qemu/target/ppc/gdbstub.c

383 lines
9.8 KiB
C

/*
* PowerPC gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "cpu.h"
#include "exec/gdbstub.h"
static int ppc_gdb_register_len_apple(int n)
{
switch (n) {
case 0 ... 31:
/* gprs */
return 8;
case 32 ... 63:
/* fprs */
return 8;
case 64 ... 95:
return 16;
case 64+32: /* nip */
case 65+32: /* msr */
case 67+32: /* lr */
case 68+32: /* ctr */
case 70+32: /* fpscr */
return 8;
case 66+32: /* cr */
case 69+32: /* xer */
return 4;
default:
return 0;
}
}
static int ppc_gdb_register_len(int n)
{
switch (n) {
case 0 ... 31:
/* gprs */
return sizeof(target_ulong);
case 32 ... 63:
/* fprs */
if (gdb_has_xml) {
return 0;
}
return 8;
case 66:
/* cr */
case 69:
/* xer */
return 4;
case 64:
/* nip */
case 65:
/* msr */
case 67:
/* lr */
case 68:
/* ctr */
return sizeof(target_ulong);
case 70:
/* fpscr */
if (gdb_has_xml) {
return 0;
}
return sizeof(target_ulong);
default:
return 0;
}
}
/* We need to present the registers to gdb in the "current" memory ordering.
For user-only mode we get this for free; TARGET_WORDS_BIGENDIAN is set to
the proper ordering for the binary, and cannot be changed.
For system mode, TARGET_WORDS_BIGENDIAN is always set, and we must check
the current mode of the chip to see if we're running in little-endian. */
void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len)
{
#ifndef CONFIG_USER_ONLY
if (!msr_le) {
/* do nothing */
} else if (len == 4) {
bswap32s((uint32_t *)mem_buf);
} else if (len == 8) {
bswap64s((uint64_t *)mem_buf);
} else {
g_assert_not_reached();
}
#endif
}
/* Old gdb always expects FP registers. Newer (xml-aware) gdb only
* expects whatever the target description contains. Due to a
* historical mishap the FP registers appear in between core integer
* regs and PC, MSR, CR, and so forth. We hack round this by giving the
* FP regs zero size when talking to a newer gdb.
*/
int ppc_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int r = ppc_gdb_register_len(n);
if (!r) {
return r;
}
if (n < 32) {
/* gprs */
gdb_get_regl(mem_buf, env->gpr[n]);
} else if (n < 64) {
/* fprs */
stfq_p(mem_buf, *cpu_fpr_ptr(env, n - 32));
} else {
switch (n) {
case 64:
gdb_get_regl(mem_buf, env->nip);
break;
case 65:
gdb_get_regl(mem_buf, env->msr);
break;
case 66:
{
uint32_t cr = 0;
int i;
for (i = 0; i < 8; i++) {
cr |= env->crf[i] << (32 - ((i + 1) * 4));
}
gdb_get_reg32(mem_buf, cr);
break;
}
case 67:
gdb_get_regl(mem_buf, env->lr);
break;
case 68:
gdb_get_regl(mem_buf, env->ctr);
break;
case 69:
gdb_get_reg32(mem_buf, env->xer);
break;
case 70:
gdb_get_reg32(mem_buf, env->fpscr);
break;
}
}
ppc_maybe_bswap_register(env, mem_buf, r);
return r;
}
int ppc_cpu_gdb_read_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int r = ppc_gdb_register_len_apple(n);
if (!r) {
return r;
}
if (n < 32) {
/* gprs */
gdb_get_reg64(mem_buf, env->gpr[n]);
} else if (n < 64) {
/* fprs */
stfq_p(mem_buf, *cpu_fpr_ptr(env, n - 32));
} else if (n < 96) {
/* Altivec */
stq_p(mem_buf, n - 64);
stq_p(mem_buf + 8, 0);
} else {
switch (n) {
case 64 + 32:
gdb_get_reg64(mem_buf, env->nip);
break;
case 65 + 32:
gdb_get_reg64(mem_buf, env->msr);
break;
case 66 + 32:
{
uint32_t cr = 0;
int i;
for (i = 0; i < 8; i++) {
cr |= env->crf[i] << (32 - ((i + 1) * 4));
}
gdb_get_reg32(mem_buf, cr);
break;
}
case 67 + 32:
gdb_get_reg64(mem_buf, env->lr);
break;
case 68 + 32:
gdb_get_reg64(mem_buf, env->ctr);
break;
case 69 + 32:
gdb_get_reg32(mem_buf, env->xer);
break;
case 70 + 32:
gdb_get_reg64(mem_buf, env->fpscr);
break;
}
}
ppc_maybe_bswap_register(env, mem_buf, r);
return r;
}
int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int r = ppc_gdb_register_len(n);
if (!r) {
return r;
}
ppc_maybe_bswap_register(env, mem_buf, r);
if (n < 32) {
/* gprs */
env->gpr[n] = ldtul_p(mem_buf);
} else if (n < 64) {
/* fprs */
*cpu_fpr_ptr(env, n - 32) = ldfq_p(mem_buf);
} else {
switch (n) {
case 64:
env->nip = ldtul_p(mem_buf);
break;
case 65:
ppc_store_msr(env, ldtul_p(mem_buf));
break;
case 66:
{
uint32_t cr = ldl_p(mem_buf);
int i;
for (i = 0; i < 8; i++) {
env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
}
break;
}
case 67:
env->lr = ldtul_p(mem_buf);
break;
case 68:
env->ctr = ldtul_p(mem_buf);
break;
case 69:
env->xer = ldl_p(mem_buf);
break;
case 70:
/* fpscr */
store_fpscr(env, ldtul_p(mem_buf), 0xffffffff);
break;
}
}
return r;
}
int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
int r = ppc_gdb_register_len_apple(n);
if (!r) {
return r;
}
ppc_maybe_bswap_register(env, mem_buf, r);
if (n < 32) {
/* gprs */
env->gpr[n] = ldq_p(mem_buf);
} else if (n < 64) {
/* fprs */
*cpu_fpr_ptr(env, n - 32) = ldfq_p(mem_buf);
} else {
switch (n) {
case 64 + 32:
env->nip = ldq_p(mem_buf);
break;
case 65 + 32:
ppc_store_msr(env, ldq_p(mem_buf));
break;
case 66 + 32:
{
uint32_t cr = ldl_p(mem_buf);
int i;
for (i = 0; i < 8; i++) {
env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
}
break;
}
case 67 + 32:
env->lr = ldq_p(mem_buf);
break;
case 68 + 32:
env->ctr = ldq_p(mem_buf);
break;
case 69 + 32:
env->xer = ldl_p(mem_buf);
break;
case 70 + 32:
/* fpscr */
store_fpscr(env, ldq_p(mem_buf), 0xffffffff);
break;
}
}
return r;
}
#ifndef CONFIG_USER_ONLY
void ppc_gdb_gen_spr_xml(PowerPCCPU *cpu)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
CPUPPCState *env = &cpu->env;
GString *xml;
char *spr_name;
unsigned int num_regs = 0;
int i;
if (pcc->gdb_spr_xml) {
return;
}
xml = g_string_new("<?xml version=\"1.0\"?>");
g_string_append(xml, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
g_string_append(xml, "<feature name=\"org.qemu.power.spr\">");
for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
ppc_spr_t *spr = &env->spr_cb[i];
if (!spr->name) {
continue;
}
spr_name = g_ascii_strdown(spr->name, -1);
g_string_append_printf(xml, "<reg name=\"%s\"", spr_name);
g_free(spr_name);
g_string_append_printf(xml, " bitsize=\"%d\"", TARGET_LONG_BITS);
g_string_append(xml, " group=\"spr\"/>");
/*
* GDB identifies registers based on the order they are
* presented in the XML. These ids will not match QEMU's
* representation (which follows the PowerISA).
*
* Store the position of the current register description so
* we can make the correspondence later.
*/
spr->gdb_id = num_regs;
num_regs++;
}
g_string_append(xml, "</feature>");
pcc->gdb_num_sprs = num_regs;
pcc->gdb_spr_xml = g_string_free(xml, false);
}
const char *ppc_gdb_get_dynamic_xml(CPUState *cs, const char *xml_name)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
if (strcmp(xml_name, "power-spr.xml") == 0) {
return pcc->gdb_spr_xml;
}
return NULL;
}
#endif