mirror of https://gitee.com/openkylin/qemu.git
48bb3750e1
Original patch from Ulrich Hecht, further work from Alexander Graf and Richard Henderson. Cc: Ulrich Hecht <uli@suse.de> Cc: Alexander Graf <agraf@suse.de> Signed-off-by: Richard Henderson <rth@twiddle.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net> |
||
---|---|---|
.. | ||
arm | ||
hppa | ||
i386 | ||
ia64 | ||
mips | ||
ppc | ||
ppc64 | ||
s390 | ||
sparc | ||
LICENSE | ||
README | ||
TODO | ||
tcg-op.h | ||
tcg-opc.h | ||
tcg-runtime.h | ||
tcg.c | ||
tcg.h |
README
Tiny Code Generator - Fabrice Bellard. 1) Introduction TCG (Tiny Code Generator) began as a generic backend for a C compiler. It was simplified to be used in QEMU. It also has its roots in the QOP code generator written by Paul Brook. 2) Definitions The TCG "target" is the architecture for which we generate the code. It is of course not the same as the "target" of QEMU which is the emulated architecture. As TCG started as a generic C backend used for cross compiling, it is assumed that the TCG target is different from the host, although it is never the case for QEMU. A TCG "function" corresponds to a QEMU Translated Block (TB). A TCG "temporary" is a variable only live in a basic block. Temporaries are allocated explicitly in each function. A TCG "local temporary" is a variable only live in a function. Local temporaries are allocated explicitly in each function. A TCG "global" is a variable which is live in all the functions (equivalent of a C global variable). They are defined before the functions defined. A TCG global can be a memory location (e.g. a QEMU CPU register), a fixed host register (e.g. the QEMU CPU state pointer) or a memory location which is stored in a register outside QEMU TBs (not implemented yet). A TCG "basic block" corresponds to a list of instructions terminated by a branch instruction. 3) Intermediate representation 3.1) Introduction TCG instructions operate on variables which are temporaries, local temporaries or globals. TCG instructions and variables are strongly typed. Two types are supported: 32 bit integers and 64 bit integers. Pointers are defined as an alias to 32 bit or 64 bit integers depending on the TCG target word size. Each instruction has a fixed number of output variable operands, input variable operands and always constant operands. The notable exception is the call instruction which has a variable number of outputs and inputs. In the textual form, output operands usually come first, followed by input operands, followed by constant operands. The output type is included in the instruction name. Constants are prefixed with a '$'. add_i32 t0, t1, t2 (t0 <- t1 + t2) 3.2) Assumptions * Basic blocks - Basic blocks end after branches (e.g. brcond_i32 instruction), goto_tb and exit_tb instructions. - Basic blocks start after the end of a previous basic block, or at a set_label instruction. After the end of a basic block, the content of temporaries is destroyed, but local temporaries and globals are preserved. * Floating point types are not supported yet * Pointers: depending on the TCG target, pointer size is 32 bit or 64 bit. The type TCG_TYPE_PTR is an alias to TCG_TYPE_I32 or TCG_TYPE_I64. * Helpers: Using the tcg_gen_helper_x_y it is possible to call any function taking i32, i64 or pointer types. By default, before calling an helper, all globals are stored at their canonical location and it is assumed that the function can modify them. This can be overriden by the TCG_CALL_CONST function modifier. By default, the helper is allowed to modify the CPU state or raise an exception. This can be overriden by the TCG_CALL_PURE function modifier, in which case the call to the function is removed if the return value is not used. On some TCG targets (e.g. x86), several calling conventions are supported. * Branches: Use the instruction 'br' to jump to a label. Use 'jmp' to jump to an explicit address. Conditional branches can only jump to labels. 3.3) Code Optimizations When generating instructions, you can count on at least the following optimizations: - Single instructions are simplified, e.g. and_i32 t0, t0, $0xffffffff is suppressed. - A liveness analysis is done at the basic block level. The information is used to suppress moves from a dead variable to another one. It is also used to remove instructions which compute dead results. The later is especially useful for condition code optimization in QEMU. In the following example: add_i32 t0, t1, t2 add_i32 t0, t0, $1 mov_i32 t0, $1 only the last instruction is kept. 3.4) Instruction Reference ********* Function call * call <ret> <params> ptr call function 'ptr' (pointer type) <ret> optional 32 bit or 64 bit return value <params> optional 32 bit or 64 bit parameters ********* Jumps/Labels * jmp t0 Absolute jump to address t0 (pointer type). * set_label $label Define label 'label' at the current program point. * br $label Jump to label. * brcond_i32/i64 cond, t0, t1, label Conditional jump if t0 cond t1 is true. cond can be: TCG_COND_EQ TCG_COND_NE TCG_COND_LT /* signed */ TCG_COND_GE /* signed */ TCG_COND_LE /* signed */ TCG_COND_GT /* signed */ TCG_COND_LTU /* unsigned */ TCG_COND_GEU /* unsigned */ TCG_COND_LEU /* unsigned */ TCG_COND_GTU /* unsigned */ ********* Arithmetic * add_i32/i64 t0, t1, t2 t0=t1+t2 * sub_i32/i64 t0, t1, t2 t0=t1-t2 * neg_i32/i64 t0, t1 t0=-t1 (two's complement) * mul_i32/i64 t0, t1, t2 t0=t1*t2 * div_i32/i64 t0, t1, t2 t0=t1/t2 (signed). Undefined behavior if division by zero or overflow. * divu_i32/i64 t0, t1, t2 t0=t1/t2 (unsigned). Undefined behavior if division by zero. * rem_i32/i64 t0, t1, t2 t0=t1%t2 (signed). Undefined behavior if division by zero or overflow. * remu_i32/i64 t0, t1, t2 t0=t1%t2 (unsigned). Undefined behavior if division by zero. ********* Logical * and_i32/i64 t0, t1, t2 t0=t1&t2 * or_i32/i64 t0, t1, t2 t0=t1|t2 * xor_i32/i64 t0, t1, t2 t0=t1^t2 * not_i32/i64 t0, t1 t0=~t1 * andc_i32/i64 t0, t1, t2 t0=t1&~t2 * eqv_i32/i64 t0, t1, t2 t0=~(t1^t2), or equivalently, t0=t1^~t2 * nand_i32/i64 t0, t1, t2 t0=~(t1&t2) * nor_i32/i64 t0, t1, t2 t0=~(t1|t2) * orc_i32/i64 t0, t1, t2 t0=t1|~t2 ********* Shifts/Rotates * shl_i32/i64 t0, t1, t2 t0=t1 << t2. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) * shr_i32/i64 t0, t1, t2 t0=t1 >> t2 (unsigned). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) * sar_i32/i64 t0, t1, t2 t0=t1 >> t2 (signed). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) * rotl_i32/i64 t0, t1, t2 Rotation of t2 bits to the left. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) * rotr_i32/i64 t0, t1, t2 Rotation of t2 bits to the right. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64) ********* Misc * mov_i32/i64 t0, t1 t0 = t1 Move t1 to t0 (both operands must have the same type). * ext8s_i32/i64 t0, t1 ext8u_i32/i64 t0, t1 ext16s_i32/i64 t0, t1 ext16u_i32/i64 t0, t1 ext32s_i64 t0, t1 ext32u_i64 t0, t1 8, 16 or 32 bit sign/zero extension (both operands must have the same type) * bswap16_i32/i64 t0, t1 16 bit byte swap on a 32/64 bit value. It assumes that the two/six high order bytes are set to zero. * bswap32_i32/i64 t0, t1 32 bit byte swap on a 32/64 bit value. With a 64 bit value, it assumes that the four high order bytes are set to zero. * bswap64_i64 t0, t1 64 bit byte swap * discard_i32/i64 t0 Indicate that the value of t0 won't be used later. It is useful to force dead code elimination. ********* Conditional moves * setcond_i32/i64 cond, dest, t1, t2 dest = (t1 cond t2) Set DEST to 1 if (T1 cond T2) is true, otherwise set to 0. ********* Type conversions * ext_i32_i64 t0, t1 Convert t1 (32 bit) to t0 (64 bit) and does sign extension * extu_i32_i64 t0, t1 Convert t1 (32 bit) to t0 (64 bit) and does zero extension * trunc_i64_i32 t0, t1 Truncate t1 (64 bit) to t0 (32 bit) * concat_i32_i64 t0, t1, t2 Construct t0 (64-bit) taking the low half from t1 (32 bit) and the high half from t2 (32 bit). * concat32_i64 t0, t1, t2 Construct t0 (64-bit) taking the low half from t1 (64 bit) and the high half from t2 (64 bit). ********* Load/Store * ld_i32/i64 t0, t1, offset ld8s_i32/i64 t0, t1, offset ld8u_i32/i64 t0, t1, offset ld16s_i32/i64 t0, t1, offset ld16u_i32/i64 t0, t1, offset ld32s_i64 t0, t1, offset ld32u_i64 t0, t1, offset t0 = read(t1 + offset) Load 8, 16, 32 or 64 bits with or without sign extension from host memory. offset must be a constant. * st_i32/i64 t0, t1, offset st8_i32/i64 t0, t1, offset st16_i32/i64 t0, t1, offset st32_i64 t0, t1, offset write(t0, t1 + offset) Write 8, 16, 32 or 64 bits to host memory. ********* 64-bit target on 32-bit host support The following opcodes are internal to TCG. Thus they are to be implemented by 32-bit host code generators, but are not to be emitted by guest translators. They are emitted as needed by inline functions within "tcg-op.h". * brcond2_i32 cond, t0_low, t0_high, t1_low, t1_high, label Similar to brcond, except that the 64-bit values T0 and T1 are formed from two 32-bit arguments. * add2_i32 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high * sub2_i32 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high Similar to add/sub, except that the 64-bit inputs T1 and T2 are formed from two 32-bit arguments, and the 64-bit output T0 is returned in two 32-bit outputs. * mulu2_i32 t0_low, t0_high, t1, t2 Similar to mul, except two 32-bit (unsigned) inputs T1 and T2 yielding the full 64-bit product T0. The later is returned in two 32-bit outputs. * setcond2_i32 cond, dest, t1_low, t1_high, t2_low, t2_high Similar to setcond, except that the 64-bit values T1 and T2 are formed from two 32-bit arguments. The result is a 32-bit value. ********* QEMU specific operations * tb_exit t0 Exit the current TB and return the value t0 (word type). * goto_tb index Exit the current TB and jump to the TB index 'index' (constant) if the current TB was linked to this TB. Otherwise execute the next instructions. * qemu_ld8u t0, t1, flags qemu_ld8s t0, t1, flags qemu_ld16u t0, t1, flags qemu_ld16s t0, t1, flags qemu_ld32 t0, t1, flags qemu_ld32u t0, t1, flags qemu_ld32s t0, t1, flags qemu_ld64 t0, t1, flags Load data at the QEMU CPU address t1 into t0. t1 has the QEMU CPU address type. 'flags' contains the QEMU memory index (selects user or kernel access) for example. Note that "qemu_ld32" implies a 32-bit result, while "qemu_ld32u" and "qemu_ld32s" imply a 64-bit result appropriately extended from 32 bits. * qemu_st8 t0, t1, flags qemu_st16 t0, t1, flags qemu_st32 t0, t1, flags qemu_st64 t0, t1, flags Store the data t0 at the QEMU CPU Address t1. t1 has the QEMU CPU address type. 'flags' contains the QEMU memory index (selects user or kernel access) for example. Note 1: Some shortcuts are defined when the last operand is known to be a constant (e.g. addi for add, movi for mov). Note 2: When using TCG, the opcodes must never be generated directly as some of them may not be available as "real" opcodes. Always use the function tcg_gen_xxx(args). 4) Backend tcg-target.h contains the target specific definitions. tcg-target.c contains the target specific code. 4.1) Assumptions The target word size (TCG_TARGET_REG_BITS) is expected to be 32 bit or 64 bit. It is expected that the pointer has the same size as the word. On a 32 bit target, all 64 bit operations are converted to 32 bits. A few specific operations must be implemented to allow it (see add2_i32, sub2_i32, brcond2_i32). Floating point operations are not supported in this version. A previous incarnation of the code generator had full support of them, but it is better to concentrate on integer operations first. On a 64 bit target, no assumption is made in TCG about the storage of the 32 bit values in 64 bit registers. 4.2) Constraints GCC like constraints are used to define the constraints of every instruction. Memory constraints are not supported in this version. Aliases are specified in the input operands as for GCC. The same register may be used for both an input and an output, even when they are not explicitly aliased. If an op expands to multiple target instructions then care must be taken to avoid clobbering input values. GCC style "early clobber" outputs are not currently supported. A target can define specific register or constant constraints. If an operation uses a constant input constraint which does not allow all constants, it must also accept registers in order to have a fallback. The movi_i32 and movi_i64 operations must accept any constants. The mov_i32 and mov_i64 operations must accept any registers of the same type. The ld/st instructions must accept signed 32 bit constant offsets. It can be implemented by reserving a specific register to compute the address if the offset is too big. The ld/st instructions must accept any destination (ld) or source (st) register. 4.3) Function call assumptions - The only supported types for parameters and return value are: 32 and 64 bit integers and pointer. - The stack grows downwards. - The first N parameters are passed in registers. - The next parameters are passed on the stack by storing them as words. - Some registers are clobbered during the call. - The function can return 0 or 1 value in registers. On a 32 bit target, functions must be able to return 2 values in registers for 64 bit return type. 5) Recommended coding rules for best performance - Use globals to represent the parts of the QEMU CPU state which are often modified, e.g. the integer registers and the condition codes. TCG will be able to use host registers to store them. - Avoid globals stored in fixed registers. They must be used only to store the pointer to the CPU state and possibly to store a pointer to a register window. - Use temporaries. Use local temporaries only when really needed, e.g. when you need to use a value after a jump. Local temporaries introduce a performance hit in the current TCG implementation: their content is saved to memory at end of each basic block. - Free temporaries and local temporaries when they are no longer used (tcg_temp_free). Since tcg_const_x() also creates a temporary, you should free it after it is used. Freeing temporaries does not yield a better generated code, but it reduces the memory usage of TCG and the speed of the translation. - Don't hesitate to use helpers for complicated or seldom used target intructions. There is little performance advantage in using TCG to implement target instructions taking more than about twenty TCG instructions. - Use the 'discard' instruction if you know that TCG won't be able to prove that a given global is "dead" at a given program point. The x86 target uses it to improve the condition codes optimisation.