/RBLIT : Raw Blitter */
sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
/* 7/TEC : Transform Engine */
sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
/* 8/CMAP : DAC */
sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
/* 9/THC : */
if (depth == 8) {
sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
} else {
sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
}
/* 11/DHC : */
sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
/* 12/ALT : */
sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
/* 0/DFB8 : 8-bit plane */
sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
/* 1/DFB24 : 24bit plane */
sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
/* 4/RDFB32: Raw framebuffer. Control plane */
sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
/* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
if (depth == 8) {
sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
}
sysbus_connect_irq(s, 0, irq);
}
static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
int height, int depth)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new("cgthree");
qdev_prop_set_uint32(dev, "vram-size", vram_size);
qdev_prop_set_uint16(dev, "width", width);
qdev_prop_set_uint16(dev, "height", height);
qdev_prop_set_uint16(dev, "depth", depth);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
/* FCode ROM */
sysbus_mmio_map(s, 0, addr);
/* DAC */
sysbus_mmio_map(s, 1, addr + 0x400000ULL);
/* 8-bit plane */
sysbus_mmio_map(s, 2, addr + 0x800000ULL);
sysbus_connect_irq(s, 0, irq);
}
/* NCR89C100/MACIO Internal ID register */
#define TYPE_MACIO_ID_REGISTER "macio_idreg"
static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
static void idreg_init(hwaddr addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new(TYPE_MACIO_ID_REGISTER);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
address_space_write_rom(&address_space_memory, addr,
MEMTXATTRS_UNSPECIFIED,
idreg_data, sizeof(idreg_data));
}
OBJECT_DECLARE_SIMPLE_TYPE(IDRegState, MACIO_ID_REGISTER)
struct IDRegState {
SysBusDevice parent_obj;
MemoryRegion mem;
};
static void idreg_realize(DeviceState *ds, Error **errp)
{
IDRegState *s = MACIO_ID_REGISTER(ds);
SysBusDevice *dev = SYS_BUS_DEVICE(ds);
Error *local_err = NULL;
memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
sizeof(idreg_data), &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register_ram_global(&s->mem);
memory_region_set_readonly(&s->mem, true);
sysbus_init_mmio(dev, &s->mem);
}
static void idreg_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = idreg_realize;
}
static const TypeInfo idreg_info = {
.name = TYPE_MACIO_ID_REGISTER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IDRegState),
.class_init = idreg_class_init,
};
#define TYPE_TCX_AFX "tcx_afx"
OBJECT_DECLARE_SIMPLE_TYPE(AFXState, TCX_AFX)
struct AFXState {
SysBusDevice parent_obj;
MemoryRegion mem;
};
/* SS-5 TCX AFX register */
static void afx_init(hwaddr addr)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_new(TYPE_TCX_AFX);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
}
static void afx_realize(DeviceState *ds, Error **errp)
{
AFXState *s = TCX_AFX(ds);
SysBusDevice *dev = SYS_BUS_DEVICE(ds);
Error *local_err = NULL;
memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register_ram_global(&s->mem);
sysbus_init_mmio(dev, &s->mem);
}
static void afx_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = afx_realize;
}
static const TypeInfo afx_info = {
.name = TYPE_TCX_AFX,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AFXState),
.class_init = afx_class_init,
};
#define TYPE_OPENPROM "openprom"
typedef struct PROMState PROMState;
DECLARE_INSTANCE_CHECKER(PROMState, OPENPROM,
TYPE_OPENPROM)
struct PROMState {
SysBusDevice parent_obj;
MemoryRegion prom;
};
/* Boot PROM (OpenBIOS) */
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
{
hwaddr *base_addr = (hwaddr *)opaque;
return addr + *base_addr - PROM_VADDR;
}
static void prom_init(hwaddr addr, const char *bios_name)
{
DeviceState *dev;
SysBusDevice *s;
char *filename;
int ret;
dev = qdev_new(TYPE_OPENPROM);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, addr);
/* load boot prom */
if (bios_name == NULL) {
bios_name = PROM_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
ret = load_elf(filename, NULL,
translate_prom_address, &addr, NULL,
NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
if (ret < 0 || ret > PROM_SIZE_MAX) {
ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
}
g_free(filename);
} else {
ret = -1;
}
if (ret < 0 || ret > PROM_SIZE_MAX) {
error_report("could not load prom '%s'", bios_name);
exit(1);
}
}
static void prom_realize(DeviceState *ds, Error **errp)
{
PROMState *s = OPENPROM(ds);
SysBusDevice *dev = SYS_BUS_DEVICE(ds);
Error *local_err = NULL;
memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
PROM_SIZE_MAX, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register_ram_global(&s->prom);
memory_region_set_readonly(&s->prom, true);
sysbus_init_mmio(dev, &s->prom);
}
static Property prom_properties[] = {
{/* end of property list */},
};
static void prom_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
device_class_set_props(dc, prom_properties);
dc->realize = prom_realize;
}
static const TypeInfo prom_info = {
.name = TYPE_OPENPROM,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PROMState),
.class_init = prom_class_init,
};
#define TYPE_SUN4M_MEMORY "memory"
typedef struct RamDevice RamDevice;
DECLARE_INSTANCE_CHECKER(RamDevice, SUN4M_RAM,
TYPE_SUN4M_MEMORY)
struct RamDevice {
SysBusDevice parent_obj;
HostMemoryBackend *memdev;
};
/* System RAM */
static void ram_realize(DeviceState *dev, Error **errp)
{
RamDevice *d = SUN4M_RAM(dev);
MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
}
static void ram_initfn(Object *obj)
{
RamDevice *d = SUN4M_RAM(obj);
object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
(Object **)&d->memdev,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG);
object_property_set_description(obj, "memdev", "Set RAM backend"
"Valid value is ID of a hostmem backend");
}
static void ram_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = ram_realize;
}
static const TypeInfo ram_info = {
.name = TYPE_SUN4M_MEMORY,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(RamDevice),
.instance_init = ram_initfn,
.class_init = ram_class_init,
};
static void cpu_devinit(const char *cpu_type, unsigned int id,
uint64_t prom_addr, qemu_irq **cpu_irqs)
{
SPARCCPU *cpu;
CPUSPARCState *env;
cpu = SPARC_CPU(object_new(cpu_type));
env = &cpu->env;
cpu_sparc_set_id(env, id);
qemu_register_reset(sun4m_cpu_reset, cpu);
object_property_set_bool(OBJECT(cpu), "start-powered-off", id != 0,
&error_fatal);
qdev_realize_and_unref(DEVICE(cpu), NULL, &error_fatal);
*cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
env->prom_addr = prom_addr;
}
static void dummy_fdc_tc(void *opaque, int irq, int level)
{
}
static void sun4m_hw_init(MachineState *machine)
{
const struct sun4m_hwdef *hwdef = SUN4M_MACHINE_GET_CLASS(machine)->hwdef;
DeviceState *slavio_intctl;
unsigned int i;
Nvram *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
qemu_irq fdc_tc;
unsigned long kernel_size;
uint32_t initrd_size;
DriveInfo *fd[MAX_FD];
FWCfgState *fw_cfg;
DeviceState *dev, *ms_kb_orgate, *serial_orgate;
SysBusDevice *s;
unsigned int smp_cpus = machine->smp.cpus;
unsigned int max_cpus = machine->smp.max_cpus;
Object *ram_memdev = object_resolve_path_type(machine->ram_memdev_id,
TYPE_MEMORY_BACKEND, NULL);
NICInfo *nd = &nd_table[0];
if (machine->ram_size > hwdef->max_mem) {
error_report("Too much memory for this machine: %" PRId64 ","
" maximum %" PRId64,
machine->ram_size / MiB, hwdef->max_mem / MiB);
exit(1);
}
/* init CPUs */
for(i = 0; i < smp_cpus; i++) {
cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
}
for (i = smp_cpus; i < MAX_CPUS; i++)
cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
/* Create and map RAM frontend */
dev = qdev_new("memory");
object_property_set_link(OBJECT(dev), "memdev", ram_memdev, &error_fatal);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
/* models without ECC don't trap when missing ram is accessed */
if (!hwdef->ecc_base) {
empty_slot_init("ecc", machine->ram_size,
hwdef->max_mem - machine->ram_size);
}
prom_init(hwdef->slavio_base, machine->firmware);
slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
hwdef->intctl_base + 0x10000ULL,
cpu_irqs);
for (i = 0; i < 32; i++) {
slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
}
for (i = 0; i < MAX_CPUS; i++) {
slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
}
if (hwdef->idreg_base) {
idreg_init(hwdef->idreg_base);
}
if (hwdef->afx_base) {
afx_init(hwdef->afx_base);
}
iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
if (hwdef->iommu_pad_base) {
/* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
Software shouldn't use aliased addresses, neither should it crash
when does. Using empty_slot instead of aliasing can help with
debugging such accesses */
empty_slot_init("iommu.alias",
hwdef->iommu_pad_base, hwdef->iommu_pad_len);
}
qemu_check_nic_model(nd, TYPE_LANCE);
sparc32_dma_init(hwdef->dma_base,
hwdef->esp_base, slavio_irq[18],
hwdef->le_base, slavio_irq[16], nd);
if (graphic_depth != 8 && graphic_depth != 24) {
error_report("Unsupported depth: %d", graphic_depth);
exit (1);
}
if (vga_interface_type != VGA_NONE) {
if (vga_interface_type == VGA_CG3) {
if (graphic_depth != 8) {
error_report("Unsupported depth: %d", graphic_depth);
exit(1);
}
if (!(graphic_width == 1024 && graphic_height == 768) &&
!(graphic_width == 1152 && graphic_height == 900)) {
error_report("Unsupported resolution: %d x %d", graphic_width,
graphic_height);
exit(1);
}
/* sbus irq 5 */
cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
graphic_width, graphic_height, graphic_depth);
} else {
/* If no display specified, default to TCX */
if (graphic_depth != 8 && graphic_depth != 24) {
error_report("Unsupported depth: %d", graphic_depth);
exit(1);
}
if (!(graphic_width == 1024 && graphic_height == 768)) {
error_report("Unsupported resolution: %d x %d",
graphic_width, graphic_height);
exit(1);
}
tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
graphic_width, graphic_height, graphic_depth);
}
}
for (i = 0; i < MAX_VSIMMS; i++) {
/* vsimm registers probed by OBP */
if (hwdef->vsimm[i].reg_base) {
char *name = g_strdup_printf("vsimm[%d]", i);
empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
g_free(name);
}
}
if (hwdef->sx_base) {
create_unimplemented_device("sun-sx", hwdef->sx_base, 0x2000);
}
dev = qdev_new("sysbus-m48t08");
qdev_prop_set_int32(dev, "base-year", 1968);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, slavio_irq[0]);
sysbus_mmio_map(s, 0, hwdef->nvram_base);
nvram = NVRAM(dev);
slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
/* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
dev = qdev_new(TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
qdev_prop_set_uint32(dev, "it_shift", 1);
qdev_prop_set_chr(dev, "chrB", NULL);
qdev_prop_set_chr(dev, "chrA", NULL);
qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
/* Logically OR both its IRQs together */
ms_kb_orgate = DEVICE(object_new(TYPE_OR_IRQ));
object_property_set_int(OBJECT(ms_kb_orgate), "num-lines", 2, &error_fatal);
qdev_realize_and_unref(ms_kb_orgate, NULL, &error_fatal);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(ms_kb_orgate, 0));
sysbus_connect_irq(s, 1, qdev_get_gpio_in(ms_kb_orgate, 1));
qdev_connect_gpio_out(DEVICE(ms_kb_orgate), 0, slavio_irq[14]);
dev = qdev_new(TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", 0);
qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
qdev_prop_set_uint32(dev, "it_shift", 1);
qdev_prop_set_chr(dev, "chrB", serial_hd(1));
qdev_prop_set_chr(dev, "chrA", serial_hd(0));
qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, hwdef->serial_base);
/* Logically OR both its IRQs together */
serial_orgate = DEVICE(object_new(TYPE_OR_IRQ));
object_property_set_int(OBJECT(serial_orgate), "num-lines", 2,
&error_fatal);
qdev_realize_and_unref(serial_orgate, NULL, &error_fatal);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(serial_orgate, 0));
sysbus_connect_irq(s, 1, qdev_get_gpio_in(serial_orgate, 1));
qdev_connect_gpio_out(DEVICE(serial_orgate), 0, slavio_irq[15]);
if (hwdef->apc_base) {
apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
}
if (hwdef->fd_base) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
fd[0] = drive_get(IF_FLOPPY, 0, 0);
sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
&fdc_tc);
} else {
fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
}
slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
slavio_irq[30], fdc_tc);
if (hwdef->cs_base) {
sysbus_create_simple("sun-CS4231", hwdef->cs_base,
slavio_irq[5]);
}
if (hwdef->dbri_base) {
/* ISDN chip with attached CS4215 audio codec */
/* prom space */
create_unimplemented_device("sun-DBRI.prom",
hwdef->dbri_base + 0x1000, 0x30);
/* reg space */
create_unimplemented_device("sun-DBRI",
hwdef->dbri_base + 0x10000, 0x100);
}
if (hwdef->bpp_base) {
/* parallel port */
create_unimplemented_device("sun-bpp", hwdef->bpp_base, 0x20);
}
initrd_size = 0;
kernel_size = sun4m_load_kernel(machine->kernel_filename,
machine->initrd_filename,
machine->ram_size, &initrd_size);
nvram_init(nvram, (uint8_t *)&nd->macaddr, machine->kernel_cmdline,
machine->boot_order, machine->ram_size, kernel_size,
graphic_width, graphic_height, graphic_depth,
hwdef->nvram_machine_id, "Sun4m");
if (hwdef->ecc_base)
ecc_init(hwdef->ecc_base, slavio_irq[28],
hwdef->ecc_version);
dev = qdev_new(TYPE_FW_CFG_MEM);
fw_cfg = FW_CFG(dev);
qdev_prop_set_uint32(dev, "data_width", 1);
qdev_prop_set_bit(dev, "dma_enabled", false);
object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
OBJECT(fw_cfg));
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, CFG_ADDR);
sysbus_mmio_map(s, 1, CFG_ADDR + 2);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (machine->kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
machine->kernel_cmdline);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(machine->kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
enum {
ss5_id = 32,
vger_id,
lx_id,
ss4_id,
scls_id,
sbook_id,
ss10_id = 64,
ss20_id,
ss600mp_id,
};
static void sun4m_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = sun4m_hw_init;
mc->block_default_type = IF_SCSI;
mc->default_boot_order = "c";
mc->default_display = "tcx";
mc->default_ram_id = "sun4m.ram";
}
static void ss5_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef ss5_hwdef = {
.iommu_base = 0x10000000,
.iommu_pad_base = 0x10004000,
.iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.afx_base = 0x6e000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss5_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
};
mc->desc = "Sun4m platform, SPARCstation 5";
mc->is_default = true;
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
smc->hwdef = &ss5_hwdef;
}
static void ss10_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef ss10_hwdef = {
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.apc_base = 0xefa000000ULL, /* XXX should not exist */
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x10000000, /* version 0, implementation 1 */
.nvram_machine_id = 0x72,
.machine_id = ss10_id,
.iommu_version = 0x03000000,
.max_mem = 0xf00000000ULL,
};
mc->desc = "Sun4m platform, SPARCstation 10";
mc->max_cpus = 4;
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
smc->hwdef = &ss10_hwdef;
}
static void ss600mp_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef ss600mp_hwdef = {
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.dma_base = 0xef0081000ULL,
.esp_base = 0xef0080000ULL,
.le_base = 0xef0060000ULL,
.apc_base = 0xefa000000ULL, /* XXX should not exist */
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL, /* XXX should not exist */
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x00000000, /* version 0, implementation 0 */
.nvram_machine_id = 0x71,
.machine_id = ss600mp_id,
.iommu_version = 0x01000000,
.max_mem = 0xf00000000ULL,
};
mc->desc = "Sun4m platform, SPARCserver 600MP";
mc->max_cpus = 4;
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
smc->hwdef = &ss600mp_hwdef;
}
static void ss20_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef ss20_hwdef = {
.iommu_base = 0xfe0000000ULL,
.tcx_base = 0xe20000000ULL,
.slavio_base = 0xff0000000ULL,
.ms_kb_base = 0xff1000000ULL,
.serial_base = 0xff1100000ULL,
.nvram_base = 0xff1200000ULL,
.fd_base = 0xff1700000ULL,
.counter_base = 0xff1300000ULL,
.intctl_base = 0xff1400000ULL,
.idreg_base = 0xef0000000ULL,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
.bpp_base = 0xef4800000ULL,
.apc_base = 0xefa000000ULL, /* XXX should not exist */
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
.dbri_base = 0xee0000000ULL,
.sx_base = 0xf80000000ULL,
.vsimm = {
{
.reg_base = 0x9c000000ULL,
.vram_base = 0xfc000000ULL
}, {
.reg_base = 0x90000000ULL,
.vram_base = 0xf0000000ULL
}, {
.reg_base = 0x94000000ULL
}, {
.reg_base = 0x98000000ULL
}
},
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x20000000, /* version 0, implementation 2 */
.nvram_machine_id = 0x72,
.machine_id = ss20_id,
.iommu_version = 0x13000000,
.max_mem = 0xf00000000ULL,
};
mc->desc = "Sun4m platform, SPARCstation 20";
mc->max_cpus = 4;
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
smc->hwdef = &ss20_hwdef;
}
static void voyager_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef voyager_hwdef = {
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x71300000, /* pmc */
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = vger_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
};
mc->desc = "Sun4m platform, SPARCstation Voyager";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
smc->hwdef = &voyager_hwdef;
}
static void ss_lx_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef ss_lx_hwdef = {
.iommu_base = 0x10000000,
.iommu_pad_base = 0x10004000,
.iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = lx_id,
.iommu_version = 0x04000000,
.max_mem = 0x10000000,
};
mc->desc = "Sun4m platform, SPARCstation LX";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
smc->hwdef = &ss_lx_hwdef;
}
static void ss4_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef ss4_hwdef = {
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = ss4_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
};
mc->desc = "Sun4m platform, SPARCstation 4";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
smc->hwdef = &ss4_hwdef;
}
static void scls_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef scls_hwdef = {
.iommu_base = 0x10000000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = scls_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
};
mc->desc = "Sun4m platform, SPARCClassic";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
smc->hwdef = &scls_hwdef;
}
static void sbook_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
Sun4mMachineClass *smc = SUN4M_MACHINE_CLASS(mc);
static const struct sun4m_hwdef sbook_hwdef = {
.iommu_base = 0x10000000,
.tcx_base = 0x50000000, /* XXX */
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
.serial_base = 0x71100000,
.nvram_base = 0x71200000,
.fd_base = 0x71400000,
.counter_base = 0x71d00000,
.intctl_base = 0x71e00000,
.idreg_base = 0x78000000,
.dma_base = 0x78400000,
.esp_base = 0x78800000,
.le_base = 0x78c00000,
.apc_base = 0x6a000000,
.aux1_base = 0x71900000,
.aux2_base = 0x71910000,
.nvram_machine_id = 0x80,
.machine_id = sbook_id,
.iommu_version = 0x05000000,
.max_mem = 0x10000000,
};
mc->desc = "Sun4m platform, SPARCbook";
mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
smc->hwdef = &sbook_hwdef;
}
static const TypeInfo sun4m_machine_types[] = {
{
.name = MACHINE_TYPE_NAME("SS-5"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = ss5_class_init,
}, {
.name = MACHINE_TYPE_NAME("SS-10"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = ss10_class_init,
}, {
.name = MACHINE_TYPE_NAME("SS-600MP"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = ss600mp_class_init,
}, {
.name = MACHINE_TYPE_NAME("SS-20"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = ss20_class_init,
}, {
.name = MACHINE_TYPE_NAME("Voyager"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = voyager_class_init,
}, {
.name = MACHINE_TYPE_NAME("LX"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = ss_lx_class_init,
}, {
.name = MACHINE_TYPE_NAME("SS-4"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = ss4_class_init,
}, {
.name = MACHINE_TYPE_NAME("SPARCClassic"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = scls_class_init,
}, {
.name = MACHINE_TYPE_NAME("SPARCbook"),
.parent = TYPE_SUN4M_MACHINE,
.class_init = sbook_class_init,
}, {
.name = TYPE_SUN4M_MACHINE,
.parent = TYPE_MACHINE,
.class_size = sizeof(Sun4mMachineClass),
.class_init = sun4m_machine_class_init,
.abstract = true,
}
};
DEFINE_TYPES(sun4m_machine_types)
static void sun4m_register_types(void)
{
type_register_static(&idreg_info);
type_register_static(&afx_info);
type_register_static(&prom_info);
type_register_static(&ram_info);
}
type_init(sun4m_register_types)