qemu/hw/pflash_cfi02.c

742 lines
21 KiB
C

/*
* CFI parallel flash with AMD command set emulation
*
* Copyright (c) 2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For now, this code can emulate flashes of 1, 2 or 4 bytes width.
* Supported commands/modes are:
* - flash read
* - flash write
* - flash ID read
* - sector erase
* - chip erase
* - unlock bypass command
* - CFI queries
*
* It does not support flash interleaving.
* It does not implement boot blocs with reduced size
* It does not implement software data protection as found in many real chips
* It does not implement erase suspend/resume commands
* It does not implement multiple sectors erase
*/
#include "hw.h"
#include "flash.h"
#include "qemu-timer.h"
#include "block.h"
//#define PFLASH_DEBUG
#ifdef PFLASH_DEBUG
#define DPRINTF(fmt, ...) \
do { \
printf("PFLASH: " fmt , ## __VA_ARGS__); \
} while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
struct pflash_t {
BlockDriverState *bs;
target_phys_addr_t base;
uint32_t sector_len;
uint32_t chip_len;
int mappings;
int width;
int wcycle; /* if 0, the flash is read normally */
int bypass;
int ro;
uint8_t cmd;
uint8_t status;
uint16_t ident[4];
uint16_t unlock_addr[2];
uint8_t cfi_len;
uint8_t cfi_table[0x52];
QEMUTimer *timer;
ram_addr_t off;
int fl_mem;
int rom_mode;
void *storage;
};
static void pflash_register_memory(pflash_t *pfl, int rom_mode)
{
unsigned long phys_offset = pfl->fl_mem;
int i;
if (rom_mode)
phys_offset |= pfl->off | IO_MEM_ROMD;
pfl->rom_mode = rom_mode;
for (i = 0; i < pfl->mappings; i++)
cpu_register_physical_memory(pfl->base + i * pfl->chip_len,
pfl->chip_len, phys_offset);
}
static void pflash_timer (void *opaque)
{
pflash_t *pfl = opaque;
DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
/* Reset flash */
pfl->status ^= 0x80;
if (pfl->bypass) {
pfl->wcycle = 2;
} else {
pflash_register_memory(pfl, 1);
pfl->wcycle = 0;
}
pfl->cmd = 0;
}
static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
int width, int be)
{
target_phys_addr_t boff;
uint32_t ret;
uint8_t *p;
DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
ret = -1;
if (pfl->rom_mode) {
/* Lazy reset of to ROMD mode */
if (pfl->wcycle == 0)
pflash_register_memory(pfl, 1);
}
offset &= pfl->chip_len - 1;
boff = offset & 0xFF;
if (pfl->width == 2)
boff = boff >> 1;
else if (pfl->width == 4)
boff = boff >> 2;
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read*/
DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
pfl->wcycle = 0;
pfl->cmd = 0;
case 0x80:
/* We accept reads during second unlock sequence... */
case 0x00:
flash_read:
/* Flash area read */
p = pfl->storage;
switch (width) {
case 1:
ret = p[offset];
// DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
break;
case 2:
if (be) {
ret = p[offset] << 8;
ret |= p[offset + 1];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
}
// DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
break;
case 4:
if (be) {
ret = p[offset] << 24;
ret |= p[offset + 1] << 16;
ret |= p[offset + 2] << 8;
ret |= p[offset + 3];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
ret |= p[offset + 2] << 16;
ret |= p[offset + 3] << 24;
}
// DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
break;
}
break;
case 0x90:
/* flash ID read */
switch (boff) {
case 0x00:
case 0x01:
ret = pfl->ident[boff & 0x01];
break;
case 0x02:
ret = 0x00; /* Pretend all sectors are unprotected */
break;
case 0x0E:
case 0x0F:
if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
goto flash_read;
ret = pfl->ident[2 + (boff & 0x01)];
break;
default:
goto flash_read;
}
DPRINTF("%s: ID " TARGET_FMT_pld " %x\n", __func__, boff, ret);
break;
case 0xA0:
case 0x10:
case 0x30:
/* Status register read */
ret = pfl->status;
DPRINTF("%s: status %x\n", __func__, ret);
/* Toggle bit 6 */
pfl->status ^= 0x40;
break;
case 0x98:
/* CFI query mode */
if (boff > pfl->cfi_len)
ret = 0;
else
ret = pfl->cfi_table[boff];
break;
}
return ret;
}
/* update flash content on disk */
static void pflash_update(pflash_t *pfl, int offset,
int size)
{
int offset_end;
if (pfl->bs) {
offset_end = offset + size;
/* round to sectors */
offset = offset >> 9;
offset_end = (offset_end + 511) >> 9;
bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
offset_end - offset);
}
}
static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
uint32_t value, int width, int be)
{
target_phys_addr_t boff;
uint8_t *p;
uint8_t cmd;
cmd = value;
if (pfl->cmd != 0xA0 && cmd == 0xF0) {
#if 0
DPRINTF("%s: flash reset asked (%02x %02x)\n",
__func__, pfl->cmd, cmd);
#endif
goto reset_flash;
}
DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
offset, value, width, pfl->wcycle);
offset &= pfl->chip_len - 1;
DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
offset, value, width);
boff = offset & (pfl->sector_len - 1);
if (pfl->width == 2)
boff = boff >> 1;
else if (pfl->width == 4)
boff = boff >> 2;
switch (pfl->wcycle) {
case 0:
/* Set the device in I/O access mode if required */
if (pfl->rom_mode)
pflash_register_memory(pfl, 0);
/* We're in read mode */
check_unlock0:
if (boff == 0x55 && cmd == 0x98) {
enter_CFI_mode:
/* Enter CFI query mode */
pfl->wcycle = 7;
pfl->cmd = 0x98;
return;
}
if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
__func__, boff, cmd, pfl->unlock_addr[0]);
goto reset_flash;
}
DPRINTF("%s: unlock sequence started\n", __func__);
break;
case 1:
/* We started an unlock sequence */
check_unlock1:
if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
DPRINTF("%s: unlock sequence done\n", __func__);
break;
case 2:
/* We finished an unlock sequence */
if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
boff, cmd);
goto reset_flash;
}
switch (cmd) {
case 0x20:
pfl->bypass = 1;
goto do_bypass;
case 0x80:
case 0x90:
case 0xA0:
pfl->cmd = cmd;
DPRINTF("%s: starting command %02x\n", __func__, cmd);
break;
default:
DPRINTF("%s: unknown command %02x\n", __func__, cmd);
goto reset_flash;
}
break;
case 3:
switch (pfl->cmd) {
case 0x80:
/* We need another unlock sequence */
goto check_unlock0;
case 0xA0:
DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
__func__, offset, value, width);
p = pfl->storage;
switch (width) {
case 1:
p[offset] &= value;
pflash_update(pfl, offset, 1);
break;
case 2:
if (be) {
p[offset] &= value >> 8;
p[offset + 1] &= value;
} else {
p[offset] &= value;
p[offset + 1] &= value >> 8;
}
pflash_update(pfl, offset, 2);
break;
case 4:
if (be) {
p[offset] &= value >> 24;
p[offset + 1] &= value >> 16;
p[offset + 2] &= value >> 8;
p[offset + 3] &= value;
} else {
p[offset] &= value;
p[offset + 1] &= value >> 8;
p[offset + 2] &= value >> 16;
p[offset + 3] &= value >> 24;
}
pflash_update(pfl, offset, 4);
break;
}
pfl->status = 0x00 | ~(value & 0x80);
/* Let's pretend write is immediate */
if (pfl->bypass)
goto do_bypass;
goto reset_flash;
case 0x90:
if (pfl->bypass && cmd == 0x00) {
/* Unlock bypass reset */
goto reset_flash;
}
/* We can enter CFI query mode from autoselect mode */
if (boff == 0x55 && cmd == 0x98)
goto enter_CFI_mode;
/* No break here */
default:
DPRINTF("%s: invalid write for command %02x\n",
__func__, pfl->cmd);
goto reset_flash;
}
case 4:
switch (pfl->cmd) {
case 0xA0:
/* Ignore writes while flash data write is occuring */
/* As we suppose write is immediate, this should never happen */
return;
case 0x80:
goto check_unlock1;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 4)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
case 5:
switch (cmd) {
case 0x10:
if (boff != pfl->unlock_addr[0]) {
DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
__func__, offset);
goto reset_flash;
}
/* Chip erase */
DPRINTF("%s: start chip erase\n", __func__);
memset(pfl->storage, 0xFF, pfl->chip_len);
pfl->status = 0x00;
pflash_update(pfl, 0, pfl->chip_len);
/* Let's wait 5 seconds before chip erase is done */
qemu_mod_timer(pfl->timer,
qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 5));
break;
case 0x30:
/* Sector erase */
p = pfl->storage;
offset &= ~(pfl->sector_len - 1);
DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
offset);
memset(p + offset, 0xFF, pfl->sector_len);
pflash_update(pfl, offset, pfl->sector_len);
pfl->status = 0x00;
/* Let's wait 1/2 second before sector erase is done */
qemu_mod_timer(pfl->timer,
qemu_get_clock(vm_clock) + (get_ticks_per_sec() / 2));
break;
default:
DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
goto reset_flash;
}
pfl->cmd = cmd;
break;
case 6:
switch (pfl->cmd) {
case 0x10:
/* Ignore writes during chip erase */
return;
case 0x30:
/* Ignore writes during sector erase */
return;
default:
/* Should never happen */
DPRINTF("%s: invalid command state %02x (wc 6)\n",
__func__, pfl->cmd);
goto reset_flash;
}
break;
case 7: /* Special value for CFI queries */
DPRINTF("%s: invalid write in CFI query mode\n", __func__);
goto reset_flash;
default:
/* Should never happen */
DPRINTF("%s: invalid write state (wc 7)\n", __func__);
goto reset_flash;
}
pfl->wcycle++;
return;
/* Reset flash */
reset_flash:
pfl->bypass = 0;
pfl->wcycle = 0;
pfl->cmd = 0;
return;
do_bypass:
pfl->wcycle = 2;
pfl->cmd = 0;
return;
}
static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
{
return pflash_read(opaque, addr, 1, 1);
}
static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
{
return pflash_read(opaque, addr, 1, 0);
}
static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 2, 1);
}
static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 2, 0);
}
static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 4, 1);
}
static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
{
pflash_t *pfl = opaque;
return pflash_read(pfl, addr, 4, 0);
}
static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_write(opaque, addr, value, 1, 1);
}
static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_write(opaque, addr, value, 1, 0);
}
static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 2, 1);
}
static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 2, 0);
}
static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 4, 1);
}
static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
pflash_t *pfl = opaque;
pflash_write(pfl, addr, value, 4, 0);
}
static CPUWriteMemoryFunc * const pflash_write_ops_be[] = {
&pflash_writeb_be,
&pflash_writew_be,
&pflash_writel_be,
};
static CPUReadMemoryFunc * const pflash_read_ops_be[] = {
&pflash_readb_be,
&pflash_readw_be,
&pflash_readl_be,
};
static CPUWriteMemoryFunc * const pflash_write_ops_le[] = {
&pflash_writeb_le,
&pflash_writew_le,
&pflash_writel_le,
};
static CPUReadMemoryFunc * const pflash_read_ops_le[] = {
&pflash_readb_le,
&pflash_readw_le,
&pflash_readl_le,
};
/* Count trailing zeroes of a 32 bits quantity */
static int ctz32 (uint32_t n)
{
int ret;
ret = 0;
if (!(n & 0xFFFF)) {
ret += 16;
n = n >> 16;
}
if (!(n & 0xFF)) {
ret += 8;
n = n >> 8;
}
if (!(n & 0xF)) {
ret += 4;
n = n >> 4;
}
if (!(n & 0x3)) {
ret += 2;
n = n >> 2;
}
if (!(n & 0x1)) {
ret++;
#if 0 /* This is not necessary as n is never 0 */
n = n >> 1;
#endif
}
#if 0 /* This is not necessary as n is never 0 */
if (!n)
ret++;
#endif
return ret;
}
pflash_t *pflash_cfi02_register(target_phys_addr_t base, ram_addr_t off,
BlockDriverState *bs, uint32_t sector_len,
int nb_blocs, int nb_mappings, int width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
uint16_t unlock_addr0, uint16_t unlock_addr1,
int be)
{
pflash_t *pfl;
int32_t chip_len;
int ret;
chip_len = sector_len * nb_blocs;
/* XXX: to be fixed */
#if 0
if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
return NULL;
#endif
pfl = qemu_mallocz(sizeof(pflash_t));
/* FIXME: Allocate ram ourselves. */
pfl->storage = qemu_get_ram_ptr(off);
if (be) {
pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be,
pflash_write_ops_be,
pfl);
} else {
pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le,
pflash_write_ops_le,
pfl);
}
pfl->off = off;
pfl->base = base;
pfl->chip_len = chip_len;
pfl->mappings = nb_mappings;
pflash_register_memory(pfl, 1);
pfl->bs = bs;
if (pfl->bs) {
/* read the initial flash content */
ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
if (ret < 0) {
cpu_unregister_io_memory(pfl->fl_mem);
qemu_free(pfl);
return NULL;
}
}
#if 0 /* XXX: there should be a bit to set up read-only,
* the same way the hardware does (with WP pin).
*/
pfl->ro = 1;
#else
pfl->ro = 0;
#endif
pfl->timer = qemu_new_timer(vm_clock, pflash_timer, pfl);
pfl->sector_len = sector_len;
pfl->width = width;
pfl->wcycle = 0;
pfl->cmd = 0;
pfl->status = 0;
pfl->ident[0] = id0;
pfl->ident[1] = id1;
pfl->ident[2] = id2;
pfl->ident[3] = id3;
pfl->unlock_addr[0] = unlock_addr0;
pfl->unlock_addr[1] = unlock_addr1;
/* Hardcoded CFI table (mostly from SG29 Spansion flash) */
pfl->cfi_len = 0x52;
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
pfl->cfi_table[0x12] = 'Y';
/* Command set (AMD/Fujitsu) */
pfl->cfi_table[0x13] = 0x02;
pfl->cfi_table[0x14] = 0x00;
/* Primary extended table address */
pfl->cfi_table[0x15] = 0x31;
pfl->cfi_table[0x16] = 0x00;
/* Alternate command set (none) */
pfl->cfi_table[0x17] = 0x00;
pfl->cfi_table[0x18] = 0x00;
/* Alternate extended table (none) */
pfl->cfi_table[0x19] = 0x00;
pfl->cfi_table[0x1A] = 0x00;
/* Vcc min */
pfl->cfi_table[0x1B] = 0x27;
/* Vcc max */
pfl->cfi_table[0x1C] = 0x36;
/* Vpp min (no Vpp pin) */
pfl->cfi_table[0x1D] = 0x00;
/* Vpp max (no Vpp pin) */
pfl->cfi_table[0x1E] = 0x00;
/* Reserved */
pfl->cfi_table[0x1F] = 0x07;
/* Timeout for min size buffer write (NA) */
pfl->cfi_table[0x20] = 0x00;
/* Typical timeout for block erase (512 ms) */
pfl->cfi_table[0x21] = 0x09;
/* Typical timeout for full chip erase (4096 ms) */
pfl->cfi_table[0x22] = 0x0C;
/* Reserved */
pfl->cfi_table[0x23] = 0x01;
/* Max timeout for buffer write (NA) */
pfl->cfi_table[0x24] = 0x00;
/* Max timeout for block erase */
pfl->cfi_table[0x25] = 0x0A;
/* Max timeout for chip erase */
pfl->cfi_table[0x26] = 0x0D;
/* Device size */
pfl->cfi_table[0x27] = ctz32(chip_len);
/* Flash device interface (8 & 16 bits) */
pfl->cfi_table[0x28] = 0x02;
pfl->cfi_table[0x29] = 0x00;
/* Max number of bytes in multi-bytes write */
/* XXX: disable buffered write as it's not supported */
// pfl->cfi_table[0x2A] = 0x05;
pfl->cfi_table[0x2A] = 0x00;
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions (uniform) */
pfl->cfi_table[0x2C] = 0x01;
/* Erase block region 1 */
pfl->cfi_table[0x2D] = nb_blocs - 1;
pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
pfl->cfi_table[0x2F] = sector_len >> 8;
pfl->cfi_table[0x30] = sector_len >> 16;
/* Extended */
pfl->cfi_table[0x31] = 'P';
pfl->cfi_table[0x32] = 'R';
pfl->cfi_table[0x33] = 'I';
pfl->cfi_table[0x34] = '1';
pfl->cfi_table[0x35] = '0';
pfl->cfi_table[0x36] = 0x00;
pfl->cfi_table[0x37] = 0x00;
pfl->cfi_table[0x38] = 0x00;
pfl->cfi_table[0x39] = 0x00;
pfl->cfi_table[0x3a] = 0x00;
pfl->cfi_table[0x3b] = 0x00;
pfl->cfi_table[0x3c] = 0x00;
return pfl;
}