qemu/hw/block/nand.c

819 lines
24 KiB
C

/*
* Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
* Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
* Samsung Electronic.
*
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* Support for additional features based on "MT29F2G16ABCWP 2Gx16"
* datasheet from Micron Technology and "NAND02G-B2C" datasheet
* from ST Microelectronics.
*
* This code is licensed under the GNU GPL v2.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#ifndef NAND_IO
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/block/flash.h"
#include "sysemu/block-backend.h"
#include "hw/qdev.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
# define NAND_CMD_READ0 0x00
# define NAND_CMD_READ1 0x01
# define NAND_CMD_READ2 0x50
# define NAND_CMD_LPREAD2 0x30
# define NAND_CMD_NOSERIALREAD2 0x35
# define NAND_CMD_RANDOMREAD1 0x05
# define NAND_CMD_RANDOMREAD2 0xe0
# define NAND_CMD_READID 0x90
# define NAND_CMD_RESET 0xff
# define NAND_CMD_PAGEPROGRAM1 0x80
# define NAND_CMD_PAGEPROGRAM2 0x10
# define NAND_CMD_CACHEPROGRAM2 0x15
# define NAND_CMD_BLOCKERASE1 0x60
# define NAND_CMD_BLOCKERASE2 0xd0
# define NAND_CMD_READSTATUS 0x70
# define NAND_CMD_COPYBACKPRG1 0x85
# define NAND_IOSTATUS_ERROR (1 << 0)
# define NAND_IOSTATUS_PLANE0 (1 << 1)
# define NAND_IOSTATUS_PLANE1 (1 << 2)
# define NAND_IOSTATUS_PLANE2 (1 << 3)
# define NAND_IOSTATUS_PLANE3 (1 << 4)
# define NAND_IOSTATUS_READY (1 << 6)
# define NAND_IOSTATUS_UNPROTCT (1 << 7)
# define MAX_PAGE 0x800
# define MAX_OOB 0x40
typedef struct NANDFlashState NANDFlashState;
struct NANDFlashState {
DeviceState parent_obj;
uint8_t manf_id, chip_id;
uint8_t buswidth; /* in BYTES */
int size, pages;
int page_shift, oob_shift, erase_shift, addr_shift;
uint8_t *storage;
BlockBackend *blk;
int mem_oob;
uint8_t cle, ale, ce, wp, gnd;
uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
uint8_t *ioaddr;
int iolen;
uint32_t cmd;
uint64_t addr;
int addrlen;
int status;
int offset;
void (*blk_write)(NANDFlashState *s);
void (*blk_erase)(NANDFlashState *s);
void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
uint32_t ioaddr_vmstate;
};
#define TYPE_NAND "nand"
#define NAND(obj) \
OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
{
/* Like memcpy() but we logical-AND the data into the destination */
int i;
for (i = 0; i < n; i++) {
dest[i] &= src[i];
}
}
# define NAND_NO_AUTOINCR 0x00000001
# define NAND_BUSWIDTH_16 0x00000002
# define NAND_NO_PADDING 0x00000004
# define NAND_CACHEPRG 0x00000008
# define NAND_COPYBACK 0x00000010
# define NAND_IS_AND 0x00000020
# define NAND_4PAGE_ARRAY 0x00000040
# define NAND_NO_READRDY 0x00000100
# define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
# define NAND_IO
# define PAGE(addr) ((addr) >> ADDR_SHIFT)
# define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
# define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
# define OOB_SHIFT (PAGE_SHIFT - 5)
# define OOB_SIZE (1 << OOB_SHIFT)
# define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
# define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
# define PAGE_SIZE 256
# define PAGE_SHIFT 8
# define PAGE_SECTORS 1
# define ADDR_SHIFT 8
# include "nand.c"
# define PAGE_SIZE 512
# define PAGE_SHIFT 9
# define PAGE_SECTORS 1
# define ADDR_SHIFT 8
# include "nand.c"
# define PAGE_SIZE 2048
# define PAGE_SHIFT 11
# define PAGE_SECTORS 4
# define ADDR_SHIFT 16
# include "nand.c"
/* Information based on Linux drivers/mtd/nand/nand_ids.c */
static const struct {
int size;
int width;
int page_shift;
int erase_shift;
uint32_t options;
} nand_flash_ids[0x100] = {
[0 ... 0xff] = { 0 },
[0x6e] = { 1, 8, 8, 4, 0 },
[0x64] = { 2, 8, 8, 4, 0 },
[0x6b] = { 4, 8, 9, 4, 0 },
[0xe8] = { 1, 8, 8, 4, 0 },
[0xec] = { 1, 8, 8, 4, 0 },
[0xea] = { 2, 8, 8, 4, 0 },
[0xd5] = { 4, 8, 9, 4, 0 },
[0xe3] = { 4, 8, 9, 4, 0 },
[0xe5] = { 4, 8, 9, 4, 0 },
[0xd6] = { 8, 8, 9, 4, 0 },
[0x39] = { 8, 8, 9, 4, 0 },
[0xe6] = { 8, 8, 9, 4, 0 },
[0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
[0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
[0x33] = { 16, 8, 9, 5, 0 },
[0x73] = { 16, 8, 9, 5, 0 },
[0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x35] = { 32, 8, 9, 5, 0 },
[0x75] = { 32, 8, 9, 5, 0 },
[0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x36] = { 64, 8, 9, 5, 0 },
[0x76] = { 64, 8, 9, 5, 0 },
[0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x78] = { 128, 8, 9, 5, 0 },
[0x39] = { 128, 8, 9, 5, 0 },
[0x79] = { 128, 8, 9, 5, 0 },
[0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
[0x71] = { 256, 8, 9, 5, 0 },
/*
* These are the new chips with large page size. The pagesize and the
* erasesize is determined from the extended id bytes
*/
# define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
# define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
/* 512 Megabit */
[0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
[0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
[0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
[0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
/* 1 Gigabit */
[0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
[0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
[0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
[0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
/* 2 Gigabit */
[0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
[0xda] = { 256, 8, 0, 0, LP_OPTIONS },
[0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
[0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
/* 4 Gigabit */
[0xac] = { 512, 8, 0, 0, LP_OPTIONS },
[0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
[0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
[0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
/* 8 Gigabit */
[0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
[0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
[0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
[0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
/* 16 Gigabit */
[0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
[0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
[0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
[0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
};
static void nand_reset(DeviceState *dev)
{
NANDFlashState *s = NAND(dev);
s->cmd = NAND_CMD_READ0;
s->addr = 0;
s->addrlen = 0;
s->iolen = 0;
s->offset = 0;
s->status &= NAND_IOSTATUS_UNPROTCT;
s->status |= NAND_IOSTATUS_READY;
}
static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
{
s->ioaddr[s->iolen++] = value;
for (value = s->buswidth; --value;) {
s->ioaddr[s->iolen++] = 0;
}
}
static void nand_command(NANDFlashState *s)
{
unsigned int offset;
switch (s->cmd) {
case NAND_CMD_READ0:
s->iolen = 0;
break;
case NAND_CMD_READID:
s->ioaddr = s->io;
s->iolen = 0;
nand_pushio_byte(s, s->manf_id);
nand_pushio_byte(s, s->chip_id);
nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
/* Page Size, Block Size, Spare Size; bit 6 indicates
* 8 vs 16 bit width NAND.
*/
nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
} else {
nand_pushio_byte(s, 0xc0); /* Multi-plane */
}
break;
case NAND_CMD_RANDOMREAD2:
case NAND_CMD_NOSERIALREAD2:
if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
break;
offset = s->addr & ((1 << s->addr_shift) - 1);
s->blk_load(s, s->addr, offset);
if (s->gnd)
s->iolen = (1 << s->page_shift) - offset;
else
s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
break;
case NAND_CMD_RESET:
nand_reset(DEVICE(s));
break;
case NAND_CMD_PAGEPROGRAM1:
s->ioaddr = s->io;
s->iolen = 0;
break;
case NAND_CMD_PAGEPROGRAM2:
if (s->wp) {
s->blk_write(s);
}
break;
case NAND_CMD_BLOCKERASE1:
break;
case NAND_CMD_BLOCKERASE2:
s->addr &= (1ull << s->addrlen * 8) - 1;
s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
16 : 8;
if (s->wp) {
s->blk_erase(s);
}
break;
case NAND_CMD_READSTATUS:
s->ioaddr = s->io;
s->iolen = 0;
nand_pushio_byte(s, s->status);
break;
default:
printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
}
}
static void nand_pre_save(void *opaque)
{
NANDFlashState *s = NAND(opaque);
s->ioaddr_vmstate = s->ioaddr - s->io;
}
static int nand_post_load(void *opaque, int version_id)
{
NANDFlashState *s = NAND(opaque);
if (s->ioaddr_vmstate > sizeof(s->io)) {
return -EINVAL;
}
s->ioaddr = s->io + s->ioaddr_vmstate;
return 0;
}
static const VMStateDescription vmstate_nand = {
.name = "nand",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = nand_pre_save,
.post_load = nand_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(cle, NANDFlashState),
VMSTATE_UINT8(ale, NANDFlashState),
VMSTATE_UINT8(ce, NANDFlashState),
VMSTATE_UINT8(wp, NANDFlashState),
VMSTATE_UINT8(gnd, NANDFlashState),
VMSTATE_BUFFER(io, NANDFlashState),
VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
VMSTATE_INT32(iolen, NANDFlashState),
VMSTATE_UINT32(cmd, NANDFlashState),
VMSTATE_UINT64(addr, NANDFlashState),
VMSTATE_INT32(addrlen, NANDFlashState),
VMSTATE_INT32(status, NANDFlashState),
VMSTATE_INT32(offset, NANDFlashState),
/* XXX: do we want to save s->storage too? */
VMSTATE_END_OF_LIST()
}
};
static void nand_realize(DeviceState *dev, Error **errp)
{
int pagesize;
NANDFlashState *s = NAND(dev);
int ret;
s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
s->size = nand_flash_ids[s->chip_id].size << 20;
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
s->page_shift = 11;
s->erase_shift = 6;
} else {
s->page_shift = nand_flash_ids[s->chip_id].page_shift;
s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
}
switch (1 << s->page_shift) {
case 256:
nand_init_256(s);
break;
case 512:
nand_init_512(s);
break;
case 2048:
nand_init_2048(s);
break;
default:
error_setg(errp, "Unsupported NAND block size %#x",
1 << s->page_shift);
return;
}
pagesize = 1 << s->oob_shift;
s->mem_oob = 1;
if (s->blk) {
if (blk_is_read_only(s->blk)) {
error_setg(errp, "Can't use a read-only drive");
return;
}
ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
BLK_PERM_ALL, errp);
if (ret < 0) {
return;
}
if (blk_getlength(s->blk) >=
(s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
pagesize = 0;
s->mem_oob = 0;
}
} else {
pagesize += 1 << s->page_shift;
}
if (pagesize) {
s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
0xff, s->pages * pagesize);
}
/* Give s->ioaddr a sane value in case we save state before it is used. */
s->ioaddr = s->io;
}
static Property nand_properties[] = {
DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
DEFINE_PROP_END_OF_LIST(),
};
static void nand_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = nand_realize;
dc->reset = nand_reset;
dc->vmsd = &vmstate_nand;
dc->props = nand_properties;
}
static const TypeInfo nand_info = {
.name = TYPE_NAND,
.parent = TYPE_DEVICE,
.instance_size = sizeof(NANDFlashState),
.class_init = nand_class_init,
};
static void nand_register_types(void)
{
type_register_static(&nand_info);
}
/*
* Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
* outputs are R/B and eight I/O pins.
*
* CE, WP and R/B are active low.
*/
void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
uint8_t ce, uint8_t wp, uint8_t gnd)
{
NANDFlashState *s = NAND(dev);
s->cle = cle;
s->ale = ale;
s->ce = ce;
s->wp = wp;
s->gnd = gnd;
if (wp) {
s->status |= NAND_IOSTATUS_UNPROTCT;
} else {
s->status &= ~NAND_IOSTATUS_UNPROTCT;
}
}
void nand_getpins(DeviceState *dev, int *rb)
{
*rb = 1;
}
void nand_setio(DeviceState *dev, uint32_t value)
{
int i;
NANDFlashState *s = NAND(dev);
if (!s->ce && s->cle) {
if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
return;
if (value == NAND_CMD_RANDOMREAD1) {
s->addr &= ~((1 << s->addr_shift) - 1);
s->addrlen = 0;
return;
}
}
if (value == NAND_CMD_READ0) {
s->offset = 0;
} else if (value == NAND_CMD_READ1) {
s->offset = 0x100;
value = NAND_CMD_READ0;
} else if (value == NAND_CMD_READ2) {
s->offset = 1 << s->page_shift;
value = NAND_CMD_READ0;
}
s->cmd = value;
if (s->cmd == NAND_CMD_READSTATUS ||
s->cmd == NAND_CMD_PAGEPROGRAM2 ||
s->cmd == NAND_CMD_BLOCKERASE1 ||
s->cmd == NAND_CMD_BLOCKERASE2 ||
s->cmd == NAND_CMD_NOSERIALREAD2 ||
s->cmd == NAND_CMD_RANDOMREAD2 ||
s->cmd == NAND_CMD_RESET) {
nand_command(s);
}
if (s->cmd != NAND_CMD_RANDOMREAD2) {
s->addrlen = 0;
}
}
if (s->ale) {
unsigned int shift = s->addrlen * 8;
uint64_t mask = ~(0xffull << shift);
uint64_t v = (uint64_t)value << shift;
s->addr = (s->addr & mask) | v;
s->addrlen ++;
switch (s->addrlen) {
case 1:
if (s->cmd == NAND_CMD_READID) {
nand_command(s);
}
break;
case 2: /* fix cache address as a byte address */
s->addr <<= (s->buswidth - 1);
break;
case 3:
if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
(s->cmd == NAND_CMD_READ0 ||
s->cmd == NAND_CMD_PAGEPROGRAM1)) {
nand_command(s);
}
break;
case 4:
if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
(s->cmd == NAND_CMD_READ0 ||
s->cmd == NAND_CMD_PAGEPROGRAM1)) {
nand_command(s);
}
break;
case 5:
if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
(s->cmd == NAND_CMD_READ0 ||
s->cmd == NAND_CMD_PAGEPROGRAM1)) {
nand_command(s);
}
break;
default:
break;
}
}
if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
for (i = s->buswidth; i--; value >>= 8) {
s->io[s->iolen ++] = (uint8_t) (value & 0xff);
}
}
} else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
if ((s->addr & ((1 << s->addr_shift) - 1)) <
(1 << s->page_shift) + (1 << s->oob_shift)) {
for (i = s->buswidth; i--; s->addr++, value >>= 8) {
s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
(uint8_t) (value & 0xff);
}
}
}
}
uint32_t nand_getio(DeviceState *dev)
{
int offset;
uint32_t x = 0;
NANDFlashState *s = NAND(dev);
/* Allow sequential reading */
if (!s->iolen && s->cmd == NAND_CMD_READ0) {
offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
s->offset = 0;
s->blk_load(s, s->addr, offset);
if (s->gnd)
s->iolen = (1 << s->page_shift) - offset;
else
s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
}
if (s->ce || s->iolen <= 0) {
return 0;
}
for (offset = s->buswidth; offset--;) {
x |= s->ioaddr[offset] << (offset << 3);
}
/* after receiving READ STATUS command all subsequent reads will
* return the status register value until another command is issued
*/
if (s->cmd != NAND_CMD_READSTATUS) {
s->addr += s->buswidth;
s->ioaddr += s->buswidth;
s->iolen -= s->buswidth;
}
return x;
}
uint32_t nand_getbuswidth(DeviceState *dev)
{
NANDFlashState *s = (NANDFlashState *) dev;
return s->buswidth << 3;
}
DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
{
DeviceState *dev;
if (nand_flash_ids[chip_id].size == 0) {
hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
}
dev = DEVICE(object_new(TYPE_NAND));
qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
qdev_prop_set_uint8(dev, "chip_id", chip_id);
if (blk) {
qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
}
qdev_init_nofail(dev);
return dev;
}
type_init(nand_register_types)
#else
/* Program a single page */
static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
{
uint64_t off, page, sector, soff;
uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
if (PAGE(s->addr) >= s->pages)
return;
if (!s->blk) {
mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
s->offset, s->io, s->iolen);
} else if (s->mem_oob) {
sector = SECTOR(s->addr);
off = (s->addr & PAGE_MASK) + s->offset;
soff = SECTOR_OFFSET(s->addr);
if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
return;
}
mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
if (off + s->iolen > PAGE_SIZE) {
page = PAGE(s->addr);
mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
}
if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
}
} else {
off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
sector = off >> 9;
soff = off & 0x1ff;
if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
(PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
return;
}
mem_and(iobuf + soff, s->io, s->iolen);
if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
(PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
}
}
s->offset = 0;
}
/* Erase a single block */
static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
{
uint64_t i, page, addr;
uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
if (PAGE(addr) >= s->pages) {
return;
}
if (!s->blk) {
memset(s->storage + PAGE_START(addr),
0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
} else if (s->mem_oob) {
memset(s->storage + (PAGE(addr) << OOB_SHIFT),
0xff, OOB_SIZE << s->erase_shift);
i = SECTOR(addr);
page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
for (; i < page; i ++)
if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
BDRV_SECTOR_SIZE, 0) < 0) {
printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
}
} else {
addr = PAGE_START(addr);
page = addr >> 9;
if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
BDRV_SECTOR_SIZE) < 0) {
printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
}
memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
BDRV_SECTOR_SIZE, 0) < 0) {
printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
}
memset(iobuf, 0xff, 0x200);
i = (addr & ~0x1ff) + 0x200;
for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
i < addr; i += 0x200) {
if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
printf("%s: write error in sector %" PRIu64 "\n",
__func__, i >> 9);
}
}
page = i >> 9;
if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
BDRV_SECTOR_SIZE) < 0) {
printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
}
memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
BDRV_SECTOR_SIZE, 0) < 0) {
printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
}
}
}
static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
uint64_t addr, int offset)
{
if (PAGE(addr) >= s->pages) {
return;
}
if (s->blk) {
if (s->mem_oob) {
if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
printf("%s: read error in sector %" PRIu64 "\n",
__func__, SECTOR(addr));
}
memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
s->storage + (PAGE(s->addr) << OOB_SHIFT),
OOB_SIZE);
s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
} else {
if (blk_pread(s->blk, PAGE_START(addr), s->io,
(PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
printf("%s: read error in sector %" PRIu64 "\n",
__func__, PAGE_START(addr) >> 9);
}
s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
}
} else {
memcpy(s->io, s->storage + PAGE_START(s->addr) +
offset, PAGE_SIZE + OOB_SIZE - offset);
s->ioaddr = s->io;
}
}
static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
{
s->oob_shift = PAGE_SHIFT - 5;
s->pages = s->size >> PAGE_SHIFT;
s->addr_shift = ADDR_SHIFT;
s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
}
# undef PAGE_SIZE
# undef PAGE_SHIFT
# undef PAGE_SECTORS
# undef ADDR_SHIFT
#endif /* NAND_IO */