qemu/hw/intc/arm_gic_kvm.c

168 lines
5.4 KiB
C

/*
* ARM Generic Interrupt Controller using KVM in-kernel support
*
* Copyright (c) 2012 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw/sysbus.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "gic_internal.h"
#define TYPE_KVM_ARM_GIC "kvm-arm-gic"
#define KVM_ARM_GIC(obj) \
OBJECT_CHECK(GICState, (obj), TYPE_KVM_ARM_GIC)
#define KVM_ARM_GIC_CLASS(klass) \
OBJECT_CLASS_CHECK(KVMARMGICClass, (klass), TYPE_KVM_ARM_GIC)
#define KVM_ARM_GIC_GET_CLASS(obj) \
OBJECT_GET_CLASS(KVMARMGICClass, (obj), TYPE_KVM_ARM_GIC)
typedef struct KVMARMGICClass {
ARMGICCommonClass parent_class;
DeviceRealize parent_realize;
void (*parent_reset)(DeviceState *dev);
} KVMARMGICClass;
static void kvm_arm_gic_set_irq(void *opaque, int irq, int level)
{
/* Meaning of the 'irq' parameter:
* [0..N-1] : external interrupts
* [N..N+31] : PPI (internal) interrupts for CPU 0
* [N+32..N+63] : PPI (internal interrupts for CPU 1
* ...
* Convert this to the kernel's desired encoding, which
* has separate fields in the irq number for type,
* CPU number and interrupt number.
*/
GICState *s = (GICState *)opaque;
int kvm_irq, irqtype, cpu;
if (irq < (s->num_irq - GIC_INTERNAL)) {
/* External interrupt. The kernel numbers these like the GIC
* hardware, with external interrupt IDs starting after the
* internal ones.
*/
irqtype = KVM_ARM_IRQ_TYPE_SPI;
cpu = 0;
irq += GIC_INTERNAL;
} else {
/* Internal interrupt: decode into (cpu, interrupt id) */
irqtype = KVM_ARM_IRQ_TYPE_PPI;
irq -= (s->num_irq - GIC_INTERNAL);
cpu = irq / GIC_INTERNAL;
irq %= GIC_INTERNAL;
}
kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT)
| (cpu << KVM_ARM_IRQ_VCPU_SHIFT) | irq;
kvm_set_irq(kvm_state, kvm_irq, !!level);
}
static void kvm_arm_gic_put(GICState *s)
{
/* TODO: there isn't currently a kernel interface to set the GIC state */
}
static void kvm_arm_gic_get(GICState *s)
{
/* TODO: there isn't currently a kernel interface to get the GIC state */
}
static void kvm_arm_gic_reset(DeviceState *dev)
{
GICState *s = ARM_GIC_COMMON(dev);
KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
kgc->parent_reset(dev);
kvm_arm_gic_put(s);
}
static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
{
int i;
GICState *s = KVM_ARM_GIC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
KVMARMGICClass *kgc = KVM_ARM_GIC_GET_CLASS(s);
kgc->parent_realize(dev, errp);
if (error_is_set(errp)) {
return;
}
i = s->num_irq - GIC_INTERNAL;
/* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
* GPIO array layout is thus:
* [0..N-1] SPIs
* [N..N+31] PPIs for CPU 0
* [N+32..N+63] PPIs for CPU 1
* ...
*/
i += (GIC_INTERNAL * s->num_cpu);
qdev_init_gpio_in(dev, kvm_arm_gic_set_irq, i);
/* We never use our outbound IRQ lines but provide them so that
* we maintain the same interface as the non-KVM GIC.
*/
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->parent_irq[i]);
}
/* Distributor */
memory_region_init_reservation(&s->iomem, "kvm-gic_dist", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
kvm_arm_register_device(&s->iomem,
(KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
| KVM_VGIC_V2_ADDR_TYPE_DIST);
/* CPU interface for current core. Unlike arm_gic, we don't
* provide the "interface for core #N" memory regions, because
* cores with a VGIC don't have those.
*/
memory_region_init_reservation(&s->cpuiomem[0], "kvm-gic_cpu", 0x1000);
sysbus_init_mmio(sbd, &s->cpuiomem[0]);
kvm_arm_register_device(&s->cpuiomem[0],
(KVM_ARM_DEVICE_VGIC_V2 << KVM_ARM_DEVICE_ID_SHIFT)
| KVM_VGIC_V2_ADDR_TYPE_CPU);
}
static void kvm_arm_gic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMGICCommonClass *agcc = ARM_GIC_COMMON_CLASS(klass);
KVMARMGICClass *kgc = KVM_ARM_GIC_CLASS(klass);
agcc->pre_save = kvm_arm_gic_get;
agcc->post_load = kvm_arm_gic_put;
kgc->parent_realize = dc->realize;
kgc->parent_reset = dc->reset;
dc->realize = kvm_arm_gic_realize;
dc->reset = kvm_arm_gic_reset;
dc->no_user = 1;
}
static const TypeInfo kvm_arm_gic_info = {
.name = TYPE_KVM_ARM_GIC,
.parent = TYPE_ARM_GIC_COMMON,
.instance_size = sizeof(GICState),
.class_init = kvm_arm_gic_class_init,
.class_size = sizeof(KVMARMGICClass),
};
static void kvm_arm_gic_register_types(void)
{
type_register_static(&kvm_arm_gic_info);
}
type_init(kvm_arm_gic_register_types)