qemu/target-i386/cpu.c

3199 lines
105 KiB
C

/*
* i386 CPUID helper functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "sysemu/kvm.h"
#include "sysemu/cpus.h"
#include "kvm_i386.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qapi/qmp/qerror.h"
#include "qapi-types.h"
#include "qapi-visit.h"
#include "qapi/visitor.h"
#include "sysemu/arch_init.h"
#include "hw/hw.h"
#if defined(CONFIG_KVM)
#include <linux/kvm_para.h>
#endif
#include "sysemu/sysemu.h"
#include "hw/qdev-properties.h"
#include "hw/cpu/icc_bus.h"
#ifndef CONFIG_USER_ONLY
#include "exec/address-spaces.h"
#include "hw/xen/xen.h"
#include "hw/i386/apic_internal.h"
#endif
/* Cache topology CPUID constants: */
/* CPUID Leaf 2 Descriptors */
#define CPUID_2_L1D_32KB_8WAY_64B 0x2c
#define CPUID_2_L1I_32KB_8WAY_64B 0x30
#define CPUID_2_L2_2MB_8WAY_64B 0x7d
/* CPUID Leaf 4 constants: */
/* EAX: */
#define CPUID_4_TYPE_DCACHE 1
#define CPUID_4_TYPE_ICACHE 2
#define CPUID_4_TYPE_UNIFIED 3
#define CPUID_4_LEVEL(l) ((l) << 5)
#define CPUID_4_SELF_INIT_LEVEL (1 << 8)
#define CPUID_4_FULLY_ASSOC (1 << 9)
/* EDX: */
#define CPUID_4_NO_INVD_SHARING (1 << 0)
#define CPUID_4_INCLUSIVE (1 << 1)
#define CPUID_4_COMPLEX_IDX (1 << 2)
#define ASSOC_FULL 0xFF
/* AMD associativity encoding used on CPUID Leaf 0x80000006: */
#define AMD_ENC_ASSOC(a) (a <= 1 ? a : \
a == 2 ? 0x2 : \
a == 4 ? 0x4 : \
a == 8 ? 0x6 : \
a == 16 ? 0x8 : \
a == 32 ? 0xA : \
a == 48 ? 0xB : \
a == 64 ? 0xC : \
a == 96 ? 0xD : \
a == 128 ? 0xE : \
a == ASSOC_FULL ? 0xF : \
0 /* invalid value */)
/* Definitions of the hardcoded cache entries we expose: */
/* L1 data cache: */
#define L1D_LINE_SIZE 64
#define L1D_ASSOCIATIVITY 8
#define L1D_SETS 64
#define L1D_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */
#define L1D_DESCRIPTOR CPUID_2_L1D_32KB_8WAY_64B
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
#define L1D_LINES_PER_TAG 1
#define L1D_SIZE_KB_AMD 64
#define L1D_ASSOCIATIVITY_AMD 2
/* L1 instruction cache: */
#define L1I_LINE_SIZE 64
#define L1I_ASSOCIATIVITY 8
#define L1I_SETS 64
#define L1I_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */
#define L1I_DESCRIPTOR CPUID_2_L1I_32KB_8WAY_64B
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
#define L1I_LINES_PER_TAG 1
#define L1I_SIZE_KB_AMD 64
#define L1I_ASSOCIATIVITY_AMD 2
/* Level 2 unified cache: */
#define L2_LINE_SIZE 64
#define L2_ASSOCIATIVITY 16
#define L2_SETS 4096
#define L2_PARTITIONS 1
/* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 4MiB */
/*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */
#define L2_DESCRIPTOR CPUID_2_L2_2MB_8WAY_64B
/*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */
#define L2_LINES_PER_TAG 1
#define L2_SIZE_KB_AMD 512
/* No L3 cache: */
#define L3_SIZE_KB 0 /* disabled */
#define L3_ASSOCIATIVITY 0 /* disabled */
#define L3_LINES_PER_TAG 0 /* disabled */
#define L3_LINE_SIZE 0 /* disabled */
/* TLB definitions: */
#define L1_DTLB_2M_ASSOC 1
#define L1_DTLB_2M_ENTRIES 255
#define L1_DTLB_4K_ASSOC 1
#define L1_DTLB_4K_ENTRIES 255
#define L1_ITLB_2M_ASSOC 1
#define L1_ITLB_2M_ENTRIES 255
#define L1_ITLB_4K_ASSOC 1
#define L1_ITLB_4K_ENTRIES 255
#define L2_DTLB_2M_ASSOC 0 /* disabled */
#define L2_DTLB_2M_ENTRIES 0 /* disabled */
#define L2_DTLB_4K_ASSOC 4
#define L2_DTLB_4K_ENTRIES 512
#define L2_ITLB_2M_ASSOC 0 /* disabled */
#define L2_ITLB_2M_ENTRIES 0 /* disabled */
#define L2_ITLB_4K_ASSOC 4
#define L2_ITLB_4K_ENTRIES 512
static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
uint32_t vendor2, uint32_t vendor3)
{
int i;
for (i = 0; i < 4; i++) {
dst[i] = vendor1 >> (8 * i);
dst[i + 4] = vendor2 >> (8 * i);
dst[i + 8] = vendor3 >> (8 * i);
}
dst[CPUID_VENDOR_SZ] = '\0';
}
/* feature flags taken from "Intel Processor Identification and the CPUID
* Instruction" and AMD's "CPUID Specification". In cases of disagreement
* between feature naming conventions, aliases may be added.
*/
static const char *feature_name[] = {
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss",
"ht" /* Intel htt */, "tm", "ia64", "pbe",
};
static const char *ext_feature_name[] = {
"pni|sse3" /* Intel,AMD sse3 */, "pclmulqdq|pclmuldq", "dtes64", "monitor",
"ds_cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL,
"fma", "cx16", "xtpr", "pdcm",
NULL, "pcid", "dca", "sse4.1|sse4_1",
"sse4.2|sse4_2", "x2apic", "movbe", "popcnt",
"tsc-deadline", "aes", "xsave", "osxsave",
"avx", "f16c", "rdrand", "hypervisor",
};
/* Feature names that are already defined on feature_name[] but are set on
* CPUID[8000_0001].EDX on AMD CPUs don't have their names on
* ext2_feature_name[]. They are copied automatically to cpuid_ext2_features
* if and only if CPU vendor is AMD.
*/
static const char *ext2_feature_name[] = {
NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
NULL /* cx8 */ /* AMD CMPXCHG8B */, NULL /* apic */, NULL, "syscall",
NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
"nx|xd", NULL, "mmxext", NULL /* mmx */,
NULL /* fxsr */, "fxsr_opt|ffxsr", "pdpe1gb" /* AMD Page1GB */, "rdtscp",
NULL, "lm|i64", "3dnowext", "3dnow",
};
static const char *ext3_feature_name[] = {
"lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */,
"cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "xop",
"skinit", "wdt", NULL, "lwp",
"fma4", "tce", NULL, "nodeid_msr",
NULL, "tbm", "topoext", "perfctr_core",
"perfctr_nb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *ext4_feature_name[] = {
NULL, NULL, "xstore", "xstore-en",
NULL, NULL, "xcrypt", "xcrypt-en",
"ace2", "ace2-en", "phe", "phe-en",
"pmm", "pmm-en", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *kvm_feature_name[] = {
"kvmclock", "kvm_nopiodelay", "kvm_mmu", "kvmclock",
"kvm_asyncpf", "kvm_steal_time", "kvm_pv_eoi", "kvm_pv_unhalt",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"kvmclock-stable-bit", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *svm_feature_name[] = {
"npt", "lbrv", "svm_lock", "nrip_save",
"tsc_scale", "vmcb_clean", "flushbyasid", "decodeassists",
NULL, NULL, "pause_filter", NULL,
"pfthreshold", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *cpuid_7_0_ebx_feature_name[] = {
"fsgsbase", "tsc_adjust", NULL, "bmi1", "hle", "avx2", NULL, "smep",
"bmi2", "erms", "invpcid", "rtm", NULL, NULL, "mpx", NULL,
"avx512f", NULL, "rdseed", "adx", "smap", NULL, NULL, NULL,
NULL, NULL, "avx512pf", "avx512er", "avx512cd", NULL, NULL, NULL,
};
static const char *cpuid_apm_edx_feature_name[] = {
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"invtsc", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
static const char *cpuid_xsave_feature_name[] = {
"xsaveopt", "xsavec", "xgetbv1", "xsaves",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
};
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS)
/* partly implemented:
CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */
/* missing:
CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR)
/* missing:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_XSAVE,
CPUID_EXT_OSXSAVE, CPUID_EXT_AVX, CPUID_EXT_F16C,
CPUID_EXT_RDRAND */
#ifdef TARGET_X86_64
#define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM)
#else
#define TCG_EXT2_X86_64_FEATURES 0
#endif
#define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \
TCG_EXT2_X86_64_FEATURES)
#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
#define TCG_EXT4_FEATURES 0
#define TCG_SVM_FEATURES 0
#define TCG_KVM_FEATURES 0
#define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \
CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX)
/* missing:
CPUID_7_0_EBX_FSGSBASE, CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
CPUID_7_0_EBX_ERMS, CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
CPUID_7_0_EBX_RDSEED */
#define TCG_APM_FEATURES 0
typedef struct FeatureWordInfo {
const char **feat_names;
uint32_t cpuid_eax; /* Input EAX for CPUID */
bool cpuid_needs_ecx; /* CPUID instruction uses ECX as input */
uint32_t cpuid_ecx; /* Input ECX value for CPUID */
int cpuid_reg; /* output register (R_* constant) */
uint32_t tcg_features; /* Feature flags supported by TCG */
uint32_t unmigratable_flags; /* Feature flags known to be unmigratable */
} FeatureWordInfo;
static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
[FEAT_1_EDX] = {
.feat_names = feature_name,
.cpuid_eax = 1, .cpuid_reg = R_EDX,
.tcg_features = TCG_FEATURES,
},
[FEAT_1_ECX] = {
.feat_names = ext_feature_name,
.cpuid_eax = 1, .cpuid_reg = R_ECX,
.tcg_features = TCG_EXT_FEATURES,
},
[FEAT_8000_0001_EDX] = {
.feat_names = ext2_feature_name,
.cpuid_eax = 0x80000001, .cpuid_reg = R_EDX,
.tcg_features = TCG_EXT2_FEATURES,
},
[FEAT_8000_0001_ECX] = {
.feat_names = ext3_feature_name,
.cpuid_eax = 0x80000001, .cpuid_reg = R_ECX,
.tcg_features = TCG_EXT3_FEATURES,
},
[FEAT_C000_0001_EDX] = {
.feat_names = ext4_feature_name,
.cpuid_eax = 0xC0000001, .cpuid_reg = R_EDX,
.tcg_features = TCG_EXT4_FEATURES,
},
[FEAT_KVM] = {
.feat_names = kvm_feature_name,
.cpuid_eax = KVM_CPUID_FEATURES, .cpuid_reg = R_EAX,
.tcg_features = TCG_KVM_FEATURES,
},
[FEAT_SVM] = {
.feat_names = svm_feature_name,
.cpuid_eax = 0x8000000A, .cpuid_reg = R_EDX,
.tcg_features = TCG_SVM_FEATURES,
},
[FEAT_7_0_EBX] = {
.feat_names = cpuid_7_0_ebx_feature_name,
.cpuid_eax = 7,
.cpuid_needs_ecx = true, .cpuid_ecx = 0,
.cpuid_reg = R_EBX,
.tcg_features = TCG_7_0_EBX_FEATURES,
},
[FEAT_8000_0007_EDX] = {
.feat_names = cpuid_apm_edx_feature_name,
.cpuid_eax = 0x80000007,
.cpuid_reg = R_EDX,
.tcg_features = TCG_APM_FEATURES,
.unmigratable_flags = CPUID_APM_INVTSC,
},
[FEAT_XSAVE] = {
.feat_names = cpuid_xsave_feature_name,
.cpuid_eax = 0xd,
.cpuid_needs_ecx = true, .cpuid_ecx = 1,
.cpuid_reg = R_EAX,
.tcg_features = 0,
},
};
typedef struct X86RegisterInfo32 {
/* Name of register */
const char *name;
/* QAPI enum value register */
X86CPURegister32 qapi_enum;
} X86RegisterInfo32;
#define REGISTER(reg) \
[R_##reg] = { .name = #reg, .qapi_enum = X86_CPU_REGISTER32_##reg }
static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
REGISTER(EAX),
REGISTER(ECX),
REGISTER(EDX),
REGISTER(EBX),
REGISTER(ESP),
REGISTER(EBP),
REGISTER(ESI),
REGISTER(EDI),
};
#undef REGISTER
typedef struct ExtSaveArea {
uint32_t feature, bits;
uint32_t offset, size;
} ExtSaveArea;
static const ExtSaveArea ext_save_areas[] = {
[2] = { .feature = FEAT_1_ECX, .bits = CPUID_EXT_AVX,
.offset = 0x240, .size = 0x100 },
[3] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = 0x3c0, .size = 0x40 },
[4] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = 0x400, .size = 0x40 },
[5] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = 0x440, .size = 0x40 },
[6] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = 0x480, .size = 0x200 },
[7] = { .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = 0x680, .size = 0x400 },
};
const char *get_register_name_32(unsigned int reg)
{
if (reg >= CPU_NB_REGS32) {
return NULL;
}
return x86_reg_info_32[reg].name;
}
/* KVM-specific features that are automatically added to all CPU models
* when KVM is enabled.
*/
static uint32_t kvm_default_features[FEATURE_WORDS] = {
[FEAT_KVM] = (1 << KVM_FEATURE_CLOCKSOURCE) |
(1 << KVM_FEATURE_NOP_IO_DELAY) |
(1 << KVM_FEATURE_CLOCKSOURCE2) |
(1 << KVM_FEATURE_ASYNC_PF) |
(1 << KVM_FEATURE_STEAL_TIME) |
(1 << KVM_FEATURE_PV_EOI) |
(1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT),
[FEAT_1_ECX] = CPUID_EXT_X2APIC,
};
/* Features that are not added by default to any CPU model when KVM is enabled.
*/
static uint32_t kvm_default_unset_features[FEATURE_WORDS] = {
[FEAT_1_EDX] = CPUID_ACPI,
[FEAT_1_ECX] = CPUID_EXT_MONITOR,
[FEAT_8000_0001_ECX] = CPUID_EXT3_SVM,
};
void x86_cpu_compat_kvm_no_autoenable(FeatureWord w, uint32_t features)
{
kvm_default_features[w] &= ~features;
}
void x86_cpu_compat_kvm_no_autodisable(FeatureWord w, uint32_t features)
{
kvm_default_unset_features[w] &= ~features;
}
/*
* Returns the set of feature flags that are supported and migratable by
* QEMU, for a given FeatureWord.
*/
static uint32_t x86_cpu_get_migratable_flags(FeatureWord w)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r = 0;
int i;
for (i = 0; i < 32; i++) {
uint32_t f = 1U << i;
/* If the feature name is unknown, it is not supported by QEMU yet */
if (!wi->feat_names[i]) {
continue;
}
/* Skip features known to QEMU, but explicitly marked as unmigratable */
if (wi->unmigratable_flags & f) {
continue;
}
r |= f;
}
return r;
}
void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#elif defined(__i386__)
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#else
abort();
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
}
#define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c)))
/* general substring compare of *[s1..e1) and *[s2..e2). sx is start of
* a substring. ex if !NULL points to the first char after a substring,
* otherwise the string is assumed to sized by a terminating nul.
* Return lexical ordering of *s1:*s2.
*/
static int sstrcmp(const char *s1, const char *e1,
const char *s2, const char *e2)
{
for (;;) {
if (!*s1 || !*s2 || *s1 != *s2)
return (*s1 - *s2);
++s1, ++s2;
if (s1 == e1 && s2 == e2)
return (0);
else if (s1 == e1)
return (*s2);
else if (s2 == e2)
return (*s1);
}
}
/* compare *[s..e) to *altstr. *altstr may be a simple string or multiple
* '|' delimited (possibly empty) strings in which case search for a match
* within the alternatives proceeds left to right. Return 0 for success,
* non-zero otherwise.
*/
static int altcmp(const char *s, const char *e, const char *altstr)
{
const char *p, *q;
for (q = p = altstr; ; ) {
while (*p && *p != '|')
++p;
if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p)))
return (0);
if (!*p)
return (1);
else
q = ++p;
}
}
/* search featureset for flag *[s..e), if found set corresponding bit in
* *pval and return true, otherwise return false
*/
static bool lookup_feature(uint32_t *pval, const char *s, const char *e,
const char **featureset)
{
uint32_t mask;
const char **ppc;
bool found = false;
for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) {
if (*ppc && !altcmp(s, e, *ppc)) {
*pval |= mask;
found = true;
}
}
return found;
}
static void add_flagname_to_bitmaps(const char *flagname,
FeatureWordArray words,
Error **errp)
{
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
if (wi->feat_names &&
lookup_feature(&words[w], flagname, NULL, wi->feat_names)) {
break;
}
}
if (w == FEATURE_WORDS) {
error_setg(errp, "CPU feature %s not found", flagname);
}
}
/* CPU class name definitions: */
#define X86_CPU_TYPE_SUFFIX "-" TYPE_X86_CPU
#define X86_CPU_TYPE_NAME(name) (name X86_CPU_TYPE_SUFFIX)
/* Return type name for a given CPU model name
* Caller is responsible for freeing the returned string.
*/
static char *x86_cpu_type_name(const char *model_name)
{
return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name);
}
static ObjectClass *x86_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
if (cpu_model == NULL) {
return NULL;
}
typename = x86_cpu_type_name(cpu_model);
oc = object_class_by_name(typename);
g_free(typename);
return oc;
}
struct X86CPUDefinition {
const char *name;
uint32_t level;
uint32_t xlevel;
uint32_t xlevel2;
/* vendor is zero-terminated, 12 character ASCII string */
char vendor[CPUID_VENDOR_SZ + 1];
int family;
int model;
int stepping;
FeatureWordArray features;
char model_id[48];
bool cache_info_passthrough;
};
static X86CPUDefinition builtin_x86_defs[] = {
{
.name = "qemu64",
.level = 4,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16 | CPUID_EXT_POPCNT,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
.xlevel = 0x8000000A,
},
{
.name = "phenom",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
CPUID_EXT_POPCNT,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
/* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
/* Missing: CPUID_SVM_LBRV */
.features[FEAT_SVM] =
CPUID_SVM_NPT,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 11,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS,
/* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST,
* CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_CX16,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
.name = "kvm64",
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common KVM processor"
},
{
.name = "qemu32",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_POPCNT,
.xlevel = 0x80000004,
},
{
.name = "kvm32",
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common 32-bit KVM processor"
},
{
.name = "coreduo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 14,
.stepping = 8,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI |
CPUID_SS,
/* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR,
* CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 4,
.model = 8,
.stepping = 0,
.features[FEAT_1_EDX] =
I486_FEATURES,
.xlevel = 0,
},
{
.name = "pentium",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 5,
.model = 4,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM_FEATURES,
.xlevel = 0,
},
{
.name = "pentium2",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 5,
.stepping = 2,
.features[FEAT_1_EDX] =
PENTIUM2_FEATURES,
.xlevel = 0,
},
{
.name = "pentium3",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 7,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM3_FEATURES,
.xlevel = 0,
},
{
.name = "athlon",
.level = 2,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
CPUID_MCA,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
},
{
.name = "n270",
/* original is on level 10 */
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 28,
.stepping = 2,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME |
CPUID_ACPI | CPUID_SS,
/* Some CPUs got no CPUID_SEP */
/* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2,
* CPUID_EXT_XTPR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_MOVBE,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
{
.name = "Conroe",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
},
{
.name = "Penryn",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 23,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
},
{
.name = "Nehalem",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 26,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Intel Core i7 9xx (Nehalem Class Core i7)",
},
{
.name = "Westmere",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 44,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x8000000A,
.model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)",
},
{
.name = "SandyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 42,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Xeon E312xx (Sandy Bridge)",
},
{
.name = "IvyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 58,
.stepping = 9,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)",
},
{
.name = "Haswell-noTSX",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Core Processor (Haswell, no TSX)",
}, {
.name = "Haswell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Core Processor (Haswell)",
},
{
.name = "Broadwell-noTSX",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Core Processor (Broadwell, no TSX)",
},
{
.name = "Broadwell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.xlevel = 0x8000000A,
.model_id = "Intel Core Processor (Broadwell)",
},
{
.name = "Opteron_G1",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 240 (Gen 1 Class Opteron)",
},
{
.name = "Opteron_G2",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_CX16 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR |
CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 |
CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA |
CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL |
CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE |
CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE |
CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)",
},
{
.name = "Opteron_G3",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR |
CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 |
CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA |
CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL |
CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE |
CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE |
CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)",
},
{
.name = "Opteron_G4",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP |
CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 62xx class CPU",
},
{
.name = "Opteron_G5",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 2,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP |
CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX |
CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT |
CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE |
CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC |
CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR |
CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 63xx class CPU",
},
};
/**
* x86_cpu_compat_set_features:
* @cpu_model: CPU model name to be changed. If NULL, all CPU models are changed
* @w: Identifies the feature word to be changed.
* @feat_add: Feature bits to be added to feature word
* @feat_remove: Feature bits to be removed from feature word
*
* Change CPU model feature bits for compatibility.
*
* This function may be used by machine-type compatibility functions
* to enable or disable feature bits on specific CPU models.
*/
void x86_cpu_compat_set_features(const char *cpu_model, FeatureWord w,
uint32_t feat_add, uint32_t feat_remove)
{
X86CPUDefinition *def;
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
def = &builtin_x86_defs[i];
if (!cpu_model || !strcmp(cpu_model, def->name)) {
def->features[w] |= feat_add;
def->features[w] &= ~feat_remove;
}
}
}
static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only);
#ifdef CONFIG_KVM
static int cpu_x86_fill_model_id(char *str)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
int i;
for (i = 0; i < 3; i++) {
host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
memcpy(str + i * 16 + 0, &eax, 4);
memcpy(str + i * 16 + 4, &ebx, 4);
memcpy(str + i * 16 + 8, &ecx, 4);
memcpy(str + i * 16 + 12, &edx, 4);
}
return 0;
}
static X86CPUDefinition host_cpudef;
static Property host_x86_cpu_properties[] = {
DEFINE_PROP_BOOL("migratable", X86CPU, migratable, true),
DEFINE_PROP_END_OF_LIST()
};
/* class_init for the "host" CPU model
*
* This function may be called before KVM is initialized.
*/
static void host_x86_cpu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
X86CPUClass *xcc = X86_CPU_CLASS(oc);
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
xcc->kvm_required = true;
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(host_cpudef.vendor, ebx, edx, ecx);
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
host_cpudef.family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
host_cpudef.model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
host_cpudef.stepping = eax & 0x0F;
cpu_x86_fill_model_id(host_cpudef.model_id);
xcc->cpu_def = &host_cpudef;
host_cpudef.cache_info_passthrough = true;
/* level, xlevel, xlevel2, and the feature words are initialized on
* instance_init, because they require KVM to be initialized.
*/
dc->props = host_x86_cpu_properties;
}
static void host_x86_cpu_initfn(Object *obj)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
KVMState *s = kvm_state;
assert(kvm_enabled());
/* We can't fill the features array here because we don't know yet if
* "migratable" is true or false.
*/
cpu->host_features = true;
env->cpuid_level = kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX);
env->cpuid_xlevel = kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX);
env->cpuid_xlevel2 = kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX);
object_property_set_bool(OBJECT(cpu), true, "pmu", &error_abort);
}
static const TypeInfo host_x86_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("host"),
.parent = TYPE_X86_CPU,
.instance_init = host_x86_cpu_initfn,
.class_init = host_x86_cpu_class_init,
};
#endif
static void report_unavailable_features(FeatureWord w, uint32_t mask)
{
FeatureWordInfo *f = &feature_word_info[w];
int i;
for (i = 0; i < 32; ++i) {
if (1 << i & mask) {
const char *reg = get_register_name_32(f->cpuid_reg);
assert(reg);
fprintf(stderr, "warning: %s doesn't support requested feature: "
"CPUID.%02XH:%s%s%s [bit %d]\n",
kvm_enabled() ? "host" : "TCG",
f->cpuid_eax, reg,
f->feat_names[i] ? "." : "",
f->feat_names[i] ? f->feat_names[i] : "", i);
}
}
}
static void x86_cpuid_version_get_family(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 8) & 0xf;
if (value == 0xf) {
value += (env->cpuid_version >> 20) & 0xff;
}
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_family(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff + 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xff00f00;
if (value > 0x0f) {
env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
} else {
env->cpuid_version |= value << 8;
}
}
static void x86_cpuid_version_get_model(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 4) & 0xf;
value |= ((env->cpuid_version >> 16) & 0xf) << 4;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_model(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf00f0;
env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
}
static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = env->cpuid_version & 0xf;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
void *opaque, const char *name,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf;
env->cpuid_version |= value & 0xf;
}
static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
value = g_malloc(CPUID_VENDOR_SZ + 1);
x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
env->cpuid_vendor3);
return value;
}
static void x86_cpuid_set_vendor(Object *obj, const char *value,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int i;
if (strlen(value) != CPUID_VENDOR_SZ) {
error_set(errp, QERR_PROPERTY_VALUE_BAD, "",
"vendor", value);
return;
}
env->cpuid_vendor1 = 0;
env->cpuid_vendor2 = 0;
env->cpuid_vendor3 = 0;
for (i = 0; i < 4; i++) {
env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
}
}
static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = g_malloc(48 + 1);
for (i = 0; i < 48; i++) {
value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
}
value[48] = '\0';
return value;
}
static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int c, len, i;
if (model_id == NULL) {
model_id = "";
}
len = strlen(model_id);
memset(env->cpuid_model, 0, 48);
for (i = 0; i < 48; i++) {
if (i >= len) {
c = '\0';
} else {
c = (uint8_t)model_id[i];
}
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value;
value = cpu->env.tsc_khz * 1000;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
const int64_t min = 0;
const int64_t max = INT64_MAX;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
cpu->env.tsc_khz = value / 1000;
}
static void x86_cpuid_get_apic_id(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value = cpu->apic_id;
visit_type_int(v, &value, name, errp);
}
static void x86_cpuid_set_apic_id(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
DeviceState *dev = DEVICE(obj);
const int64_t min = 0;
const int64_t max = UINT32_MAX;
Error *error = NULL;
int64_t value;
if (dev->realized) {
error_setg(errp, "Attempt to set property '%s' on '%s' after "
"it was realized", name, object_get_typename(obj));
return;
}
visit_type_int(v, &value, name, &error);
if (error) {
error_propagate(errp, error);
return;
}
if (value < min || value > max) {
error_setg(errp, "Property %s.%s doesn't take value %" PRId64
" (minimum: %" PRId64 ", maximum: %" PRId64 ")" ,
object_get_typename(obj), name, value, min, max);
return;
}
if ((value != cpu->apic_id) && cpu_exists(value)) {
error_setg(errp, "CPU with APIC ID %" PRIi64 " exists", value);
return;
}
cpu->apic_id = value;
}
/* Generic getter for "feature-words" and "filtered-features" properties */
static void x86_cpu_get_feature_words(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
uint32_t *array = (uint32_t *)opaque;
FeatureWord w;
Error *err = NULL;
X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList *list = NULL;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
X86CPUFeatureWordInfo *qwi = &word_infos[w];
qwi->cpuid_input_eax = wi->cpuid_eax;
qwi->has_cpuid_input_ecx = wi->cpuid_needs_ecx;
qwi->cpuid_input_ecx = wi->cpuid_ecx;
qwi->cpuid_register = x86_reg_info_32[wi->cpuid_reg].qapi_enum;
qwi->features = array[w];
/* List will be in reverse order, but order shouldn't matter */
list_entries[w].next = list;
list_entries[w].value = &word_infos[w];
list = &list_entries[w];
}
visit_type_X86CPUFeatureWordInfoList(v, &list, "feature-words", &err);
error_propagate(errp, err);
}
static void x86_get_hv_spinlocks(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value = cpu->hyperv_spinlock_attempts;
visit_type_int(v, &value, name, errp);
}
static void x86_set_hv_spinlocks(Object *obj, Visitor *v, void *opaque,
const char *name, Error **errp)
{
const int64_t min = 0xFFF;
const int64_t max = UINT_MAX;
X86CPU *cpu = X86_CPU(obj);
Error *err = NULL;
int64_t value;
visit_type_int(v, &value, name, &err);
if (err) {
error_propagate(errp, err);
return;
}
if (value < min || value > max) {
error_setg(errp, "Property %s.%s doesn't take value %" PRId64
" (minimum: %" PRId64 ", maximum: %" PRId64 ")",
object_get_typename(obj), name ? name : "null",
value, min, max);
return;
}
cpu->hyperv_spinlock_attempts = value;
}
static PropertyInfo qdev_prop_spinlocks = {
.name = "int",
.get = x86_get_hv_spinlocks,
.set = x86_set_hv_spinlocks,
};
/* Convert all '_' in a feature string option name to '-', to make feature
* name conform to QOM property naming rule, which uses '-' instead of '_'.
*/
static inline void feat2prop(char *s)
{
while ((s = strchr(s, '_'))) {
*s = '-';
}
}
/* Parse "+feature,-feature,feature=foo" CPU feature string
*/
static void x86_cpu_parse_featurestr(CPUState *cs, char *features,
Error **errp)
{
X86CPU *cpu = X86_CPU(cs);
char *featurestr; /* Single 'key=value" string being parsed */
FeatureWord w;
/* Features to be added */
FeatureWordArray plus_features = { 0 };
/* Features to be removed */
FeatureWordArray minus_features = { 0 };
uint32_t numvalue;
CPUX86State *env = &cpu->env;
Error *local_err = NULL;
featurestr = features ? strtok(features, ",") : NULL;
while (featurestr) {
char *val;
if (featurestr[0] == '+') {
add_flagname_to_bitmaps(featurestr + 1, plus_features, &local_err);
} else if (featurestr[0] == '-') {
add_flagname_to_bitmaps(featurestr + 1, minus_features, &local_err);
} else if ((val = strchr(featurestr, '='))) {
*val = 0; val++;
feat2prop(featurestr);
if (!strcmp(featurestr, "xlevel")) {
char *err;
char num[32];
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
error_setg(errp, "bad numerical value %s", val);
return;
}
if (numvalue < 0x80000000) {
error_report("xlevel value shall always be >= 0x80000000"
", fixup will be removed in future versions");
numvalue += 0x80000000;
}
snprintf(num, sizeof(num), "%" PRIu32, numvalue);
object_property_parse(OBJECT(cpu), num, featurestr, &local_err);
} else if (!strcmp(featurestr, "tsc-freq")) {
int64_t tsc_freq;
char *err;
char num[32];
tsc_freq = strtosz_suffix_unit(val, &err,
STRTOSZ_DEFSUFFIX_B, 1000);
if (tsc_freq < 0 || *err) {
error_setg(errp, "bad numerical value %s", val);
return;
}
snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
object_property_parse(OBJECT(cpu), num, "tsc-frequency",
&local_err);
} else if (!strcmp(featurestr, "hv-spinlocks")) {
char *err;
const int min = 0xFFF;
char num[32];
numvalue = strtoul(val, &err, 0);
if (!*val || *err) {
error_setg(errp, "bad numerical value %s", val);
return;
}
if (numvalue < min) {
error_report("hv-spinlocks value shall always be >= 0x%x"
", fixup will be removed in future versions",
min);
numvalue = min;
}
snprintf(num, sizeof(num), "%" PRId32, numvalue);
object_property_parse(OBJECT(cpu), num, featurestr, &local_err);
} else {
object_property_parse(OBJECT(cpu), val, featurestr, &local_err);
}
} else {
feat2prop(featurestr);
object_property_parse(OBJECT(cpu), "on", featurestr, &local_err);
}
if (local_err) {
error_propagate(errp, local_err);
return;
}
featurestr = strtok(NULL, ",");
}
if (cpu->host_features) {
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] =
x86_cpu_get_supported_feature_word(w, cpu->migratable);
}
}
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] |= plus_features[w];
env->features[w] &= ~minus_features[w];
}
}
/* Print all cpuid feature names in featureset
*/
static void listflags(FILE *f, fprintf_function print, const char **featureset)
{
int bit;
bool first = true;
for (bit = 0; bit < 32; bit++) {
if (featureset[bit]) {
print(f, "%s%s", first ? "" : " ", featureset[bit]);
first = false;
}
}
}
/* generate CPU information. */
void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
X86CPUDefinition *def;
char buf[256];
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
def = &builtin_x86_defs[i];
snprintf(buf, sizeof(buf), "%s", def->name);
(*cpu_fprintf)(f, "x86 %16s %-48s\n", buf, def->model_id);
}
#ifdef CONFIG_KVM
(*cpu_fprintf)(f, "x86 %16s %-48s\n", "host",
"KVM processor with all supported host features "
"(only available in KVM mode)");
#endif
(*cpu_fprintf)(f, "\nRecognized CPUID flags:\n");
for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) {
FeatureWordInfo *fw = &feature_word_info[i];
(*cpu_fprintf)(f, " ");
listflags(f, cpu_fprintf, fw->feat_names);
(*cpu_fprintf)(f, "\n");
}
}
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
X86CPUDefinition *def;
int i;
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
CpuDefinitionInfoList *entry;
CpuDefinitionInfo *info;
def = &builtin_x86_defs[i];
info = g_malloc0(sizeof(*info));
info->name = g_strdup(def->name);
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = cpu_list;
cpu_list = entry;
}
return cpu_list;
}
static uint32_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint32_t r;
if (kvm_enabled()) {
r = kvm_arch_get_supported_cpuid(kvm_state, wi->cpuid_eax,
wi->cpuid_ecx,
wi->cpuid_reg);
} else if (tcg_enabled()) {
r = wi->tcg_features;
} else {
return ~0;
}
if (migratable_only) {
r &= x86_cpu_get_migratable_flags(w);
}
return r;
}
/*
* Filters CPU feature words based on host availability of each feature.
*
* Returns: 0 if all flags are supported by the host, non-zero otherwise.
*/
static int x86_cpu_filter_features(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
int rv = 0;
for (w = 0; w < FEATURE_WORDS; w++) {
uint32_t host_feat =
x86_cpu_get_supported_feature_word(w, cpu->migratable);
uint32_t requested_features = env->features[w];
env->features[w] &= host_feat;
cpu->filtered_features[w] = requested_features & ~env->features[w];
if (cpu->filtered_features[w]) {
if (cpu->check_cpuid || cpu->enforce_cpuid) {
report_unavailable_features(w, cpu->filtered_features[w]);
}
rv = 1;
}
}
return rv;
}
/* Load data from X86CPUDefinition
*/
static void x86_cpu_load_def(X86CPU *cpu, X86CPUDefinition *def, Error **errp)
{
CPUX86State *env = &cpu->env;
const char *vendor;
char host_vendor[CPUID_VENDOR_SZ + 1];
FeatureWord w;
object_property_set_int(OBJECT(cpu), def->level, "level", errp);
object_property_set_int(OBJECT(cpu), def->family, "family", errp);
object_property_set_int(OBJECT(cpu), def->model, "model", errp);
object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp);
object_property_set_int(OBJECT(cpu), def->xlevel, "xlevel", errp);
object_property_set_int(OBJECT(cpu), def->xlevel2, "xlevel2", errp);
cpu->cache_info_passthrough = def->cache_info_passthrough;
object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp);
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] = def->features[w];
}
/* Special cases not set in the X86CPUDefinition structs: */
if (kvm_enabled()) {
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] |= kvm_default_features[w];
env->features[w] &= ~kvm_default_unset_features[w];
}
}
env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
/* sysenter isn't supported in compatibility mode on AMD,
* syscall isn't supported in compatibility mode on Intel.
* Normally we advertise the actual CPU vendor, but you can
* override this using the 'vendor' property if you want to use
* KVM's sysenter/syscall emulation in compatibility mode and
* when doing cross vendor migration
*/
vendor = def->vendor;
if (kvm_enabled()) {
uint32_t ebx = 0, ecx = 0, edx = 0;
host_cpuid(0, 0, NULL, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(host_vendor, ebx, edx, ecx);
vendor = host_vendor;
}
object_property_set_str(OBJECT(cpu), vendor, "vendor", errp);
}
X86CPU *cpu_x86_create(const char *cpu_model, Error **errp)
{
X86CPU *cpu = NULL;
X86CPUClass *xcc;
ObjectClass *oc;
gchar **model_pieces;
char *name, *features;
Error *error = NULL;
model_pieces = g_strsplit(cpu_model, ",", 2);
if (!model_pieces[0]) {
error_setg(&error, "Invalid/empty CPU model name");
goto out;
}
name = model_pieces[0];
features = model_pieces[1];
oc = x86_cpu_class_by_name(name);
if (oc == NULL) {
error_setg(&error, "Unable to find CPU definition: %s", name);
goto out;
}
xcc = X86_CPU_CLASS(oc);
if (xcc->kvm_required && !kvm_enabled()) {
error_setg(&error, "CPU model '%s' requires KVM", name);
goto out;
}
cpu = X86_CPU(object_new(object_class_get_name(oc)));
x86_cpu_parse_featurestr(CPU(cpu), features, &error);
if (error) {
goto out;
}
out:
if (error != NULL) {
error_propagate(errp, error);
if (cpu) {
object_unref(OBJECT(cpu));
cpu = NULL;
}
}
g_strfreev(model_pieces);
return cpu;
}
X86CPU *cpu_x86_init(const char *cpu_model)
{
Error *error = NULL;
X86CPU *cpu;
cpu = cpu_x86_create(cpu_model, &error);
if (error) {
goto out;
}
object_property_set_bool(OBJECT(cpu), true, "realized", &error);
out:
if (error) {
error_report_err(error);
if (cpu != NULL) {
object_unref(OBJECT(cpu));
cpu = NULL;
}
}
return cpu;
}
static void x86_cpu_cpudef_class_init(ObjectClass *oc, void *data)
{
X86CPUDefinition *cpudef = data;
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->cpu_def = cpudef;
}
static void x86_register_cpudef_type(X86CPUDefinition *def)
{
char *typename = x86_cpu_type_name(def->name);
TypeInfo ti = {
.name = typename,
.parent = TYPE_X86_CPU,
.class_init = x86_cpu_cpudef_class_init,
.class_data = def,
};
type_register(&ti);
g_free(typename);
}
#if !defined(CONFIG_USER_ONLY)
void cpu_clear_apic_feature(CPUX86State *env)
{
env->features[FEAT_1_EDX] &= ~CPUID_APIC;
}
#endif /* !CONFIG_USER_ONLY */
/* Initialize list of CPU models, filling some non-static fields if necessary
*/
void x86_cpudef_setup(void)
{
int i, j;
static const char *model_with_versions[] = { "qemu32", "qemu64", "athlon" };
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); ++i) {
X86CPUDefinition *def = &builtin_x86_defs[i];
/* Look for specific "cpudef" models that */
/* have the QEMU version in .model_id */
for (j = 0; j < ARRAY_SIZE(model_with_versions); j++) {
if (strcmp(model_with_versions[j], def->name) == 0) {
pstrcpy(def->model_id, sizeof(def->model_id),
"QEMU Virtual CPU version ");
pstrcat(def->model_id, sizeof(def->model_id),
qemu_get_version());
break;
}
}
}
}
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
/* test if maximum index reached */
if (index & 0x80000000) {
if (index > env->cpuid_xlevel) {
if (env->cpuid_xlevel2 > 0) {
/* Handle the Centaur's CPUID instruction. */
if (index > env->cpuid_xlevel2) {
index = env->cpuid_xlevel2;
} else if (index < 0xC0000000) {
index = env->cpuid_xlevel;
}
} else {
/* Intel documentation states that invalid EAX input will
* return the same information as EAX=cpuid_level
* (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
*/
index = env->cpuid_level;
}
}
} else {
if (index > env->cpuid_level)
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 1:
*eax = env->cpuid_version;
*ebx = (cpu->apic_id << 24) |
8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->features[FEAT_1_ECX];
*edx = env->features[FEAT_1_EDX];
if (cs->nr_cores * cs->nr_threads > 1) {
*ebx |= (cs->nr_cores * cs->nr_threads) << 16;
*edx |= 1 << 28; /* HTT bit */
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = 1; /* Number of CPUID[EAX=2] calls required */
*ebx = 0;
*ecx = 0;
*edx = (L1D_DESCRIPTOR << 16) | \
(L1I_DESCRIPTOR << 8) | \
(L2_DESCRIPTOR);
break;
case 4:
/* cache info: needed for Core compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, count, eax, ebx, ecx, edx);
*eax &= ~0xFC000000;
} else {
*eax = 0;
switch (count) {
case 0: /* L1 dcache info */
*eax |= CPUID_4_TYPE_DCACHE | \
CPUID_4_LEVEL(1) | \
CPUID_4_SELF_INIT_LEVEL;
*ebx = (L1D_LINE_SIZE - 1) | \
((L1D_PARTITIONS - 1) << 12) | \
((L1D_ASSOCIATIVITY - 1) << 22);
*ecx = L1D_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 1: /* L1 icache info */
*eax |= CPUID_4_TYPE_ICACHE | \
CPUID_4_LEVEL(1) | \
CPUID_4_SELF_INIT_LEVEL;
*ebx = (L1I_LINE_SIZE - 1) | \
((L1I_PARTITIONS - 1) << 12) | \
((L1I_ASSOCIATIVITY - 1) << 22);
*ecx = L1I_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
case 2: /* L2 cache info */
*eax |= CPUID_4_TYPE_UNIFIED | \
CPUID_4_LEVEL(2) | \
CPUID_4_SELF_INIT_LEVEL;
if (cs->nr_threads > 1) {
*eax |= (cs->nr_threads - 1) << 14;
}
*ebx = (L2_LINE_SIZE - 1) | \
((L2_PARTITIONS - 1) << 12) | \
((L2_ASSOCIATIVITY - 1) << 22);
*ecx = L2_SETS - 1;
*edx = CPUID_4_NO_INVD_SHARING;
break;
default: /* end of info */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* QEMU gives out its own APIC IDs, never pass down bits 31..26. */
if ((*eax & 31) && cs->nr_cores > 1) {
*eax |= (cs->nr_cores - 1) << 26;
}
break;
case 5:
/* mwait info: needed for Core compatibility */
*eax = 0; /* Smallest monitor-line size in bytes */
*ebx = 0; /* Largest monitor-line size in bytes */
*ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
*edx = 0;
break;
case 6:
/* Thermal and Power Leaf */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 7:
/* Structured Extended Feature Flags Enumeration Leaf */
if (count == 0) {
*eax = 0; /* Maximum ECX value for sub-leaves */
*ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
*ecx = 0; /* Reserved */
*edx = 0; /* Reserved */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
if (kvm_enabled() && cpu->enable_pmu) {
KVMState *s = cs->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xD: {
KVMState *s = cs->kvm_state;
uint64_t kvm_mask;
int i;
/* Processor Extended State */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) || !kvm_enabled()) {
break;
}
kvm_mask =
kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX) |
((uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32);
if (count == 0) {
*ecx = 0x240;
for (i = 2; i < ARRAY_SIZE(ext_save_areas); i++) {
const ExtSaveArea *esa = &ext_save_areas[i];
if ((env->features[esa->feature] & esa->bits) == esa->bits &&
(kvm_mask & (1 << i)) != 0) {
if (i < 32) {
*eax |= 1 << i;
} else {
*edx |= 1 << (i - 32);
}
*ecx = MAX(*ecx, esa->offset + esa->size);
}
}
*eax |= kvm_mask & (XSTATE_FP | XSTATE_SSE);
*ebx = *ecx;
} else if (count == 1) {
*eax = env->features[FEAT_XSAVE];
} else if (count < ARRAY_SIZE(ext_save_areas)) {
const ExtSaveArea *esa = &ext_save_areas[count];
if ((env->features[esa->feature] & esa->bits) == esa->bits &&
(kvm_mask & (1 << count)) != 0) {
*eax = esa->size;
*ebx = esa->offset;
}
}
break;
}
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->features[FEAT_8000_0001_ECX];
*edx = env->features[FEAT_8000_0001_EDX];
/* The Linux kernel checks for the CMPLegacy bit and
* discards multiple thread information if it is set.
* So dont set it here for Intel to make Linux guests happy.
*/
if (cs->nr_cores * cs->nr_threads > 1) {
if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 ||
env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 ||
env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \
(L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES);
*ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \
(L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES);
*ecx = (L1D_SIZE_KB_AMD << 24) | (L1D_ASSOCIATIVITY_AMD << 16) | \
(L1D_LINES_PER_TAG << 8) | (L1D_LINE_SIZE);
*edx = (L1I_SIZE_KB_AMD << 24) | (L1I_ASSOCIATIVITY_AMD << 16) | \
(L1I_LINES_PER_TAG << 8) | (L1I_LINE_SIZE);
break;
case 0x80000006:
/* cache info (L2 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \
(L2_DTLB_2M_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \
(L2_ITLB_2M_ENTRIES);
*ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \
(L2_DTLB_4K_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \
(L2_ITLB_4K_ENTRIES);
*ecx = (L2_SIZE_KB_AMD << 16) | \
(AMD_ENC_ASSOC(L2_ASSOCIATIVITY) << 12) | \
(L2_LINES_PER_TAG << 8) | (L2_LINE_SIZE);
*edx = ((L3_SIZE_KB/512) << 18) | \
(AMD_ENC_ASSOC(L3_ASSOCIATIVITY) << 12) | \
(L3_LINES_PER_TAG << 8) | (L3_LINE_SIZE);
break;
case 0x80000007:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_8000_0007_EDX];
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
/* XXX: This value must match the one used in the MMU code. */
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
/* 64 bit processor */
/* XXX: The physical address space is limited to 42 bits in exec.c. */
*eax = 0x00003028; /* 48 bits virtual, 40 bits physical */
} else {
if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
*eax = 0x00000024; /* 36 bits physical */
} else {
*eax = 0x00000020; /* 32 bits physical */
}
}
*ebx = 0;
*ecx = 0;
*edx = 0;
if (cs->nr_cores * cs->nr_threads > 1) {
*ecx |= (cs->nr_cores * cs->nr_threads) - 1;
}
break;
case 0x8000000A:
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = env->features[FEAT_SVM]; /* optional features */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xC0000001:
/* Support for VIA CPU's CPUID instruction */
*eax = env->cpuid_version;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_C000_0001_EDX];
break;
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
/* Reserved for the future, and now filled with zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* CPUClass::reset() */
static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
CPUX86State *env = &cpu->env;
int i;
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, cpuid_level));
tlb_flush(s, 1);
env->old_exception = -1;
/* init to reset state */
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
cpu_set_fpuc(env, 0x37f);
env->mxcsr = 0x1f80;
env->xstate_bv = XSTATE_FP | XSTATE_SSE;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(s, BP_CPU);
cpu_watchpoint_remove_all(s, BP_CPU);
env->xcr0 = 1;
/*
* SDM 11.11.5 requires:
* - IA32_MTRR_DEF_TYPE MSR.E = 0
* - IA32_MTRR_PHYSMASKn.V = 0
* All other bits are undefined. For simplification, zero it all.
*/
env->mtrr_deftype = 0;
memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
#if !defined(CONFIG_USER_ONLY)
/* We hard-wire the BSP to the first CPU. */
apic_designate_bsp(cpu->apic_state, s->cpu_index == 0);
s->halted = !cpu_is_bsp(cpu);
if (kvm_enabled()) {
kvm_arch_reset_vcpu(cpu);
}
#endif
}
#ifndef CONFIG_USER_ONLY
bool cpu_is_bsp(X86CPU *cpu)
{
return cpu_get_apic_base(cpu->apic_state) & MSR_IA32_APICBASE_BSP;
}
/* TODO: remove me, when reset over QOM tree is implemented */
static void x86_cpu_machine_reset_cb(void *opaque)
{
X86CPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
#endif
static void mce_init(X86CPU *cpu)
{
CPUX86State *cenv = &cpu->env;
unsigned int bank;
if (((cenv->cpuid_version >> 8) & 0xf) >= 6
&& (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF;
cenv->mcg_ctl = ~(uint64_t)0;
for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
cenv->mce_banks[bank * 4] = ~(uint64_t)0;
}
}
}
#ifndef CONFIG_USER_ONLY
static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
{
DeviceState *dev = DEVICE(cpu);
APICCommonState *apic;
const char *apic_type = "apic";
if (kvm_irqchip_in_kernel()) {
apic_type = "kvm-apic";
} else if (xen_enabled()) {
apic_type = "xen-apic";
}
cpu->apic_state = qdev_try_create(qdev_get_parent_bus(dev), apic_type);
if (cpu->apic_state == NULL) {
error_setg(errp, "APIC device '%s' could not be created", apic_type);
return;
}
object_property_add_child(OBJECT(cpu), "apic",
OBJECT(cpu->apic_state), NULL);
qdev_prop_set_uint8(cpu->apic_state, "id", cpu->apic_id);
/* TODO: convert to link<> */
apic = APIC_COMMON(cpu->apic_state);
apic->cpu = cpu;
}
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
if (cpu->apic_state == NULL) {
return;
}
object_property_set_bool(OBJECT(cpu->apic_state), true, "realized",
errp);
}
static void x86_cpu_machine_done(Notifier *n, void *unused)
{
X86CPU *cpu = container_of(n, X86CPU, machine_done);
MemoryRegion *smram =
(MemoryRegion *) object_resolve_path("/machine/smram", NULL);
if (smram) {
cpu->smram = g_new(MemoryRegion, 1);
memory_region_init_alias(cpu->smram, OBJECT(cpu), "smram",
smram, 0, 1ull << 32);
memory_region_set_enabled(cpu->smram, false);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->smram, 1);
}
}
#else
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
}
#endif
#define IS_INTEL_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_INTEL_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_INTEL_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_INTEL_3)
#define IS_AMD_CPU(env) ((env)->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && \
(env)->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && \
(env)->cpuid_vendor3 == CPUID_VENDOR_AMD_3)
static void x86_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
X86CPU *cpu = X86_CPU(dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
CPUX86State *env = &cpu->env;
Error *local_err = NULL;
static bool ht_warned;
if (cpu->apic_id < 0) {
error_setg(errp, "apic-id property was not initialized properly");
return;
}
if (env->features[FEAT_7_0_EBX] && env->cpuid_level < 7) {
env->cpuid_level = 7;
}
/* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
* CPUID[1].EDX.
*/
if (IS_AMD_CPU(env)) {
env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
& CPUID_EXT2_AMD_ALIASES);
}
if (x86_cpu_filter_features(cpu) && cpu->enforce_cpuid) {
error_setg(&local_err,
kvm_enabled() ?
"Host doesn't support requested features" :
"TCG doesn't support requested features");
goto out;
}
#ifndef CONFIG_USER_ONLY
qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) {
x86_cpu_apic_create(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
}
#endif
mce_init(cpu);
#ifndef CONFIG_USER_ONLY
if (tcg_enabled()) {
cpu->cpu_as_mem = g_new(MemoryRegion, 1);
cpu->cpu_as_root = g_new(MemoryRegion, 1);
cs->as = g_new(AddressSpace, 1);
/* Outer container... */
memory_region_init(cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull);
memory_region_set_enabled(cpu->cpu_as_root, true);
/* ... with two regions inside: normal system memory with low
* priority, and...
*/
memory_region_init_alias(cpu->cpu_as_mem, OBJECT(cpu), "memory",
get_system_memory(), 0, ~0ull);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0);
memory_region_set_enabled(cpu->cpu_as_mem, true);
address_space_init(cs->as, cpu->cpu_as_root, "CPU");
/* ... SMRAM with higher priority, linked from /machine/smram. */
cpu->machine_done.notify = x86_cpu_machine_done;
qemu_add_machine_init_done_notifier(&cpu->machine_done);
}
#endif
qemu_init_vcpu(cs);
/* Only Intel CPUs support hyperthreading. Even though QEMU fixes this
* issue by adjusting CPUID_0000_0001_EBX and CPUID_8000_0008_ECX
* based on inputs (sockets,cores,threads), it is still better to gives
* users a warning.
*
* NOTE: the following code has to follow qemu_init_vcpu(). Otherwise
* cs->nr_threads hasn't be populated yet and the checking is incorrect.
*/
if (!IS_INTEL_CPU(env) && cs->nr_threads > 1 && !ht_warned) {
error_report("AMD CPU doesn't support hyperthreading. Please configure"
" -smp options properly.");
ht_warned = true;
}
x86_cpu_apic_realize(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
cpu_reset(cs);
xcc->parent_realize(dev, &local_err);
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
typedef struct BitProperty {
uint32_t *ptr;
uint32_t mask;
} BitProperty;
static void x86_cpu_get_bit_prop(Object *obj,
struct Visitor *v,
void *opaque,
const char *name,
Error **errp)
{
BitProperty *fp = opaque;
bool value = (*fp->ptr & fp->mask) == fp->mask;
visit_type_bool(v, &value, name, errp);
}
static void x86_cpu_set_bit_prop(Object *obj,
struct Visitor *v,
void *opaque,
const char *name,
Error **errp)
{
DeviceState *dev = DEVICE(obj);
BitProperty *fp = opaque;
Error *local_err = NULL;
bool value;
if (dev->realized) {
qdev_prop_set_after_realize(dev, name, errp);
return;
}
visit_type_bool(v, &value, name, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value) {
*fp->ptr |= fp->mask;
} else {
*fp->ptr &= ~fp->mask;
}
}
static void x86_cpu_release_bit_prop(Object *obj, const char *name,
void *opaque)
{
BitProperty *prop = opaque;
g_free(prop);
}
/* Register a boolean property to get/set a single bit in a uint32_t field.
*
* The same property name can be registered multiple times to make it affect
* multiple bits in the same FeatureWord. In that case, the getter will return
* true only if all bits are set.
*/
static void x86_cpu_register_bit_prop(X86CPU *cpu,
const char *prop_name,
uint32_t *field,
int bitnr)
{
BitProperty *fp;
ObjectProperty *op;
uint32_t mask = (1UL << bitnr);
op = object_property_find(OBJECT(cpu), prop_name, NULL);
if (op) {
fp = op->opaque;
assert(fp->ptr == field);
fp->mask |= mask;
} else {
fp = g_new0(BitProperty, 1);
fp->ptr = field;
fp->mask = mask;
object_property_add(OBJECT(cpu), prop_name, "bool",
x86_cpu_get_bit_prop,
x86_cpu_set_bit_prop,
x86_cpu_release_bit_prop, fp, &error_abort);
}
}
static void x86_cpu_register_feature_bit_props(X86CPU *cpu,
FeatureWord w,
int bitnr)
{
Object *obj = OBJECT(cpu);
int i;
char **names;
FeatureWordInfo *fi = &feature_word_info[w];
if (!fi->feat_names) {
return;
}
if (!fi->feat_names[bitnr]) {
return;
}
names = g_strsplit(fi->feat_names[bitnr], "|", 0);
feat2prop(names[0]);
x86_cpu_register_bit_prop(cpu, names[0], &cpu->env.features[w], bitnr);
for (i = 1; names[i]; i++) {
feat2prop(names[i]);
object_property_add_alias(obj, names[i], obj, g_strdup(names[0]),
&error_abort);
}
g_strfreev(names);
}
static void x86_cpu_initfn(Object *obj)
{
CPUState *cs = CPU(obj);
X86CPU *cpu = X86_CPU(obj);
X86CPUClass *xcc = X86_CPU_GET_CLASS(obj);
CPUX86State *env = &cpu->env;
FeatureWord w;
static int inited;
cs->env_ptr = env;
cpu_exec_init(env);
object_property_add(obj, "family", "int",
x86_cpuid_version_get_family,
x86_cpuid_version_set_family, NULL, NULL, NULL);
object_property_add(obj, "model", "int",
x86_cpuid_version_get_model,
x86_cpuid_version_set_model, NULL, NULL, NULL);
object_property_add(obj, "stepping", "int",
x86_cpuid_version_get_stepping,
x86_cpuid_version_set_stepping, NULL, NULL, NULL);
object_property_add_str(obj, "vendor",
x86_cpuid_get_vendor,
x86_cpuid_set_vendor, NULL);
object_property_add_str(obj, "model-id",
x86_cpuid_get_model_id,
x86_cpuid_set_model_id, NULL);
object_property_add(obj, "tsc-frequency", "int",
x86_cpuid_get_tsc_freq,
x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
object_property_add(obj, "apic-id", "int",
x86_cpuid_get_apic_id,
x86_cpuid_set_apic_id, NULL, NULL, NULL);
object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)env->features, NULL);
object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)cpu->filtered_features, NULL);
cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY;
#ifndef CONFIG_USER_ONLY
/* Any code creating new X86CPU objects have to set apic-id explicitly */
cpu->apic_id = -1;
#endif
for (w = 0; w < FEATURE_WORDS; w++) {
int bitnr;
for (bitnr = 0; bitnr < 32; bitnr++) {
x86_cpu_register_feature_bit_props(cpu, w, bitnr);
}
}
x86_cpu_load_def(cpu, xcc->cpu_def, &error_abort);
/* init various static tables used in TCG mode */
if (tcg_enabled() && !inited) {
inited = 1;
optimize_flags_init();
}
}
static int64_t x86_cpu_get_arch_id(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->apic_id;
}
static bool x86_cpu_get_paging_enabled(const CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->env.cr[0] & CR0_PG_MASK;
}
static void x86_cpu_set_pc(CPUState *cs, vaddr value)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = value;
}
static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = tb->pc - tb->cs_base;
}
static bool x86_cpu_has_work(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
#if !defined(CONFIG_USER_ONLY)
if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
apic_poll_irq(cpu->apic_state);
cpu_reset_interrupt(cs, CPU_INTERRUPT_POLL);
}
#endif
return ((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(cs->interrupt_request & (CPU_INTERRUPT_NMI |
CPU_INTERRUPT_INIT |
CPU_INTERRUPT_SIPI |
CPU_INTERRUPT_MCE)) ||
((cs->interrupt_request & CPU_INTERRUPT_SMI) &&
!(env->hflags & HF_SMM_MASK));
}
static Property x86_cpu_properties[] = {
DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false),
{ .name = "hv-spinlocks", .info = &qdev_prop_spinlocks },
DEFINE_PROP_BOOL("hv-relaxed", X86CPU, hyperv_relaxed_timing, false),
DEFINE_PROP_BOOL("hv-vapic", X86CPU, hyperv_vapic, false),
DEFINE_PROP_BOOL("hv-time", X86CPU, hyperv_time, false),
DEFINE_PROP_BOOL("check", X86CPU, check_cpuid, false),
DEFINE_PROP_BOOL("enforce", X86CPU, enforce_cpuid, false),
DEFINE_PROP_BOOL("kvm", X86CPU, expose_kvm, true),
DEFINE_PROP_UINT32("level", X86CPU, env.cpuid_level, 0),
DEFINE_PROP_UINT32("xlevel", X86CPU, env.cpuid_xlevel, 0),
DEFINE_PROP_UINT32("xlevel2", X86CPU, env.cpuid_xlevel2, 0),
DEFINE_PROP_END_OF_LIST()
};
static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
xcc->parent_realize = dc->realize;
dc->realize = x86_cpu_realizefn;
dc->bus_type = TYPE_ICC_BUS;
dc->props = x86_cpu_properties;
xcc->parent_reset = cc->reset;
cc->reset = x86_cpu_reset;
cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP;
cc->class_by_name = x86_cpu_class_by_name;
cc->parse_features = x86_cpu_parse_featurestr;
cc->has_work = x86_cpu_has_work;
cc->do_interrupt = x86_cpu_do_interrupt;
cc->cpu_exec_interrupt = x86_cpu_exec_interrupt;
cc->dump_state = x86_cpu_dump_state;
cc->set_pc = x86_cpu_set_pc;
cc->synchronize_from_tb = x86_cpu_synchronize_from_tb;
cc->gdb_read_register = x86_cpu_gdb_read_register;
cc->gdb_write_register = x86_cpu_gdb_write_register;
cc->get_arch_id = x86_cpu_get_arch_id;
cc->get_paging_enabled = x86_cpu_get_paging_enabled;
#ifdef CONFIG_USER_ONLY
cc->handle_mmu_fault = x86_cpu_handle_mmu_fault;
#else
cc->get_memory_mapping = x86_cpu_get_memory_mapping;
cc->get_phys_page_debug = x86_cpu_get_phys_page_debug;
cc->write_elf64_note = x86_cpu_write_elf64_note;
cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote;
cc->write_elf32_note = x86_cpu_write_elf32_note;
cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote;
cc->vmsd = &vmstate_x86_cpu;
#endif
cc->gdb_num_core_regs = CPU_NB_REGS * 2 + 25;
#ifndef CONFIG_USER_ONLY
cc->debug_excp_handler = breakpoint_handler;
#endif
cc->cpu_exec_enter = x86_cpu_exec_enter;
cc->cpu_exec_exit = x86_cpu_exec_exit;
}
static const TypeInfo x86_cpu_type_info = {
.name = TYPE_X86_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(X86CPU),
.instance_init = x86_cpu_initfn,
.abstract = true,
.class_size = sizeof(X86CPUClass),
.class_init = x86_cpu_common_class_init,
};
static void x86_cpu_register_types(void)
{
int i;
type_register_static(&x86_cpu_type_info);
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
x86_register_cpudef_type(&builtin_x86_defs[i]);
}
#ifdef CONFIG_KVM
type_register_static(&host_x86_cpu_type_info);
#endif
}
type_init(x86_cpu_register_types)