qemu/hw/sun4u.c

932 lines
27 KiB
C

/*
* QEMU Sun4u/Sun4v System Emulator
*
* Copyright (c) 2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "apb_pci.h"
#include "pc.h"
#include "nvram.h"
#include "fdc.h"
#include "net.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "boards.h"
#include "firmware_abi.h"
#include "fw_cfg.h"
#include "sysbus.h"
#include "ide.h"
#include "loader.h"
#include "elf.h"
#include "blockdev.h"
//#define DEBUG_IRQ
//#define DEBUG_EBUS
//#define DEBUG_TIMER
#ifdef DEBUG_IRQ
#define CPUIRQ_DPRINTF(fmt, ...) \
do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
#else
#define CPUIRQ_DPRINTF(fmt, ...)
#endif
#ifdef DEBUG_EBUS
#define EBUS_DPRINTF(fmt, ...) \
do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
#else
#define EBUS_DPRINTF(fmt, ...)
#endif
#ifdef DEBUG_TIMER
#define TIMER_DPRINTF(fmt, ...) \
do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
#else
#define TIMER_DPRINTF(fmt, ...)
#endif
#define KERNEL_LOAD_ADDR 0x00404000
#define CMDLINE_ADDR 0x003ff000
#define INITRD_LOAD_ADDR 0x00300000
#define PROM_SIZE_MAX (4 * 1024 * 1024)
#define PROM_VADDR 0x000ffd00000ULL
#define APB_SPECIAL_BASE 0x1fe00000000ULL
#define APB_MEM_BASE 0x1ff00000000ULL
#define APB_PCI_IO_BASE (APB_SPECIAL_BASE + 0x02000000ULL)
#define PROM_FILENAME "openbios-sparc64"
#define NVRAM_SIZE 0x2000
#define MAX_IDE_BUS 2
#define BIOS_CFG_IOPORT 0x510
#define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
#define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
#define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
#define MAX_PILS 16
#define TICK_MAX 0x7fffffffffffffffULL
struct hwdef {
const char * const default_cpu_model;
uint16_t machine_id;
uint64_t prom_addr;
uint64_t console_serial_base;
};
typedef struct EbusState {
PCIDevice pci_dev;
MemoryRegion bar0;
MemoryRegion bar1;
} EbusState;
int DMA_get_channel_mode (int nchan)
{
return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
{
}
void DMA_register_channel (int nchan,
DMA_transfer_handler transfer_handler,
void *opaque)
{
}
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
{
fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
return 0;
}
static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size,
const char *arch, ram_addr_t RAM_size,
const char *boot_devices,
uint32_t kernel_image, uint32_t kernel_size,
const char *cmdline,
uint32_t initrd_image, uint32_t initrd_size,
uint32_t NVRAM_image,
int width, int height, int depth,
const uint8_t *macaddr)
{
unsigned int i;
uint32_t start, end;
uint8_t image[0x1ff0];
struct OpenBIOS_nvpart_v1 *part_header;
memset(image, '\0', sizeof(image));
start = 0;
// OpenBIOS nvram variables
// Variable partition
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_SYSTEM;
pstrcpy(part_header->name, sizeof(part_header->name), "system");
end = start + sizeof(struct OpenBIOS_nvpart_v1);
for (i = 0; i < nb_prom_envs; i++)
end = OpenBIOS_set_var(image, end, prom_envs[i]);
// End marker
image[end++] = '\0';
end = start + ((end - start + 15) & ~15);
OpenBIOS_finish_partition(part_header, end - start);
// free partition
start = end;
part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
part_header->signature = OPENBIOS_PART_FREE;
pstrcpy(part_header->name, sizeof(part_header->name), "free");
end = 0x1fd0;
OpenBIOS_finish_partition(part_header, end - start);
Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
for (i = 0; i < sizeof(image); i++)
m48t59_write(nvram, i, image[i]);
return 0;
}
static unsigned long sun4u_load_kernel(const char *kernel_filename,
const char *initrd_filename,
ram_addr_t RAM_size, long *initrd_size)
{
int linux_boot;
unsigned int i;
long kernel_size;
uint8_t *ptr;
linux_boot = (kernel_filename != NULL);
kernel_size = 0;
if (linux_boot) {
int bswap_needed;
#ifdef BSWAP_NEEDED
bswap_needed = 1;
#else
bswap_needed = 0;
#endif
kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
NULL, NULL, 1, ELF_MACHINE, 0);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
TARGET_PAGE_SIZE);
if (kernel_size < 0)
kernel_size = load_image_targphys(kernel_filename,
KERNEL_LOAD_ADDR,
RAM_size - KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
*initrd_size = 0;
if (initrd_filename) {
*initrd_size = load_image_targphys(initrd_filename,
INITRD_LOAD_ADDR,
RAM_size - INITRD_LOAD_ADDR);
if (*initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
if (*initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
stl_p(ptr + 24, INITRD_LOAD_ADDR + KERNEL_LOAD_ADDR - 0x4000);
stl_p(ptr + 28, *initrd_size);
break;
}
}
}
}
return kernel_size;
}
void pic_info(Monitor *mon)
{
}
void irq_info(Monitor *mon)
{
}
void cpu_check_irqs(CPUState *env)
{
uint32_t pil = env->pil_in |
(env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
/* check if TM or SM in SOFTINT are set
setting these also causes interrupt 14 */
if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
pil |= 1 << 14;
}
/* The bit corresponding to psrpil is (1<< psrpil), the next bit
is (2 << psrpil). */
if (pil < (2 << env->psrpil)){
if (env->interrupt_request & CPU_INTERRUPT_HARD) {
CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
env->interrupt_index);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
return;
}
if (cpu_interrupts_enabled(env)) {
unsigned int i;
for (i = 15; i > env->psrpil; i--) {
if (pil & (1 << i)) {
int old_interrupt = env->interrupt_index;
int new_interrupt = TT_EXTINT | i;
if (env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt) {
CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
"current %x >= pending %x\n",
env->tl, cpu_tsptr(env)->tt, new_interrupt);
} else if (old_interrupt != new_interrupt) {
env->interrupt_index = new_interrupt;
CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
old_interrupt, new_interrupt);
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (env->interrupt_request & CPU_INTERRUPT_HARD) {
CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
"current interrupt %x\n",
pil, env->pil_in, env->softint, env->interrupt_index);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
static void cpu_kick_irq(CPUState *env)
{
env->halted = 0;
cpu_check_irqs(env);
qemu_cpu_kick(env);
}
static void cpu_set_irq(void *opaque, int irq, int level)
{
CPUState *env = opaque;
if (level) {
CPUIRQ_DPRINTF("Raise CPU IRQ %d\n", irq);
env->pil_in |= 1 << irq;
cpu_kick_irq(env);
} else {
CPUIRQ_DPRINTF("Lower CPU IRQ %d\n", irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
}
typedef struct ResetData {
CPUState *env;
uint64_t prom_addr;
} ResetData;
void cpu_put_timer(QEMUFile *f, CPUTimer *s)
{
qemu_put_be32s(f, &s->frequency);
qemu_put_be32s(f, &s->disabled);
qemu_put_be64s(f, &s->disabled_mask);
qemu_put_sbe64s(f, &s->clock_offset);
qemu_put_timer(f, s->qtimer);
}
void cpu_get_timer(QEMUFile *f, CPUTimer *s)
{
qemu_get_be32s(f, &s->frequency);
qemu_get_be32s(f, &s->disabled);
qemu_get_be64s(f, &s->disabled_mask);
qemu_get_sbe64s(f, &s->clock_offset);
qemu_get_timer(f, s->qtimer);
}
static CPUTimer* cpu_timer_create(const char* name, CPUState *env,
QEMUBHFunc *cb, uint32_t frequency,
uint64_t disabled_mask)
{
CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
timer->name = name;
timer->frequency = frequency;
timer->disabled_mask = disabled_mask;
timer->disabled = 1;
timer->clock_offset = qemu_get_clock_ns(vm_clock);
timer->qtimer = qemu_new_timer_ns(vm_clock, cb, env);
return timer;
}
static void cpu_timer_reset(CPUTimer *timer)
{
timer->disabled = 1;
timer->clock_offset = qemu_get_clock_ns(vm_clock);
qemu_del_timer(timer->qtimer);
}
static void main_cpu_reset(void *opaque)
{
ResetData *s = (ResetData *)opaque;
CPUState *env = s->env;
static unsigned int nr_resets;
cpu_reset(env);
cpu_timer_reset(env->tick);
cpu_timer_reset(env->stick);
cpu_timer_reset(env->hstick);
env->gregs[1] = 0; // Memory start
env->gregs[2] = ram_size; // Memory size
env->gregs[3] = 0; // Machine description XXX
if (nr_resets++ == 0) {
/* Power on reset */
env->pc = s->prom_addr + 0x20ULL;
} else {
env->pc = s->prom_addr + 0x40ULL;
}
env->npc = env->pc + 4;
}
static void tick_irq(void *opaque)
{
CPUState *env = opaque;
CPUTimer* timer = env->tick;
if (timer->disabled) {
CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
return;
} else {
CPUIRQ_DPRINTF("tick: fire\n");
}
env->softint |= SOFTINT_TIMER;
cpu_kick_irq(env);
}
static void stick_irq(void *opaque)
{
CPUState *env = opaque;
CPUTimer* timer = env->stick;
if (timer->disabled) {
CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
return;
} else {
CPUIRQ_DPRINTF("stick: fire\n");
}
env->softint |= SOFTINT_STIMER;
cpu_kick_irq(env);
}
static void hstick_irq(void *opaque)
{
CPUState *env = opaque;
CPUTimer* timer = env->hstick;
if (timer->disabled) {
CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
return;
} else {
CPUIRQ_DPRINTF("hstick: fire\n");
}
env->softint |= SOFTINT_STIMER;
cpu_kick_irq(env);
}
static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
{
return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
}
static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
{
return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
}
void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
{
uint64_t real_count = count & ~timer->disabled_mask;
uint64_t disabled_bit = count & timer->disabled_mask;
int64_t vm_clock_offset = qemu_get_clock_ns(vm_clock) -
cpu_to_timer_ticks(real_count, timer->frequency);
TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
timer->name, real_count,
timer->disabled?"disabled":"enabled", timer);
timer->disabled = disabled_bit ? 1 : 0;
timer->clock_offset = vm_clock_offset;
}
uint64_t cpu_tick_get_count(CPUTimer *timer)
{
uint64_t real_count = timer_to_cpu_ticks(
qemu_get_clock_ns(vm_clock) - timer->clock_offset,
timer->frequency);
TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
timer->name, real_count,
timer->disabled?"disabled":"enabled", timer);
if (timer->disabled)
real_count |= timer->disabled_mask;
return real_count;
}
void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
{
int64_t now = qemu_get_clock_ns(vm_clock);
uint64_t real_limit = limit & ~timer->disabled_mask;
timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
timer->clock_offset;
if (expires < now) {
expires = now + 1;
}
TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
"called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
timer->name, real_limit,
timer->disabled?"disabled":"enabled",
timer, limit,
timer_to_cpu_ticks(now - timer->clock_offset,
timer->frequency),
timer_to_cpu_ticks(expires - now, timer->frequency));
if (!real_limit) {
TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
timer->name);
qemu_del_timer(timer->qtimer);
} else if (timer->disabled) {
qemu_del_timer(timer->qtimer);
} else {
qemu_mod_timer(timer->qtimer, expires);
}
}
static void dummy_isa_irq_handler(void *opaque, int n, int level)
{
}
/* EBUS (Eight bit bus) bridge */
static void
pci_ebus_init(PCIBus *bus, int devfn)
{
qemu_irq *isa_irq;
pci_create_simple(bus, devfn, "ebus");
isa_irq = qemu_allocate_irqs(dummy_isa_irq_handler, NULL, 16);
isa_bus_irqs(isa_irq);
}
static int
pci_ebus_init1(PCIDevice *pci_dev)
{
EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
isa_bus_new(&pci_dev->qdev, pci_address_space_io(pci_dev));
pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
pci_dev->config[0x05] = 0x00;
pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
pci_dev->config[0x07] = 0x03; // status = medium devsel
pci_dev->config[0x09] = 0x00; // programming i/f
pci_dev->config[0x0D] = 0x0a; // latency_timer
isa_mmio_setup(&s->bar0, 0x1000000);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
isa_mmio_setup(&s->bar1, 0x800000);
pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1);
return 0;
}
static PCIDeviceInfo ebus_info = {
.qdev.name = "ebus",
.qdev.size = sizeof(EbusState),
.init = pci_ebus_init1,
.vendor_id = PCI_VENDOR_ID_SUN,
.device_id = PCI_DEVICE_ID_SUN_EBUS,
.revision = 0x01,
.class_id = PCI_CLASS_BRIDGE_OTHER,
};
static void pci_ebus_register(void)
{
pci_qdev_register(&ebus_info);
}
device_init(pci_ebus_register);
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
{
target_phys_addr_t *base_addr = (target_phys_addr_t *)opaque;
return addr + *base_addr - PROM_VADDR;
}
/* Boot PROM (OpenBIOS) */
static void prom_init(target_phys_addr_t addr, const char *bios_name)
{
DeviceState *dev;
SysBusDevice *s;
char *filename;
int ret;
dev = qdev_create(NULL, "openprom");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, addr);
/* load boot prom */
if (bios_name == NULL) {
bios_name = PROM_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
ret = load_elf(filename, translate_prom_address, &addr,
NULL, NULL, NULL, 1, ELF_MACHINE, 0);
if (ret < 0 || ret > PROM_SIZE_MAX) {
ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
}
g_free(filename);
} else {
ret = -1;
}
if (ret < 0 || ret > PROM_SIZE_MAX) {
fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
exit(1);
}
}
static int prom_init1(SysBusDevice *dev)
{
ram_addr_t prom_offset;
prom_offset = qemu_ram_alloc(NULL, "sun4u.prom", PROM_SIZE_MAX);
sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
return 0;
}
static SysBusDeviceInfo prom_info = {
.init = prom_init1,
.qdev.name = "openprom",
.qdev.size = sizeof(SysBusDevice),
.qdev.props = (Property[]) {
{/* end of property list */}
}
};
static void prom_register_devices(void)
{
sysbus_register_withprop(&prom_info);
}
device_init(prom_register_devices);
typedef struct RamDevice
{
SysBusDevice busdev;
uint64_t size;
} RamDevice;
/* System RAM */
static int ram_init1(SysBusDevice *dev)
{
ram_addr_t RAM_size, ram_offset;
RamDevice *d = FROM_SYSBUS(RamDevice, dev);
RAM_size = d->size;
ram_offset = qemu_ram_alloc(NULL, "sun4u.ram", RAM_size);
sysbus_init_mmio(dev, RAM_size, ram_offset);
return 0;
}
static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size)
{
DeviceState *dev;
SysBusDevice *s;
RamDevice *d;
/* allocate RAM */
dev = qdev_create(NULL, "memory");
s = sysbus_from_qdev(dev);
d = FROM_SYSBUS(RamDevice, s);
d->size = RAM_size;
qdev_init_nofail(dev);
sysbus_mmio_map(s, 0, addr);
}
static SysBusDeviceInfo ram_info = {
.init = ram_init1,
.qdev.name = "memory",
.qdev.size = sizeof(RamDevice),
.qdev.props = (Property[]) {
DEFINE_PROP_UINT64("size", RamDevice, size, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static void ram_register_devices(void)
{
sysbus_register_withprop(&ram_info);
}
device_init(ram_register_devices);
static CPUState *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
{
CPUState *env;
ResetData *reset_info;
uint32_t tick_frequency = 100*1000000;
uint32_t stick_frequency = 100*1000000;
uint32_t hstick_frequency = 100*1000000;
if (!cpu_model)
cpu_model = hwdef->default_cpu_model;
env = cpu_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to find Sparc CPU definition\n");
exit(1);
}
env->tick = cpu_timer_create("tick", env, tick_irq,
tick_frequency, TICK_NPT_MASK);
env->stick = cpu_timer_create("stick", env, stick_irq,
stick_frequency, TICK_INT_DIS);
env->hstick = cpu_timer_create("hstick", env, hstick_irq,
hstick_frequency, TICK_INT_DIS);
reset_info = g_malloc0(sizeof(ResetData));
reset_info->env = env;
reset_info->prom_addr = hwdef->prom_addr;
qemu_register_reset(main_cpu_reset, reset_info);
return env;
}
static void sun4uv_init(ram_addr_t RAM_size,
const char *boot_devices,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model,
const struct hwdef *hwdef)
{
CPUState *env;
M48t59State *nvram;
unsigned int i;
long initrd_size, kernel_size;
PCIBus *pci_bus, *pci_bus2, *pci_bus3;
qemu_irq *irq;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
DriveInfo *fd[MAX_FD];
void *fw_cfg;
/* init CPUs */
env = cpu_devinit(cpu_model, hwdef);
/* set up devices */
ram_init(0, RAM_size);
prom_init(hwdef->prom_addr, bios_name);
irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, irq, &pci_bus2,
&pci_bus3);
pci_vga_init(pci_bus);
// XXX Should be pci_bus3
pci_ebus_init(pci_bus, -1);
i = 0;
if (hwdef->console_serial_base) {
serial_mm_init(hwdef->console_serial_base, 0, NULL, 115200,
serial_hds[i], 1, 1);
i++;
}
for(; i < MAX_SERIAL_PORTS; i++) {
if (serial_hds[i]) {
serial_isa_init(i, serial_hds[i]);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
if (parallel_hds[i]) {
parallel_init(i, parallel_hds[i]);
}
}
for(i = 0; i < nb_nics; i++)
pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);
ide_drive_get(hd, MAX_IDE_BUS);
pci_cmd646_ide_init(pci_bus, hd, 1);
isa_create_simple("i8042");
for(i = 0; i < MAX_FD; i++) {
fd[i] = drive_get(IF_FLOPPY, 0, i);
}
fdctrl_init_isa(fd);
nvram = m48t59_init_isa(0x0074, NVRAM_SIZE, 59);
initrd_size = 0;
kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
ram_size, &initrd_size);
sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
KERNEL_LOAD_ADDR, kernel_size,
kernel_cmdline,
INITRD_LOAD_ADDR, initrd_size,
/* XXX: need an option to load a NVRAM image */
0,
graphic_width, graphic_height, graphic_depth,
(uint8_t *)&nd_table[0].macaddr);
fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
if (kernel_cmdline) {
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(kernel_cmdline) + 1);
fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
(uint8_t*)strdup(kernel_cmdline),
strlen(kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
}
enum {
sun4u_id = 0,
sun4v_id = 64,
niagara_id,
};
static const struct hwdef hwdefs[] = {
/* Sun4u generic PC-like machine */
{
.default_cpu_model = "TI UltraSparc IIi",
.machine_id = sun4u_id,
.prom_addr = 0x1fff0000000ULL,
.console_serial_base = 0,
},
/* Sun4v generic PC-like machine */
{
.default_cpu_model = "Sun UltraSparc T1",
.machine_id = sun4v_id,
.prom_addr = 0x1fff0000000ULL,
.console_serial_base = 0,
},
/* Sun4v generic Niagara machine */
{
.default_cpu_model = "Sun UltraSparc T1",
.machine_id = niagara_id,
.prom_addr = 0xfff0000000ULL,
.console_serial_base = 0xfff0c2c000ULL,
},
};
/* Sun4u hardware initialisation */
static void sun4u_init(ram_addr_t RAM_size,
const char *boot_devices,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4uv_init(RAM_size, boot_devices, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
}
/* Sun4v hardware initialisation */
static void sun4v_init(ram_addr_t RAM_size,
const char *boot_devices,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4uv_init(RAM_size, boot_devices, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
}
/* Niagara hardware initialisation */
static void niagara_init(ram_addr_t RAM_size,
const char *boot_devices,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
sun4uv_init(RAM_size, boot_devices, kernel_filename,
kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
}
static QEMUMachine sun4u_machine = {
.name = "sun4u",
.desc = "Sun4u platform",
.init = sun4u_init,
.max_cpus = 1, // XXX for now
.is_default = 1,
};
static QEMUMachine sun4v_machine = {
.name = "sun4v",
.desc = "Sun4v platform",
.init = sun4v_init,
.max_cpus = 1, // XXX for now
};
static QEMUMachine niagara_machine = {
.name = "Niagara",
.desc = "Sun4v platform, Niagara",
.init = niagara_init,
.max_cpus = 1, // XXX for now
};
static void sun4u_machine_init(void)
{
qemu_register_machine(&sun4u_machine);
qemu_register_machine(&sun4v_machine);
qemu_register_machine(&niagara_machine);
}
machine_init(sun4u_machine_init);