mirror of https://gitee.com/openkylin/qemu.git
1452 lines
32 KiB
C
1452 lines
32 KiB
C
/*
|
|
* Alpha emulation cpu micro-operations helpers for qemu.
|
|
*
|
|
* Copyright (c) 2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "exec.h"
|
|
#include "host-utils.h"
|
|
#include "softfloat.h"
|
|
#include "helper.h"
|
|
|
|
/*****************************************************************************/
|
|
/* Exceptions processing helpers */
|
|
void QEMU_NORETURN helper_excp (int excp, int error)
|
|
{
|
|
env->exception_index = excp;
|
|
env->error_code = error;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
uint64_t helper_load_pcc (void)
|
|
{
|
|
/* XXX: TODO */
|
|
return 0;
|
|
}
|
|
|
|
uint64_t helper_load_fpcr (void)
|
|
{
|
|
return cpu_alpha_load_fpcr (env);
|
|
}
|
|
|
|
void helper_store_fpcr (uint64_t val)
|
|
{
|
|
cpu_alpha_store_fpcr (env, val);
|
|
}
|
|
|
|
static spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
|
|
|
|
uint64_t helper_rs(void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
spin_lock(&intr_cpu_lock);
|
|
tmp = env->intr_flag;
|
|
env->intr_flag = 1;
|
|
spin_unlock(&intr_cpu_lock);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
uint64_t helper_rc(void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
spin_lock(&intr_cpu_lock);
|
|
tmp = env->intr_flag;
|
|
env->intr_flag = 0;
|
|
spin_unlock(&intr_cpu_lock);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
uint64_t helper_addqv (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t tmp = op1;
|
|
op1 += op2;
|
|
if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
|
|
helper_excp(EXCP_ARITH, EXC_M_IOV);
|
|
}
|
|
return op1;
|
|
}
|
|
|
|
uint64_t helper_addlv (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t tmp = op1;
|
|
op1 = (uint32_t)(op1 + op2);
|
|
if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
|
|
helper_excp(EXCP_ARITH, EXC_M_IOV);
|
|
}
|
|
return op1;
|
|
}
|
|
|
|
uint64_t helper_subqv (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res;
|
|
res = op1 - op2;
|
|
if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
|
|
helper_excp(EXCP_ARITH, EXC_M_IOV);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_sublv (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint32_t res;
|
|
res = op1 - op2;
|
|
if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
|
|
helper_excp(EXCP_ARITH, EXC_M_IOV);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_mullv (uint64_t op1, uint64_t op2)
|
|
{
|
|
int64_t res = (int64_t)op1 * (int64_t)op2;
|
|
|
|
if (unlikely((int32_t)res != res)) {
|
|
helper_excp(EXCP_ARITH, EXC_M_IOV);
|
|
}
|
|
return (int64_t)((int32_t)res);
|
|
}
|
|
|
|
uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t tl, th;
|
|
|
|
muls64(&tl, &th, op1, op2);
|
|
/* If th != 0 && th != -1, then we had an overflow */
|
|
if (unlikely((th + 1) > 1)) {
|
|
helper_excp(EXCP_ARITH, EXC_M_IOV);
|
|
}
|
|
return tl;
|
|
}
|
|
|
|
uint64_t helper_umulh (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t tl, th;
|
|
|
|
mulu64(&tl, &th, op1, op2);
|
|
return th;
|
|
}
|
|
|
|
uint64_t helper_ctpop (uint64_t arg)
|
|
{
|
|
return ctpop64(arg);
|
|
}
|
|
|
|
uint64_t helper_ctlz (uint64_t arg)
|
|
{
|
|
return clz64(arg);
|
|
}
|
|
|
|
uint64_t helper_cttz (uint64_t arg)
|
|
{
|
|
return ctz64(arg);
|
|
}
|
|
|
|
static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
|
|
{
|
|
uint64_t mask;
|
|
|
|
mask = 0;
|
|
mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
|
|
mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
|
|
mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
|
|
mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
|
|
mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
|
|
mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
|
|
mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
|
|
mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
|
|
|
|
return op & ~mask;
|
|
}
|
|
|
|
uint64_t helper_zap(uint64_t val, uint64_t mask)
|
|
{
|
|
return byte_zap(val, mask);
|
|
}
|
|
|
|
uint64_t helper_zapnot(uint64_t val, uint64_t mask)
|
|
{
|
|
return byte_zap(val, ~mask);
|
|
}
|
|
|
|
uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint8_t opa, opb, res;
|
|
int i;
|
|
|
|
res = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
opa = op1 >> (i * 8);
|
|
opb = op2 >> (i * 8);
|
|
if (opa >= opb)
|
|
res |= 1 << i;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_minub8 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
uint8_t opa, opb, opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
opa = op1 >> (i * 8);
|
|
opb = op2 >> (i * 8);
|
|
opr = opa < opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 8);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_minsb8 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
int8_t opa, opb;
|
|
uint8_t opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
opa = op1 >> (i * 8);
|
|
opb = op2 >> (i * 8);
|
|
opr = opa < opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 8);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_minuw4 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
uint16_t opa, opb, opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
opa = op1 >> (i * 16);
|
|
opb = op2 >> (i * 16);
|
|
opr = opa < opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 16);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_minsw4 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
int16_t opa, opb;
|
|
uint16_t opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
opa = op1 >> (i * 16);
|
|
opb = op2 >> (i * 16);
|
|
opr = opa < opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 16);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_maxub8 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
uint8_t opa, opb, opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
opa = op1 >> (i * 8);
|
|
opb = op2 >> (i * 8);
|
|
opr = opa > opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 8);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
int8_t opa, opb;
|
|
uint8_t opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
opa = op1 >> (i * 8);
|
|
opb = op2 >> (i * 8);
|
|
opr = opa > opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 8);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
uint16_t opa, opb, opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
opa = op1 >> (i * 16);
|
|
opb = op2 >> (i * 16);
|
|
opr = opa > opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 16);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
int16_t opa, opb;
|
|
uint16_t opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
opa = op1 >> (i * 16);
|
|
opb = op2 >> (i * 16);
|
|
opr = opa > opb ? opa : opb;
|
|
res |= (uint64_t)opr << (i * 16);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_perr (uint64_t op1, uint64_t op2)
|
|
{
|
|
uint64_t res = 0;
|
|
uint8_t opa, opb, opr;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
opa = op1 >> (i * 8);
|
|
opb = op2 >> (i * 8);
|
|
if (opa >= opb)
|
|
opr = opa - opb;
|
|
else
|
|
opr = opb - opa;
|
|
res += opr;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t helper_pklb (uint64_t op1)
|
|
{
|
|
return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
|
|
}
|
|
|
|
uint64_t helper_pkwb (uint64_t op1)
|
|
{
|
|
return ((op1 & 0xff)
|
|
| ((op1 >> 8) & 0xff00)
|
|
| ((op1 >> 16) & 0xff0000)
|
|
| ((op1 >> 24) & 0xff000000));
|
|
}
|
|
|
|
uint64_t helper_unpkbl (uint64_t op1)
|
|
{
|
|
return (op1 & 0xff) | ((op1 & 0xff00) << 24);
|
|
}
|
|
|
|
uint64_t helper_unpkbw (uint64_t op1)
|
|
{
|
|
return ((op1 & 0xff)
|
|
| ((op1 & 0xff00) << 8)
|
|
| ((op1 & 0xff0000) << 16)
|
|
| ((op1 & 0xff000000) << 24));
|
|
}
|
|
|
|
/* Floating point helpers */
|
|
|
|
void helper_setroundmode (uint32_t val)
|
|
{
|
|
set_float_rounding_mode(val, &FP_STATUS);
|
|
}
|
|
|
|
void helper_setflushzero (uint32_t val)
|
|
{
|
|
set_flush_to_zero(val, &FP_STATUS);
|
|
}
|
|
|
|
void helper_fp_exc_clear (void)
|
|
{
|
|
set_float_exception_flags(0, &FP_STATUS);
|
|
}
|
|
|
|
uint32_t helper_fp_exc_get (void)
|
|
{
|
|
return get_float_exception_flags(&FP_STATUS);
|
|
}
|
|
|
|
/* Raise exceptions for ieee fp insns without software completion.
|
|
In that case there are no exceptions that don't trap; the mask
|
|
doesn't apply. */
|
|
void helper_fp_exc_raise(uint32_t exc, uint32_t regno)
|
|
{
|
|
if (exc) {
|
|
uint32_t hw_exc = 0;
|
|
|
|
env->ipr[IPR_EXC_MASK] |= 1ull << regno;
|
|
|
|
if (exc & float_flag_invalid) {
|
|
hw_exc |= EXC_M_INV;
|
|
}
|
|
if (exc & float_flag_divbyzero) {
|
|
hw_exc |= EXC_M_DZE;
|
|
}
|
|
if (exc & float_flag_overflow) {
|
|
hw_exc |= EXC_M_FOV;
|
|
}
|
|
if (exc & float_flag_underflow) {
|
|
hw_exc |= EXC_M_UNF;
|
|
}
|
|
if (exc & float_flag_inexact) {
|
|
hw_exc |= EXC_M_INE;
|
|
}
|
|
helper_excp(EXCP_ARITH, hw_exc);
|
|
}
|
|
}
|
|
|
|
/* Raise exceptions for ieee fp insns with software completion. */
|
|
void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno)
|
|
{
|
|
if (exc) {
|
|
env->fpcr_exc_status |= exc;
|
|
|
|
exc &= ~env->fpcr_exc_mask;
|
|
if (exc) {
|
|
helper_fp_exc_raise(exc, regno);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Input remapping without software completion. Handle denormal-map-to-zero
|
|
and trap for all other non-finite numbers. */
|
|
uint64_t helper_ieee_input(uint64_t val)
|
|
{
|
|
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
|
uint64_t frac = val & 0xfffffffffffffull;
|
|
|
|
if (exp == 0) {
|
|
if (frac != 0) {
|
|
/* If DNZ is set flush denormals to zero on input. */
|
|
if (env->fpcr_dnz) {
|
|
val &= 1ull << 63;
|
|
} else {
|
|
helper_excp(EXCP_ARITH, EXC_M_UNF);
|
|
}
|
|
}
|
|
} else if (exp == 0x7ff) {
|
|
/* Infinity or NaN. */
|
|
/* ??? I'm not sure these exception bit flags are correct. I do
|
|
know that the Linux kernel, at least, doesn't rely on them and
|
|
just emulates the insn to figure out what exception to use. */
|
|
helper_excp(EXCP_ARITH, frac ? EXC_M_INV : EXC_M_FOV);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Similar, but does not trap for infinities. Used for comparisons. */
|
|
uint64_t helper_ieee_input_cmp(uint64_t val)
|
|
{
|
|
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
|
uint64_t frac = val & 0xfffffffffffffull;
|
|
|
|
if (exp == 0) {
|
|
if (frac != 0) {
|
|
/* If DNZ is set flush denormals to zero on input. */
|
|
if (env->fpcr_dnz) {
|
|
val &= 1ull << 63;
|
|
} else {
|
|
helper_excp(EXCP_ARITH, EXC_M_UNF);
|
|
}
|
|
}
|
|
} else if (exp == 0x7ff && frac) {
|
|
/* NaN. */
|
|
helper_excp(EXCP_ARITH, EXC_M_INV);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* Input remapping with software completion enabled. All we have to do
|
|
is handle denormal-map-to-zero; all other inputs get exceptions as
|
|
needed from the actual operation. */
|
|
uint64_t helper_ieee_input_s(uint64_t val)
|
|
{
|
|
if (env->fpcr_dnz) {
|
|
uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
|
|
if (exp == 0) {
|
|
val &= 1ull << 63;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/* F floating (VAX) */
|
|
static inline uint64_t float32_to_f(float32 fa)
|
|
{
|
|
uint64_t r, exp, mant, sig;
|
|
CPU_FloatU a;
|
|
|
|
a.f = fa;
|
|
sig = ((uint64_t)a.l & 0x80000000) << 32;
|
|
exp = (a.l >> 23) & 0xff;
|
|
mant = ((uint64_t)a.l & 0x007fffff) << 29;
|
|
|
|
if (exp == 255) {
|
|
/* NaN or infinity */
|
|
r = 1; /* VAX dirty zero */
|
|
} else if (exp == 0) {
|
|
if (mant == 0) {
|
|
/* Zero */
|
|
r = 0;
|
|
} else {
|
|
/* Denormalized */
|
|
r = sig | ((exp + 1) << 52) | mant;
|
|
}
|
|
} else {
|
|
if (exp >= 253) {
|
|
/* Overflow */
|
|
r = 1; /* VAX dirty zero */
|
|
} else {
|
|
r = sig | ((exp + 2) << 52);
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline float32 f_to_float32(uint64_t a)
|
|
{
|
|
uint32_t exp, mant_sig;
|
|
CPU_FloatU r;
|
|
|
|
exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
|
|
mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
|
|
|
|
if (unlikely(!exp && mant_sig)) {
|
|
/* Reserved operands / Dirty zero */
|
|
helper_excp(EXCP_OPCDEC, 0);
|
|
}
|
|
|
|
if (exp < 3) {
|
|
/* Underflow */
|
|
r.l = 0;
|
|
} else {
|
|
r.l = ((exp - 2) << 23) | mant_sig;
|
|
}
|
|
|
|
return r.f;
|
|
}
|
|
|
|
uint32_t helper_f_to_memory (uint64_t a)
|
|
{
|
|
uint32_t r;
|
|
r = (a & 0x00001fffe0000000ull) >> 13;
|
|
r |= (a & 0x07ffe00000000000ull) >> 45;
|
|
r |= (a & 0xc000000000000000ull) >> 48;
|
|
return r;
|
|
}
|
|
|
|
uint64_t helper_memory_to_f (uint32_t a)
|
|
{
|
|
uint64_t r;
|
|
r = ((uint64_t)(a & 0x0000c000)) << 48;
|
|
r |= ((uint64_t)(a & 0x003fffff)) << 45;
|
|
r |= ((uint64_t)(a & 0xffff0000)) << 13;
|
|
if (!(a & 0x00004000))
|
|
r |= 0x7ll << 59;
|
|
return r;
|
|
}
|
|
|
|
/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should
|
|
either implement VAX arithmetic properly or just signal invalid opcode. */
|
|
|
|
uint64_t helper_addf (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = f_to_float32(a);
|
|
fb = f_to_float32(b);
|
|
fr = float32_add(fa, fb, &FP_STATUS);
|
|
return float32_to_f(fr);
|
|
}
|
|
|
|
uint64_t helper_subf (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = f_to_float32(a);
|
|
fb = f_to_float32(b);
|
|
fr = float32_sub(fa, fb, &FP_STATUS);
|
|
return float32_to_f(fr);
|
|
}
|
|
|
|
uint64_t helper_mulf (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = f_to_float32(a);
|
|
fb = f_to_float32(b);
|
|
fr = float32_mul(fa, fb, &FP_STATUS);
|
|
return float32_to_f(fr);
|
|
}
|
|
|
|
uint64_t helper_divf (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = f_to_float32(a);
|
|
fb = f_to_float32(b);
|
|
fr = float32_div(fa, fb, &FP_STATUS);
|
|
return float32_to_f(fr);
|
|
}
|
|
|
|
uint64_t helper_sqrtf (uint64_t t)
|
|
{
|
|
float32 ft, fr;
|
|
|
|
ft = f_to_float32(t);
|
|
fr = float32_sqrt(ft, &FP_STATUS);
|
|
return float32_to_f(fr);
|
|
}
|
|
|
|
|
|
/* G floating (VAX) */
|
|
static inline uint64_t float64_to_g(float64 fa)
|
|
{
|
|
uint64_t r, exp, mant, sig;
|
|
CPU_DoubleU a;
|
|
|
|
a.d = fa;
|
|
sig = a.ll & 0x8000000000000000ull;
|
|
exp = (a.ll >> 52) & 0x7ff;
|
|
mant = a.ll & 0x000fffffffffffffull;
|
|
|
|
if (exp == 2047) {
|
|
/* NaN or infinity */
|
|
r = 1; /* VAX dirty zero */
|
|
} else if (exp == 0) {
|
|
if (mant == 0) {
|
|
/* Zero */
|
|
r = 0;
|
|
} else {
|
|
/* Denormalized */
|
|
r = sig | ((exp + 1) << 52) | mant;
|
|
}
|
|
} else {
|
|
if (exp >= 2045) {
|
|
/* Overflow */
|
|
r = 1; /* VAX dirty zero */
|
|
} else {
|
|
r = sig | ((exp + 2) << 52);
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline float64 g_to_float64(uint64_t a)
|
|
{
|
|
uint64_t exp, mant_sig;
|
|
CPU_DoubleU r;
|
|
|
|
exp = (a >> 52) & 0x7ff;
|
|
mant_sig = a & 0x800fffffffffffffull;
|
|
|
|
if (!exp && mant_sig) {
|
|
/* Reserved operands / Dirty zero */
|
|
helper_excp(EXCP_OPCDEC, 0);
|
|
}
|
|
|
|
if (exp < 3) {
|
|
/* Underflow */
|
|
r.ll = 0;
|
|
} else {
|
|
r.ll = ((exp - 2) << 52) | mant_sig;
|
|
}
|
|
|
|
return r.d;
|
|
}
|
|
|
|
uint64_t helper_g_to_memory (uint64_t a)
|
|
{
|
|
uint64_t r;
|
|
r = (a & 0x000000000000ffffull) << 48;
|
|
r |= (a & 0x00000000ffff0000ull) << 16;
|
|
r |= (a & 0x0000ffff00000000ull) >> 16;
|
|
r |= (a & 0xffff000000000000ull) >> 48;
|
|
return r;
|
|
}
|
|
|
|
uint64_t helper_memory_to_g (uint64_t a)
|
|
{
|
|
uint64_t r;
|
|
r = (a & 0x000000000000ffffull) << 48;
|
|
r |= (a & 0x00000000ffff0000ull) << 16;
|
|
r |= (a & 0x0000ffff00000000ull) >> 16;
|
|
r |= (a & 0xffff000000000000ull) >> 48;
|
|
return r;
|
|
}
|
|
|
|
uint64_t helper_addg (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = g_to_float64(a);
|
|
fb = g_to_float64(b);
|
|
fr = float64_add(fa, fb, &FP_STATUS);
|
|
return float64_to_g(fr);
|
|
}
|
|
|
|
uint64_t helper_subg (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = g_to_float64(a);
|
|
fb = g_to_float64(b);
|
|
fr = float64_sub(fa, fb, &FP_STATUS);
|
|
return float64_to_g(fr);
|
|
}
|
|
|
|
uint64_t helper_mulg (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = g_to_float64(a);
|
|
fb = g_to_float64(b);
|
|
fr = float64_mul(fa, fb, &FP_STATUS);
|
|
return float64_to_g(fr);
|
|
}
|
|
|
|
uint64_t helper_divg (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = g_to_float64(a);
|
|
fb = g_to_float64(b);
|
|
fr = float64_div(fa, fb, &FP_STATUS);
|
|
return float64_to_g(fr);
|
|
}
|
|
|
|
uint64_t helper_sqrtg (uint64_t a)
|
|
{
|
|
float64 fa, fr;
|
|
|
|
fa = g_to_float64(a);
|
|
fr = float64_sqrt(fa, &FP_STATUS);
|
|
return float64_to_g(fr);
|
|
}
|
|
|
|
|
|
/* S floating (single) */
|
|
|
|
/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
|
|
static inline uint64_t float32_to_s_int(uint32_t fi)
|
|
{
|
|
uint32_t frac = fi & 0x7fffff;
|
|
uint32_t sign = fi >> 31;
|
|
uint32_t exp_msb = (fi >> 30) & 1;
|
|
uint32_t exp_low = (fi >> 23) & 0x7f;
|
|
uint32_t exp;
|
|
|
|
exp = (exp_msb << 10) | exp_low;
|
|
if (exp_msb) {
|
|
if (exp_low == 0x7f)
|
|
exp = 0x7ff;
|
|
} else {
|
|
if (exp_low != 0x00)
|
|
exp |= 0x380;
|
|
}
|
|
|
|
return (((uint64_t)sign << 63)
|
|
| ((uint64_t)exp << 52)
|
|
| ((uint64_t)frac << 29));
|
|
}
|
|
|
|
static inline uint64_t float32_to_s(float32 fa)
|
|
{
|
|
CPU_FloatU a;
|
|
a.f = fa;
|
|
return float32_to_s_int(a.l);
|
|
}
|
|
|
|
static inline uint32_t s_to_float32_int(uint64_t a)
|
|
{
|
|
return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
|
|
}
|
|
|
|
static inline float32 s_to_float32(uint64_t a)
|
|
{
|
|
CPU_FloatU r;
|
|
r.l = s_to_float32_int(a);
|
|
return r.f;
|
|
}
|
|
|
|
uint32_t helper_s_to_memory (uint64_t a)
|
|
{
|
|
return s_to_float32_int(a);
|
|
}
|
|
|
|
uint64_t helper_memory_to_s (uint32_t a)
|
|
{
|
|
return float32_to_s_int(a);
|
|
}
|
|
|
|
uint64_t helper_adds (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = s_to_float32(a);
|
|
fb = s_to_float32(b);
|
|
fr = float32_add(fa, fb, &FP_STATUS);
|
|
return float32_to_s(fr);
|
|
}
|
|
|
|
uint64_t helper_subs (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = s_to_float32(a);
|
|
fb = s_to_float32(b);
|
|
fr = float32_sub(fa, fb, &FP_STATUS);
|
|
return float32_to_s(fr);
|
|
}
|
|
|
|
uint64_t helper_muls (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = s_to_float32(a);
|
|
fb = s_to_float32(b);
|
|
fr = float32_mul(fa, fb, &FP_STATUS);
|
|
return float32_to_s(fr);
|
|
}
|
|
|
|
uint64_t helper_divs (uint64_t a, uint64_t b)
|
|
{
|
|
float32 fa, fb, fr;
|
|
|
|
fa = s_to_float32(a);
|
|
fb = s_to_float32(b);
|
|
fr = float32_div(fa, fb, &FP_STATUS);
|
|
return float32_to_s(fr);
|
|
}
|
|
|
|
uint64_t helper_sqrts (uint64_t a)
|
|
{
|
|
float32 fa, fr;
|
|
|
|
fa = s_to_float32(a);
|
|
fr = float32_sqrt(fa, &FP_STATUS);
|
|
return float32_to_s(fr);
|
|
}
|
|
|
|
|
|
/* T floating (double) */
|
|
static inline float64 t_to_float64(uint64_t a)
|
|
{
|
|
/* Memory format is the same as float64 */
|
|
CPU_DoubleU r;
|
|
r.ll = a;
|
|
return r.d;
|
|
}
|
|
|
|
static inline uint64_t float64_to_t(float64 fa)
|
|
{
|
|
/* Memory format is the same as float64 */
|
|
CPU_DoubleU r;
|
|
r.d = fa;
|
|
return r.ll;
|
|
}
|
|
|
|
uint64_t helper_addt (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
fr = float64_add(fa, fb, &FP_STATUS);
|
|
return float64_to_t(fr);
|
|
}
|
|
|
|
uint64_t helper_subt (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
fr = float64_sub(fa, fb, &FP_STATUS);
|
|
return float64_to_t(fr);
|
|
}
|
|
|
|
uint64_t helper_mult (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
fr = float64_mul(fa, fb, &FP_STATUS);
|
|
return float64_to_t(fr);
|
|
}
|
|
|
|
uint64_t helper_divt (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb, fr;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
fr = float64_div(fa, fb, &FP_STATUS);
|
|
return float64_to_t(fr);
|
|
}
|
|
|
|
uint64_t helper_sqrtt (uint64_t a)
|
|
{
|
|
float64 fa, fr;
|
|
|
|
fa = t_to_float64(a);
|
|
fr = float64_sqrt(fa, &FP_STATUS);
|
|
return float64_to_t(fr);
|
|
}
|
|
|
|
|
|
/* Sign copy */
|
|
uint64_t helper_cpys(uint64_t a, uint64_t b)
|
|
{
|
|
return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
|
|
}
|
|
|
|
uint64_t helper_cpysn(uint64_t a, uint64_t b)
|
|
{
|
|
return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
|
|
}
|
|
|
|
uint64_t helper_cpyse(uint64_t a, uint64_t b)
|
|
{
|
|
return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
|
|
}
|
|
|
|
|
|
/* Comparisons */
|
|
uint64_t helper_cmptun (uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
|
|
if (float64_is_nan(fa) || float64_is_nan(fb))
|
|
return 0x4000000000000000ULL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
uint64_t helper_cmpteq(uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
|
|
if (float64_eq(fa, fb, &FP_STATUS))
|
|
return 0x4000000000000000ULL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
uint64_t helper_cmptle(uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
|
|
if (float64_le(fa, fb, &FP_STATUS))
|
|
return 0x4000000000000000ULL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
uint64_t helper_cmptlt(uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb;
|
|
|
|
fa = t_to_float64(a);
|
|
fb = t_to_float64(b);
|
|
|
|
if (float64_lt(fa, fb, &FP_STATUS))
|
|
return 0x4000000000000000ULL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb;
|
|
|
|
fa = g_to_float64(a);
|
|
fb = g_to_float64(b);
|
|
|
|
if (float64_eq(fa, fb, &FP_STATUS))
|
|
return 0x4000000000000000ULL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
uint64_t helper_cmpgle(uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb;
|
|
|
|
fa = g_to_float64(a);
|
|
fb = g_to_float64(b);
|
|
|
|
if (float64_le(fa, fb, &FP_STATUS))
|
|
return 0x4000000000000000ULL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
uint64_t helper_cmpglt(uint64_t a, uint64_t b)
|
|
{
|
|
float64 fa, fb;
|
|
|
|
fa = g_to_float64(a);
|
|
fb = g_to_float64(b);
|
|
|
|
if (float64_lt(fa, fb, &FP_STATUS))
|
|
return 0x4000000000000000ULL;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* Floating point format conversion */
|
|
uint64_t helper_cvtts (uint64_t a)
|
|
{
|
|
float64 fa;
|
|
float32 fr;
|
|
|
|
fa = t_to_float64(a);
|
|
fr = float64_to_float32(fa, &FP_STATUS);
|
|
return float32_to_s(fr);
|
|
}
|
|
|
|
uint64_t helper_cvtst (uint64_t a)
|
|
{
|
|
float32 fa;
|
|
float64 fr;
|
|
|
|
fa = s_to_float32(a);
|
|
fr = float32_to_float64(fa, &FP_STATUS);
|
|
return float64_to_t(fr);
|
|
}
|
|
|
|
uint64_t helper_cvtqs (uint64_t a)
|
|
{
|
|
float32 fr = int64_to_float32(a, &FP_STATUS);
|
|
return float32_to_s(fr);
|
|
}
|
|
|
|
/* Implement float64 to uint64 conversion without saturation -- we must
|
|
supply the truncated result. This behaviour is used by the compiler
|
|
to get unsigned conversion for free with the same instruction.
|
|
|
|
The VI flag is set when overflow or inexact exceptions should be raised. */
|
|
|
|
static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI)
|
|
{
|
|
uint64_t frac, ret = 0;
|
|
uint32_t exp, sign, exc = 0;
|
|
int shift;
|
|
|
|
sign = (a >> 63);
|
|
exp = (uint32_t)(a >> 52) & 0x7ff;
|
|
frac = a & 0xfffffffffffffull;
|
|
|
|
if (exp == 0) {
|
|
if (unlikely(frac != 0)) {
|
|
goto do_underflow;
|
|
}
|
|
} else if (exp == 0x7ff) {
|
|
exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
|
|
} else {
|
|
/* Restore implicit bit. */
|
|
frac |= 0x10000000000000ull;
|
|
|
|
shift = exp - 1023 - 52;
|
|
if (shift >= 0) {
|
|
/* In this case the number is so large that we must shift
|
|
the fraction left. There is no rounding to do. */
|
|
if (shift < 63) {
|
|
ret = frac << shift;
|
|
if (VI && (ret >> shift) != frac) {
|
|
exc = float_flag_overflow;
|
|
}
|
|
}
|
|
} else {
|
|
uint64_t round;
|
|
|
|
/* In this case the number is smaller than the fraction as
|
|
represented by the 52 bit number. Here we must think
|
|
about rounding the result. Handle this by shifting the
|
|
fractional part of the number into the high bits of ROUND.
|
|
This will let us efficiently handle round-to-nearest. */
|
|
shift = -shift;
|
|
if (shift < 63) {
|
|
ret = frac >> shift;
|
|
round = frac << (64 - shift);
|
|
} else {
|
|
/* The exponent is so small we shift out everything.
|
|
Leave a sticky bit for proper rounding below. */
|
|
do_underflow:
|
|
round = 1;
|
|
}
|
|
|
|
if (round) {
|
|
exc = (VI ? float_flag_inexact : 0);
|
|
switch (roundmode) {
|
|
case float_round_nearest_even:
|
|
if (round == (1ull << 63)) {
|
|
/* Fraction is exactly 0.5; round to even. */
|
|
ret += (ret & 1);
|
|
} else if (round > (1ull << 63)) {
|
|
ret += 1;
|
|
}
|
|
break;
|
|
case float_round_to_zero:
|
|
break;
|
|
case float_round_up:
|
|
ret += 1 - sign;
|
|
break;
|
|
case float_round_down:
|
|
ret += sign;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (sign) {
|
|
ret = -ret;
|
|
}
|
|
}
|
|
if (unlikely(exc)) {
|
|
float_raise(exc, &FP_STATUS);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t helper_cvttq(uint64_t a)
|
|
{
|
|
return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1);
|
|
}
|
|
|
|
uint64_t helper_cvttq_c(uint64_t a)
|
|
{
|
|
return helper_cvttq_internal(a, float_round_to_zero, 0);
|
|
}
|
|
|
|
uint64_t helper_cvttq_svic(uint64_t a)
|
|
{
|
|
return helper_cvttq_internal(a, float_round_to_zero, 1);
|
|
}
|
|
|
|
uint64_t helper_cvtqt (uint64_t a)
|
|
{
|
|
float64 fr = int64_to_float64(a, &FP_STATUS);
|
|
return float64_to_t(fr);
|
|
}
|
|
|
|
uint64_t helper_cvtqf (uint64_t a)
|
|
{
|
|
float32 fr = int64_to_float32(a, &FP_STATUS);
|
|
return float32_to_f(fr);
|
|
}
|
|
|
|
uint64_t helper_cvtgf (uint64_t a)
|
|
{
|
|
float64 fa;
|
|
float32 fr;
|
|
|
|
fa = g_to_float64(a);
|
|
fr = float64_to_float32(fa, &FP_STATUS);
|
|
return float32_to_f(fr);
|
|
}
|
|
|
|
uint64_t helper_cvtgq (uint64_t a)
|
|
{
|
|
float64 fa = g_to_float64(a);
|
|
return float64_to_int64_round_to_zero(fa, &FP_STATUS);
|
|
}
|
|
|
|
uint64_t helper_cvtqg (uint64_t a)
|
|
{
|
|
float64 fr;
|
|
fr = int64_to_float64(a, &FP_STATUS);
|
|
return float64_to_g(fr);
|
|
}
|
|
|
|
uint64_t helper_cvtlq (uint64_t a)
|
|
{
|
|
int32_t lo = a >> 29;
|
|
int32_t hi = a >> 32;
|
|
return (lo & 0x3FFFFFFF) | (hi & 0xc0000000);
|
|
}
|
|
|
|
uint64_t helper_cvtql (uint64_t a)
|
|
{
|
|
return ((a & 0xC0000000) << 32) | ((a & 0x7FFFFFFF) << 29);
|
|
}
|
|
|
|
uint64_t helper_cvtql_v (uint64_t a)
|
|
{
|
|
if ((int32_t)a != (int64_t)a)
|
|
helper_excp(EXCP_ARITH, EXC_M_IOV);
|
|
return helper_cvtql(a);
|
|
}
|
|
|
|
uint64_t helper_cvtql_sv (uint64_t a)
|
|
{
|
|
/* ??? I'm pretty sure there's nothing that /sv needs to do that /v
|
|
doesn't do. The only thing I can think is that /sv is a valid
|
|
instruction merely for completeness in the ISA. */
|
|
return helper_cvtql_v(a);
|
|
}
|
|
|
|
/* PALcode support special instructions */
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
void helper_hw_rei (void)
|
|
{
|
|
env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
|
|
env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
|
|
/* XXX: re-enable interrupts and memory mapping */
|
|
}
|
|
|
|
void helper_hw_ret (uint64_t a)
|
|
{
|
|
env->pc = a & ~3;
|
|
env->ipr[IPR_EXC_ADDR] = a & 1;
|
|
/* XXX: re-enable interrupts and memory mapping */
|
|
}
|
|
|
|
uint64_t helper_mfpr (int iprn, uint64_t val)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
|
|
val = tmp;
|
|
|
|
return val;
|
|
}
|
|
|
|
void helper_mtpr (int iprn, uint64_t val)
|
|
{
|
|
cpu_alpha_mtpr(env, iprn, val, NULL);
|
|
}
|
|
|
|
void helper_set_alt_mode (void)
|
|
{
|
|
env->saved_mode = env->ps & 0xC;
|
|
env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
|
|
}
|
|
|
|
void helper_restore_mode (void)
|
|
{
|
|
env->ps = (env->ps & ~0xC) | env->saved_mode;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Softmmu support */
|
|
#if !defined (CONFIG_USER_ONLY)
|
|
|
|
/* XXX: the two following helpers are pure hacks.
|
|
* Hopefully, we emulate the PALcode, then we should never see
|
|
* HW_LD / HW_ST instructions.
|
|
*/
|
|
uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
|
|
{
|
|
uint64_t tlb_addr, physaddr;
|
|
int index, mmu_idx;
|
|
void *retaddr;
|
|
|
|
mmu_idx = cpu_mmu_index(env);
|
|
index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
redo:
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
|
|
if ((virtaddr & TARGET_PAGE_MASK) ==
|
|
(tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
|
|
} else {
|
|
/* the page is not in the TLB : fill it */
|
|
retaddr = GETPC();
|
|
tlb_fill(virtaddr, 0, mmu_idx, retaddr);
|
|
goto redo;
|
|
}
|
|
return physaddr;
|
|
}
|
|
|
|
uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
|
|
{
|
|
uint64_t tlb_addr, physaddr;
|
|
int index, mmu_idx;
|
|
void *retaddr;
|
|
|
|
mmu_idx = cpu_mmu_index(env);
|
|
index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
|
redo:
|
|
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
|
|
if ((virtaddr & TARGET_PAGE_MASK) ==
|
|
(tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
|
physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
|
|
} else {
|
|
/* the page is not in the TLB : fill it */
|
|
retaddr = GETPC();
|
|
tlb_fill(virtaddr, 1, mmu_idx, retaddr);
|
|
goto redo;
|
|
}
|
|
return physaddr;
|
|
}
|
|
|
|
void helper_ldl_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
ldl_raw(t1, t0);
|
|
}
|
|
|
|
void helper_ldq_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
ldq_raw(t1, t0);
|
|
}
|
|
|
|
void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
env->lock = t1;
|
|
ldl_raw(t1, t0);
|
|
}
|
|
|
|
void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
env->lock = t1;
|
|
ldl_raw(t1, t0);
|
|
}
|
|
|
|
void helper_ldl_kernel(uint64_t t0, uint64_t t1)
|
|
{
|
|
ldl_kernel(t1, t0);
|
|
}
|
|
|
|
void helper_ldq_kernel(uint64_t t0, uint64_t t1)
|
|
{
|
|
ldq_kernel(t1, t0);
|
|
}
|
|
|
|
void helper_ldl_data(uint64_t t0, uint64_t t1)
|
|
{
|
|
ldl_data(t1, t0);
|
|
}
|
|
|
|
void helper_ldq_data(uint64_t t0, uint64_t t1)
|
|
{
|
|
ldq_data(t1, t0);
|
|
}
|
|
|
|
void helper_stl_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
stl_raw(t1, t0);
|
|
}
|
|
|
|
void helper_stq_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
stq_raw(t1, t0);
|
|
}
|
|
|
|
uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
uint64_t ret;
|
|
|
|
if (t1 == env->lock) {
|
|
stl_raw(t1, t0);
|
|
ret = 0;
|
|
} else
|
|
ret = 1;
|
|
|
|
env->lock = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
|
|
{
|
|
uint64_t ret;
|
|
|
|
if (t1 == env->lock) {
|
|
stq_raw(t1, t0);
|
|
ret = 0;
|
|
} else
|
|
ret = 1;
|
|
|
|
env->lock = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define MMUSUFFIX _mmu
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
|
|
/* try to fill the TLB and return an exception if error. If retaddr is
|
|
NULL, it means that the function was called in C code (i.e. not
|
|
from generated code or from helper.c) */
|
|
/* XXX: fix it to restore all registers */
|
|
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
|
|
{
|
|
TranslationBlock *tb;
|
|
CPUState *saved_env;
|
|
unsigned long pc;
|
|
int ret;
|
|
|
|
/* XXX: hack to restore env in all cases, even if not called from
|
|
generated code */
|
|
saved_env = env;
|
|
env = cpu_single_env;
|
|
ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
|
|
if (!likely(ret == 0)) {
|
|
if (likely(retaddr)) {
|
|
/* now we have a real cpu fault */
|
|
pc = (unsigned long)retaddr;
|
|
tb = tb_find_pc(pc);
|
|
if (likely(tb)) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, NULL);
|
|
}
|
|
}
|
|
/* Exception index and error code are already set */
|
|
cpu_loop_exit();
|
|
}
|
|
env = saved_env;
|
|
}
|
|
|
|
#endif
|