qemu/hw/input/tsc2005.c

560 lines
15 KiB
C

/*
* TI TSC2005 emulator.
*
* Copyright (c) 2006 Andrzej Zaborowski <balrog@zabor.org>
* Copyright (C) 2008 Nokia Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "sysemu/reset.h"
#include "ui/console.h"
#include "hw/input/tsc2xxx.h"
#include "hw/irq.h"
#include "migration/vmstate.h"
#include "trace.h"
#define TSC_CUT_RESOLUTION(value, p) ((value) >> (16 - (p ? 12 : 10)))
typedef struct {
qemu_irq pint; /* Combination of the nPENIRQ and DAV signals */
QEMUTimer *timer;
uint16_t model;
int32_t x, y;
bool pressure;
uint8_t reg, state;
bool irq, command;
uint16_t data, dav;
bool busy;
bool enabled;
bool host_mode;
int8_t function;
int8_t nextfunction;
bool precision;
bool nextprecision;
uint16_t filter;
uint8_t pin_func;
uint16_t timing[2];
uint8_t noise;
bool reset;
bool pdst;
bool pnd0;
uint16_t temp_thr[2];
uint16_t aux_thr[2];
int32_t tr[8];
} TSC2005State;
enum {
TSC_MODE_XYZ_SCAN = 0x0,
TSC_MODE_XY_SCAN,
TSC_MODE_X,
TSC_MODE_Y,
TSC_MODE_Z,
TSC_MODE_AUX,
TSC_MODE_TEMP1,
TSC_MODE_TEMP2,
TSC_MODE_AUX_SCAN,
TSC_MODE_X_TEST,
TSC_MODE_Y_TEST,
TSC_MODE_TS_TEST,
TSC_MODE_RESERVED,
TSC_MODE_XX_DRV,
TSC_MODE_YY_DRV,
TSC_MODE_YX_DRV,
};
static const uint16_t mode_regs[16] = {
0xf000, /* X, Y, Z scan */
0xc000, /* X, Y scan */
0x8000, /* X */
0x4000, /* Y */
0x3000, /* Z */
0x0800, /* AUX */
0x0400, /* TEMP1 */
0x0200, /* TEMP2 */
0x0800, /* AUX scan */
0x0040, /* X test */
0x0020, /* Y test */
0x0080, /* Short-circuit test */
0x0000, /* Reserved */
0x0000, /* X+, X- drivers */
0x0000, /* Y+, Y- drivers */
0x0000, /* Y+, X- drivers */
};
#define X_TRANSFORM(s) \
((s->y * s->tr[0] - s->x * s->tr[1]) / s->tr[2] + s->tr[3])
#define Y_TRANSFORM(s) \
((s->y * s->tr[4] - s->x * s->tr[5]) / s->tr[6] + s->tr[7])
#define Z1_TRANSFORM(s) \
((400 - ((s)->x >> 7) + ((s)->pressure << 10)) << 4)
#define Z2_TRANSFORM(s) \
((4000 + ((s)->y >> 7) - ((s)->pressure << 10)) << 4)
#define AUX_VAL (700 << 4) /* +/- 3 at 12-bit */
#define TEMP1_VAL (1264 << 4) /* +/- 5 at 12-bit */
#define TEMP2_VAL (1531 << 4) /* +/- 5 at 12-bit */
static uint16_t tsc2005_read(TSC2005State *s, int reg)
{
uint16_t ret;
switch (reg) {
case 0x0: /* X */
s->dav &= ~mode_regs[TSC_MODE_X];
return TSC_CUT_RESOLUTION(X_TRANSFORM(s), s->precision) +
(s->noise & 3);
case 0x1: /* Y */
s->dav &= ~mode_regs[TSC_MODE_Y];
s->noise ++;
return TSC_CUT_RESOLUTION(Y_TRANSFORM(s), s->precision) ^
(s->noise & 3);
case 0x2: /* Z1 */
s->dav &= 0xdfff;
return TSC_CUT_RESOLUTION(Z1_TRANSFORM(s), s->precision) -
(s->noise & 3);
case 0x3: /* Z2 */
s->dav &= 0xefff;
return TSC_CUT_RESOLUTION(Z2_TRANSFORM(s), s->precision) |
(s->noise & 3);
case 0x4: /* AUX */
s->dav &= ~mode_regs[TSC_MODE_AUX];
return TSC_CUT_RESOLUTION(AUX_VAL, s->precision);
case 0x5: /* TEMP1 */
s->dav &= ~mode_regs[TSC_MODE_TEMP1];
return TSC_CUT_RESOLUTION(TEMP1_VAL, s->precision) -
(s->noise & 5);
case 0x6: /* TEMP2 */
s->dav &= 0xdfff;
s->dav &= ~mode_regs[TSC_MODE_TEMP2];
return TSC_CUT_RESOLUTION(TEMP2_VAL, s->precision) ^
(s->noise & 3);
case 0x7: /* Status */
ret = s->dav | (s->reset << 7) | (s->pdst << 2) | 0x0;
s->dav &= ~(mode_regs[TSC_MODE_X_TEST] | mode_regs[TSC_MODE_Y_TEST] |
mode_regs[TSC_MODE_TS_TEST]);
s->reset = true;
return ret;
case 0x8: /* AUX high treshold */
return s->aux_thr[1];
case 0x9: /* AUX low treshold */
return s->aux_thr[0];
case 0xa: /* TEMP high treshold */
return s->temp_thr[1];
case 0xb: /* TEMP low treshold */
return s->temp_thr[0];
case 0xc: /* CFR0 */
return (s->pressure << 15) | ((!s->busy) << 14) |
(s->nextprecision << 13) | s->timing[0];
case 0xd: /* CFR1 */
return s->timing[1];
case 0xe: /* CFR2 */
return (s->pin_func << 14) | s->filter;
case 0xf: /* Function select status */
return s->function >= 0 ? 1 << s->function : 0;
}
/* Never gets here */
return 0xffff;
}
static void tsc2005_write(TSC2005State *s, int reg, uint16_t data)
{
switch (reg) {
case 0x8: /* AUX high treshold */
s->aux_thr[1] = data;
break;
case 0x9: /* AUX low treshold */
s->aux_thr[0] = data;
break;
case 0xa: /* TEMP high treshold */
s->temp_thr[1] = data;
break;
case 0xb: /* TEMP low treshold */
s->temp_thr[0] = data;
break;
case 0xc: /* CFR0 */
s->host_mode = (data >> 15) != 0;
if (s->enabled != !(data & 0x4000)) {
s->enabled = !(data & 0x4000);
trace_tsc2005_sense(s->enabled ? "enabled" : "disabled");
if (s->busy && !s->enabled)
timer_del(s->timer);
s->busy = s->busy && s->enabled;
}
s->nextprecision = (data >> 13) & 1;
s->timing[0] = data & 0x1fff;
if ((s->timing[0] >> 11) == 3) {
qemu_log_mask(LOG_GUEST_ERROR,
"tsc2005_write: illegal conversion clock setting\n");
}
break;
case 0xd: /* CFR1 */
s->timing[1] = data & 0xf07;
break;
case 0xe: /* CFR2 */
s->pin_func = (data >> 14) & 3;
s->filter = data & 0x3fff;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: write into read-only register 0x%x\n",
__func__, reg);
}
}
/* This handles most of the chip's logic. */
static void tsc2005_pin_update(TSC2005State *s)
{
int64_t expires;
bool pin_state;
switch (s->pin_func) {
case 0:
pin_state = !s->pressure && !!s->dav;
break;
case 1:
case 3:
default:
pin_state = !s->dav;
break;
case 2:
pin_state = !s->pressure;
}
if (pin_state != s->irq) {
s->irq = pin_state;
qemu_set_irq(s->pint, s->irq);
}
switch (s->nextfunction) {
case TSC_MODE_XYZ_SCAN:
case TSC_MODE_XY_SCAN:
if (!s->host_mode && s->dav)
s->enabled = false;
if (!s->pressure)
return;
/* Fall through */
case TSC_MODE_AUX_SCAN:
break;
case TSC_MODE_X:
case TSC_MODE_Y:
case TSC_MODE_Z:
if (!s->pressure)
return;
/* Fall through */
case TSC_MODE_AUX:
case TSC_MODE_TEMP1:
case TSC_MODE_TEMP2:
case TSC_MODE_X_TEST:
case TSC_MODE_Y_TEST:
case TSC_MODE_TS_TEST:
if (s->dav)
s->enabled = false;
break;
case TSC_MODE_RESERVED:
case TSC_MODE_XX_DRV:
case TSC_MODE_YY_DRV:
case TSC_MODE_YX_DRV:
default:
return;
}
if (!s->enabled || s->busy)
return;
s->busy = true;
s->precision = s->nextprecision;
s->function = s->nextfunction;
s->pdst = !s->pnd0; /* Synchronised on internal clock */
expires = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(NANOSECONDS_PER_SECOND >> 7);
timer_mod(s->timer, expires);
}
static void tsc2005_reset(TSC2005State *s)
{
s->state = 0;
s->pin_func = 0;
s->enabled = false;
s->busy = false;
s->nextprecision = false;
s->nextfunction = 0;
s->timing[0] = 0;
s->timing[1] = 0;
s->irq = false;
s->dav = 0;
s->reset = false;
s->pdst = true;
s->pnd0 = false;
s->function = -1;
s->temp_thr[0] = 0x000;
s->temp_thr[1] = 0xfff;
s->aux_thr[0] = 0x000;
s->aux_thr[1] = 0xfff;
tsc2005_pin_update(s);
}
static uint8_t tsc2005_txrx_word(void *opaque, uint8_t value)
{
TSC2005State *s = opaque;
uint32_t ret = 0;
switch (s->state ++) {
case 0:
if (value & 0x80) {
/* Command */
if (value & (1 << 1))
tsc2005_reset(s);
else {
s->nextfunction = (value >> 3) & 0xf;
s->nextprecision = (value >> 2) & 1;
if (s->enabled != !(value & 1)) {
s->enabled = !(value & 1);
trace_tsc2005_sense(s->enabled ? "enabled" : "disabled");
if (s->busy && !s->enabled)
timer_del(s->timer);
s->busy = s->busy && s->enabled;
}
tsc2005_pin_update(s);
}
s->state = 0;
} else if (value) {
/* Data transfer */
s->reg = (value >> 3) & 0xf;
s->pnd0 = (value >> 1) & 1;
s->command = value & 1;
if (s->command) {
/* Read */
s->data = tsc2005_read(s, s->reg);
tsc2005_pin_update(s);
} else
s->data = 0;
} else
s->state = 0;
break;
case 1:
if (s->command)
ret = (s->data >> 8) & 0xff;
else
s->data |= value << 8;
break;
case 2:
if (s->command)
ret = s->data & 0xff;
else {
s->data |= value;
tsc2005_write(s, s->reg, s->data);
tsc2005_pin_update(s);
}
s->state = 0;
break;
}
return ret;
}
uint32_t tsc2005_txrx(void *opaque, uint32_t value, int len)
{
uint32_t ret = 0;
len &= ~7;
while (len > 0) {
len -= 8;
ret |= tsc2005_txrx_word(opaque, (value >> len) & 0xff) << len;
}
return ret;
}
static void tsc2005_timer_tick(void *opaque)
{
TSC2005State *s = opaque;
/* Timer ticked -- a set of conversions has been finished. */
if (!s->busy)
return;
s->busy = false;
s->dav |= mode_regs[s->function];
s->function = -1;
tsc2005_pin_update(s);
}
static void tsc2005_touchscreen_event(void *opaque,
int x, int y, int z, int buttons_state)
{
TSC2005State *s = opaque;
int p = s->pressure;
if (buttons_state) {
s->x = x;
s->y = y;
}
s->pressure = !!buttons_state;
/*
* Note: We would get better responsiveness in the guest by
* signaling TS events immediately, but for now we simulate
* the first conversion delay for sake of correctness.
*/
if (p != s->pressure)
tsc2005_pin_update(s);
}
static int tsc2005_post_load(void *opaque, int version_id)
{
TSC2005State *s = (TSC2005State *) opaque;
s->busy = timer_pending(s->timer);
tsc2005_pin_update(s);
return 0;
}
static const VMStateDescription vmstate_tsc2005 = {
.name = "tsc2005",
.version_id = 2,
.minimum_version_id = 2,
.post_load = tsc2005_post_load,
.fields = (VMStateField []) {
VMSTATE_BOOL(pressure, TSC2005State),
VMSTATE_BOOL(irq, TSC2005State),
VMSTATE_BOOL(command, TSC2005State),
VMSTATE_BOOL(enabled, TSC2005State),
VMSTATE_BOOL(host_mode, TSC2005State),
VMSTATE_BOOL(reset, TSC2005State),
VMSTATE_BOOL(pdst, TSC2005State),
VMSTATE_BOOL(pnd0, TSC2005State),
VMSTATE_BOOL(precision, TSC2005State),
VMSTATE_BOOL(nextprecision, TSC2005State),
VMSTATE_UINT8(reg, TSC2005State),
VMSTATE_UINT8(state, TSC2005State),
VMSTATE_UINT16(data, TSC2005State),
VMSTATE_UINT16(dav, TSC2005State),
VMSTATE_UINT16(filter, TSC2005State),
VMSTATE_INT8(nextfunction, TSC2005State),
VMSTATE_INT8(function, TSC2005State),
VMSTATE_INT32(x, TSC2005State),
VMSTATE_INT32(y, TSC2005State),
VMSTATE_TIMER_PTR(timer, TSC2005State),
VMSTATE_UINT8(pin_func, TSC2005State),
VMSTATE_UINT16_ARRAY(timing, TSC2005State, 2),
VMSTATE_UINT8(noise, TSC2005State),
VMSTATE_UINT16_ARRAY(temp_thr, TSC2005State, 2),
VMSTATE_UINT16_ARRAY(aux_thr, TSC2005State, 2),
VMSTATE_INT32_ARRAY(tr, TSC2005State, 8),
VMSTATE_END_OF_LIST()
}
};
void *tsc2005_init(qemu_irq pintdav)
{
TSC2005State *s;
s = (TSC2005State *)
g_malloc0(sizeof(TSC2005State));
s->x = 400;
s->y = 240;
s->pressure = false;
s->precision = s->nextprecision = false;
s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, tsc2005_timer_tick, s);
s->pint = pintdav;
s->model = 0x2005;
s->tr[0] = 0;
s->tr[1] = 1;
s->tr[2] = 1;
s->tr[3] = 0;
s->tr[4] = 1;
s->tr[5] = 0;
s->tr[6] = 1;
s->tr[7] = 0;
tsc2005_reset(s);
qemu_add_mouse_event_handler(tsc2005_touchscreen_event, s, 1,
"QEMU TSC2005-driven Touchscreen");
qemu_register_reset((void *) tsc2005_reset, s);
vmstate_register(NULL, 0, &vmstate_tsc2005, s);
return s;
}
/*
* Use tslib generated calibration data to generate ADC input values
* from the touchscreen. Assuming 12-bit precision was used during
* tslib calibration.
*/
void tsc2005_set_transform(void *opaque, MouseTransformInfo *info)
{
TSC2005State *s = (TSC2005State *) opaque;
/* This version assumes touchscreen X & Y axis are parallel or
* perpendicular to LCD's X & Y axis in some way. */
if (abs(info->a[0]) > abs(info->a[1])) {
s->tr[0] = 0;
s->tr[1] = -info->a[6] * info->x;
s->tr[2] = info->a[0];
s->tr[3] = -info->a[2] / info->a[0];
s->tr[4] = info->a[6] * info->y;
s->tr[5] = 0;
s->tr[6] = info->a[4];
s->tr[7] = -info->a[5] / info->a[4];
} else {
s->tr[0] = info->a[6] * info->y;
s->tr[1] = 0;
s->tr[2] = info->a[1];
s->tr[3] = -info->a[2] / info->a[1];
s->tr[4] = 0;
s->tr[5] = -info->a[6] * info->x;
s->tr[6] = info->a[3];
s->tr[7] = -info->a[5] / info->a[3];
}
s->tr[0] >>= 11;
s->tr[1] >>= 11;
s->tr[3] <<= 4;
s->tr[4] >>= 11;
s->tr[5] >>= 11;
s->tr[7] <<= 4;
}