qemu/hw/acpi.c

546 lines
15 KiB
C

/*
* ACPI implementation
*
* Copyright (c) 2006 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "sysemu/sysemu.h"
#include "hw/hw.h"
#include "hw/pc.h"
#include "hw/acpi.h"
#include "monitor/monitor.h"
struct acpi_table_header {
uint16_t _length; /* our length, not actual part of the hdr */
/* XXX why we have 2 length fields here? */
char sig[4]; /* ACPI signature (4 ASCII characters) */
uint32_t length; /* Length of table, in bytes, including header */
uint8_t revision; /* ACPI Specification minor version # */
uint8_t checksum; /* To make sum of entire table == 0 */
char oem_id[6]; /* OEM identification */
char oem_table_id[8]; /* OEM table identification */
uint32_t oem_revision; /* OEM revision number */
char asl_compiler_id[4]; /* ASL compiler vendor ID */
uint32_t asl_compiler_revision; /* ASL compiler revision number */
} QEMU_PACKED;
#define ACPI_TABLE_HDR_SIZE sizeof(struct acpi_table_header)
#define ACPI_TABLE_PFX_SIZE sizeof(uint16_t) /* size of the extra prefix */
static const char dfl_hdr[ACPI_TABLE_HDR_SIZE] =
"\0\0" /* fake _length (2) */
"QEMU\0\0\0\0\1\0" /* sig (4), len(4), revno (1), csum (1) */
"QEMUQEQEMUQEMU\1\0\0\0" /* OEM id (6), table (8), revno (4) */
"QEMU\1\0\0\0" /* ASL compiler ID (4), version (4) */
;
char *acpi_tables;
size_t acpi_tables_len;
static int acpi_checksum(const uint8_t *data, int len)
{
int sum, i;
sum = 0;
for (i = 0; i < len; i++) {
sum += data[i];
}
return (-sum) & 0xff;
}
/* XXX fixme: this function uses obsolete argument parsing interface */
int acpi_table_add(const char *t)
{
char buf[1024], *p, *f;
unsigned long val;
size_t len, start, allen;
bool has_header;
int changed;
int r;
struct acpi_table_header hdr;
r = 0;
r |= get_param_value(buf, sizeof(buf), "data", t) ? 1 : 0;
r |= get_param_value(buf, sizeof(buf), "file", t) ? 2 : 0;
switch (r) {
case 0:
buf[0] = '\0';
/* fallthrough for default behavior */
case 1:
has_header = false;
break;
case 2:
has_header = true;
break;
default:
fprintf(stderr, "acpitable: both data and file are specified\n");
return -1;
}
if (!acpi_tables) {
allen = sizeof(uint16_t);
acpi_tables = g_malloc0(allen);
} else {
allen = acpi_tables_len;
}
start = allen;
acpi_tables = g_realloc(acpi_tables, start + ACPI_TABLE_HDR_SIZE);
allen += has_header ? ACPI_TABLE_PFX_SIZE : ACPI_TABLE_HDR_SIZE;
/* now read in the data files, reallocating buffer as needed */
for (f = strtok(buf, ":"); f; f = strtok(NULL, ":")) {
int fd = open(f, O_RDONLY | O_BINARY);
if (fd < 0) {
fprintf(stderr, "can't open file %s: %s\n", f, strerror(errno));
return -1;
}
for (;;) {
char data[8192];
r = read(fd, data, sizeof(data));
if (r == 0) {
break;
} else if (r > 0) {
acpi_tables = g_realloc(acpi_tables, allen + r);
memcpy(acpi_tables + allen, data, r);
allen += r;
} else if (errno != EINTR) {
fprintf(stderr, "can't read file %s: %s\n",
f, strerror(errno));
close(fd);
return -1;
}
}
close(fd);
}
/* now fill in the header fields */
f = acpi_tables + start; /* start of the table */
changed = 0;
/* copy the header to temp place to align the fields */
memcpy(&hdr, has_header ? f : dfl_hdr, ACPI_TABLE_HDR_SIZE);
/* length of the table minus our prefix */
len = allen - start - ACPI_TABLE_PFX_SIZE;
hdr._length = cpu_to_le16(len);
if (get_param_value(buf, sizeof(buf), "sig", t)) {
/* strncpy is justified: the field need not be NUL-terminated. */
strncpy(hdr.sig, buf, sizeof(hdr.sig));
++changed;
}
/* length of the table including header, in bytes */
if (has_header) {
/* check if actual length is correct */
val = le32_to_cpu(hdr.length);
if (val != len) {
fprintf(stderr,
"warning: acpitable has wrong length,"
" header says %lu, actual size %zu bytes\n",
val, len);
++changed;
}
}
/* we may avoid putting length here if has_header is true */
hdr.length = cpu_to_le32(len);
if (get_param_value(buf, sizeof(buf), "rev", t)) {
val = strtoul(buf, &p, 0);
if (val > 255 || *p) {
fprintf(stderr, "acpitable: \"rev=%s\" is invalid\n", buf);
return -1;
}
hdr.revision = (uint8_t)val;
++changed;
}
if (get_param_value(buf, sizeof(buf), "oem_id", t)) {
/* strncpy is justified: the field need not be NUL-terminated. */
strncpy(hdr.oem_id, buf, sizeof(hdr.oem_id));
++changed;
}
if (get_param_value(buf, sizeof(buf), "oem_table_id", t)) {
/* strncpy is justified: the field need not be NUL-terminated. */
strncpy(hdr.oem_table_id, buf, sizeof(hdr.oem_table_id));
++changed;
}
if (get_param_value(buf, sizeof(buf), "oem_rev", t)) {
val = strtol(buf, &p, 0);
if (*p) {
fprintf(stderr, "acpitable: \"oem_rev=%s\" is invalid\n", buf);
return -1;
}
hdr.oem_revision = cpu_to_le32(val);
++changed;
}
if (get_param_value(buf, sizeof(buf), "asl_compiler_id", t)) {
/* strncpy is justified: the field need not be NUL-terminated. */
strncpy(hdr.asl_compiler_id, buf, sizeof(hdr.asl_compiler_id));
++changed;
}
if (get_param_value(buf, sizeof(buf), "asl_compiler_rev", t)) {
val = strtol(buf, &p, 0);
if (*p) {
fprintf(stderr, "acpitable: \"%s=%s\" is invalid\n",
"asl_compiler_rev", buf);
return -1;
}
hdr.asl_compiler_revision = cpu_to_le32(val);
++changed;
}
if (!has_header && !changed) {
fprintf(stderr, "warning: acpitable: no table headers are specified\n");
}
/* now calculate checksum of the table, complete with the header */
/* we may as well leave checksum intact if has_header is true */
/* alternatively there may be a way to set cksum to a given value */
hdr.checksum = 0; /* for checksum calculation */
/* put header back */
memcpy(f, &hdr, sizeof(hdr));
if (changed || !has_header || 1) {
((struct acpi_table_header *)f)->checksum =
acpi_checksum((uint8_t *)f + ACPI_TABLE_PFX_SIZE, len);
}
/* increase number of tables */
(*(uint16_t *)acpi_tables) =
cpu_to_le32(le32_to_cpu(*(uint16_t *)acpi_tables) + 1);
acpi_tables_len = allen;
return 0;
}
static void acpi_notify_wakeup(Notifier *notifier, void *data)
{
ACPIREGS *ar = container_of(notifier, ACPIREGS, wakeup);
WakeupReason *reason = data;
switch (*reason) {
case QEMU_WAKEUP_REASON_RTC:
ar->pm1.evt.sts |=
(ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_RT_CLOCK_STATUS);
break;
case QEMU_WAKEUP_REASON_PMTIMER:
ar->pm1.evt.sts |=
(ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_TIMER_STATUS);
break;
case QEMU_WAKEUP_REASON_OTHER:
default:
/* ACPI_BITMASK_WAKE_STATUS should be set on resume.
Pretend that resume was caused by power button */
ar->pm1.evt.sts |=
(ACPI_BITMASK_WAKE_STATUS | ACPI_BITMASK_POWER_BUTTON_STATUS);
break;
}
}
/* ACPI PM1a EVT */
uint16_t acpi_pm1_evt_get_sts(ACPIREGS *ar)
{
int64_t d = acpi_pm_tmr_get_clock();
if (d >= ar->tmr.overflow_time) {
ar->pm1.evt.sts |= ACPI_BITMASK_TIMER_STATUS;
}
return ar->pm1.evt.sts;
}
static void acpi_pm1_evt_write_sts(ACPIREGS *ar, uint16_t val)
{
uint16_t pm1_sts = acpi_pm1_evt_get_sts(ar);
if (pm1_sts & val & ACPI_BITMASK_TIMER_STATUS) {
/* if TMRSTS is reset, then compute the new overflow time */
acpi_pm_tmr_calc_overflow_time(ar);
}
ar->pm1.evt.sts &= ~val;
}
static void acpi_pm1_evt_write_en(ACPIREGS *ar, uint16_t val)
{
ar->pm1.evt.en = val;
qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_RTC,
val & ACPI_BITMASK_RT_CLOCK_ENABLE);
qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_PMTIMER,
val & ACPI_BITMASK_TIMER_ENABLE);
}
void acpi_pm1_evt_power_down(ACPIREGS *ar)
{
if (ar->pm1.evt.en & ACPI_BITMASK_POWER_BUTTON_ENABLE) {
ar->pm1.evt.sts |= ACPI_BITMASK_POWER_BUTTON_STATUS;
ar->tmr.update_sci(ar);
}
}
void acpi_pm1_evt_reset(ACPIREGS *ar)
{
ar->pm1.evt.sts = 0;
ar->pm1.evt.en = 0;
qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_RTC, 0);
qemu_system_wakeup_enable(QEMU_WAKEUP_REASON_PMTIMER, 0);
}
static uint64_t acpi_pm_evt_read(void *opaque, hwaddr addr, unsigned width)
{
ACPIREGS *ar = opaque;
switch (addr) {
case 0:
return acpi_pm1_evt_get_sts(ar);
case 2:
return ar->pm1.evt.en;
default:
return 0;
}
}
static void acpi_pm_evt_write(void *opaque, hwaddr addr, uint64_t val,
unsigned width)
{
ACPIREGS *ar = opaque;
switch (addr) {
case 0:
acpi_pm1_evt_write_sts(ar, val);
ar->pm1.evt.update_sci(ar);
break;
case 2:
acpi_pm1_evt_write_en(ar, val);
ar->pm1.evt.update_sci(ar);
break;
}
}
static const MemoryRegionOps acpi_pm_evt_ops = {
.read = acpi_pm_evt_read,
.write = acpi_pm_evt_write,
.valid.min_access_size = 2,
.valid.max_access_size = 2,
.endianness = DEVICE_LITTLE_ENDIAN,
};
void acpi_pm1_evt_init(ACPIREGS *ar, acpi_update_sci_fn update_sci,
MemoryRegion *parent)
{
ar->pm1.evt.update_sci = update_sci;
memory_region_init_io(&ar->pm1.evt.io, &acpi_pm_evt_ops, ar, "acpi-evt", 4);
memory_region_add_subregion(parent, 0, &ar->pm1.evt.io);
}
/* ACPI PM_TMR */
void acpi_pm_tmr_update(ACPIREGS *ar, bool enable)
{
int64_t expire_time;
/* schedule a timer interruption if needed */
if (enable) {
expire_time = muldiv64(ar->tmr.overflow_time, get_ticks_per_sec(),
PM_TIMER_FREQUENCY);
qemu_mod_timer(ar->tmr.timer, expire_time);
} else {
qemu_del_timer(ar->tmr.timer);
}
}
void acpi_pm_tmr_calc_overflow_time(ACPIREGS *ar)
{
int64_t d = acpi_pm_tmr_get_clock();
ar->tmr.overflow_time = (d + 0x800000LL) & ~0x7fffffLL;
}
static uint32_t acpi_pm_tmr_get(ACPIREGS *ar)
{
uint32_t d = acpi_pm_tmr_get_clock();
return d & 0xffffff;
}
static void acpi_pm_tmr_timer(void *opaque)
{
ACPIREGS *ar = opaque;
qemu_system_wakeup_request(QEMU_WAKEUP_REASON_PMTIMER);
ar->tmr.update_sci(ar);
}
static uint64_t acpi_pm_tmr_read(void *opaque, hwaddr addr, unsigned width)
{
return acpi_pm_tmr_get(opaque);
}
static const MemoryRegionOps acpi_pm_tmr_ops = {
.read = acpi_pm_tmr_read,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
void acpi_pm_tmr_init(ACPIREGS *ar, acpi_update_sci_fn update_sci,
MemoryRegion *parent)
{
ar->tmr.update_sci = update_sci;
ar->tmr.timer = qemu_new_timer_ns(vm_clock, acpi_pm_tmr_timer, ar);
memory_region_init_io(&ar->tmr.io, &acpi_pm_tmr_ops, ar, "acpi-tmr", 4);
memory_region_add_subregion(parent, 8, &ar->tmr.io);
}
void acpi_pm_tmr_reset(ACPIREGS *ar)
{
ar->tmr.overflow_time = 0;
qemu_del_timer(ar->tmr.timer);
}
/* ACPI PM1aCNT */
static void acpi_pm1_cnt_write(ACPIREGS *ar, uint16_t val)
{
ar->pm1.cnt.cnt = val & ~(ACPI_BITMASK_SLEEP_ENABLE);
if (val & ACPI_BITMASK_SLEEP_ENABLE) {
/* change suspend type */
uint16_t sus_typ = (val >> 10) & 7;
switch(sus_typ) {
case 0: /* soft power off */
qemu_system_shutdown_request();
break;
case 1:
qemu_system_suspend_request();
break;
default:
if (sus_typ == ar->pm1.cnt.s4_val) { /* S4 request */
monitor_protocol_event(QEVENT_SUSPEND_DISK, NULL);
qemu_system_shutdown_request();
}
break;
}
}
}
void acpi_pm1_cnt_update(ACPIREGS *ar,
bool sci_enable, bool sci_disable)
{
/* ACPI specs 3.0, 4.7.2.5 */
if (sci_enable) {
ar->pm1.cnt.cnt |= ACPI_BITMASK_SCI_ENABLE;
} else if (sci_disable) {
ar->pm1.cnt.cnt &= ~ACPI_BITMASK_SCI_ENABLE;
}
}
static uint64_t acpi_pm_cnt_read(void *opaque, hwaddr addr, unsigned width)
{
ACPIREGS *ar = opaque;
return ar->pm1.cnt.cnt;
}
static void acpi_pm_cnt_write(void *opaque, hwaddr addr, uint64_t val,
unsigned width)
{
acpi_pm1_cnt_write(opaque, val);
}
static const MemoryRegionOps acpi_pm_cnt_ops = {
.read = acpi_pm_cnt_read,
.write = acpi_pm_cnt_write,
.valid.min_access_size = 2,
.valid.max_access_size = 2,
.endianness = DEVICE_LITTLE_ENDIAN,
};
void acpi_pm1_cnt_init(ACPIREGS *ar, MemoryRegion *parent)
{
ar->wakeup.notify = acpi_notify_wakeup;
qemu_register_wakeup_notifier(&ar->wakeup);
memory_region_init_io(&ar->pm1.cnt.io, &acpi_pm_cnt_ops, ar, "acpi-cnt", 2);
memory_region_add_subregion(parent, 4, &ar->pm1.cnt.io);
}
void acpi_pm1_cnt_reset(ACPIREGS *ar)
{
ar->pm1.cnt.cnt = 0;
}
/* ACPI GPE */
void acpi_gpe_init(ACPIREGS *ar, uint8_t len)
{
ar->gpe.len = len;
ar->gpe.sts = g_malloc0(len / 2);
ar->gpe.en = g_malloc0(len / 2);
}
void acpi_gpe_reset(ACPIREGS *ar)
{
memset(ar->gpe.sts, 0, ar->gpe.len / 2);
memset(ar->gpe.en, 0, ar->gpe.len / 2);
}
static uint8_t *acpi_gpe_ioport_get_ptr(ACPIREGS *ar, uint32_t addr)
{
uint8_t *cur = NULL;
if (addr < ar->gpe.len / 2) {
cur = ar->gpe.sts + addr;
} else if (addr < ar->gpe.len) {
cur = ar->gpe.en + addr - ar->gpe.len / 2;
} else {
abort();
}
return cur;
}
void acpi_gpe_ioport_writeb(ACPIREGS *ar, uint32_t addr, uint32_t val)
{
uint8_t *cur;
cur = acpi_gpe_ioport_get_ptr(ar, addr);
if (addr < ar->gpe.len / 2) {
/* GPE_STS */
*cur = (*cur) & ~val;
} else if (addr < ar->gpe.len) {
/* GPE_EN */
*cur = val;
} else {
abort();
}
}
uint32_t acpi_gpe_ioport_readb(ACPIREGS *ar, uint32_t addr)
{
uint8_t *cur;
uint32_t val;
cur = acpi_gpe_ioport_get_ptr(ar, addr);
val = 0;
if (cur != NULL) {
val = *cur;
}
return val;
}