qemu/hw/mem/memory-device.c

282 lines
8.5 KiB
C

/*
* Memory Device Interface
*
* Copyright ProfitBricks GmbH 2012
* Copyright (C) 2014 Red Hat Inc
* Copyright (c) 2018 Red Hat Inc
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "hw/mem/memory-device.h"
#include "hw/qdev.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "qemu/range.h"
#include "hw/virtio/vhost.h"
#include "sysemu/kvm.h"
static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
{
const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
const uint64_t addr_a = mdc_a->get_addr(md_a);
const uint64_t addr_b = mdc_b->get_addr(md_b);
if (addr_a > addr_b) {
return 1;
} else if (addr_a < addr_b) {
return -1;
}
return 0;
}
static int memory_device_build_list(Object *obj, void *opaque)
{
GSList **list = opaque;
if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
DeviceState *dev = DEVICE(obj);
if (dev->realized) { /* only realized memory devices matter */
*list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
}
}
object_child_foreach(obj, memory_device_build_list, opaque);
return 0;
}
static int memory_device_used_region_size(Object *obj, void *opaque)
{
uint64_t *size = opaque;
if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
const DeviceState *dev = DEVICE(obj);
const MemoryDeviceState *md = MEMORY_DEVICE(obj);
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
if (dev->realized) {
*size += mdc->get_region_size(md);
}
}
object_child_foreach(obj, memory_device_used_region_size, opaque);
return 0;
}
static void memory_device_check_addable(MachineState *ms, uint64_t size,
Error **errp)
{
uint64_t used_region_size = 0;
/* we will need a new memory slot for kvm and vhost */
if (kvm_enabled() && !kvm_has_free_slot(ms)) {
error_setg(errp, "hypervisor has no free memory slots left");
return;
}
if (!vhost_has_free_slot()) {
error_setg(errp, "a used vhost backend has no free memory slots left");
return;
}
/* will we exceed the total amount of memory specified */
memory_device_used_region_size(OBJECT(ms), &used_region_size);
if (used_region_size + size > ms->maxram_size - ms->ram_size) {
error_setg(errp, "not enough space, currently 0x%" PRIx64
" in use of total hot pluggable 0x" RAM_ADDR_FMT,
used_region_size, ms->maxram_size - ms->ram_size);
return;
}
}
uint64_t memory_device_get_free_addr(MachineState *ms, const uint64_t *hint,
uint64_t align, uint64_t size,
Error **errp)
{
uint64_t address_space_start, address_space_end;
GSList *list = NULL, *item;
uint64_t new_addr = 0;
if (!ms->device_memory) {
error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
"supported by the machine");
return 0;
}
if (!memory_region_size(&ms->device_memory->mr)) {
error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
"enabled, please specify the maxmem option");
return 0;
}
address_space_start = ms->device_memory->base;
address_space_end = address_space_start +
memory_region_size(&ms->device_memory->mr);
g_assert(address_space_end >= address_space_start);
/* address_space_start indicates the maximum alignment we expect */
if (QEMU_ALIGN_UP(address_space_start, align) != address_space_start) {
error_setg(errp, "the alignment (0%" PRIx64 ") is not supported",
align);
return 0;
}
memory_device_check_addable(ms, size, errp);
if (*errp) {
return 0;
}
if (hint && QEMU_ALIGN_UP(*hint, align) != *hint) {
error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
align);
return 0;
}
if (QEMU_ALIGN_UP(size, align) != size) {
error_setg(errp, "backend memory size must be multiple of 0x%"
PRIx64, align);
return 0;
}
if (hint) {
new_addr = *hint;
if (new_addr < address_space_start) {
error_setg(errp, "can't add memory [0x%" PRIx64 ":0x%" PRIx64
"] at 0x%" PRIx64, new_addr, size, address_space_start);
return 0;
} else if ((new_addr + size) > address_space_end) {
error_setg(errp, "can't add memory [0x%" PRIx64 ":0x%" PRIx64
"] beyond 0x%" PRIx64, new_addr, size,
address_space_end);
return 0;
}
} else {
new_addr = address_space_start;
}
/* find address range that will fit new memory device */
object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
for (item = list; item; item = g_slist_next(item)) {
const MemoryDeviceState *md = item->data;
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
uint64_t md_size, md_addr;
md_addr = mdc->get_addr(md);
md_size = mdc->get_region_size(md);
if (*errp) {
goto out;
}
if (ranges_overlap(md_addr, md_size, new_addr, size)) {
if (hint) {
const DeviceState *d = DEVICE(md);
error_setg(errp, "address range conflicts with '%s'", d->id);
goto out;
}
new_addr = QEMU_ALIGN_UP(md_addr + md_size, align);
}
}
if (new_addr + size > address_space_end) {
error_setg(errp, "could not find position in guest address space for "
"memory device - memory fragmented due to alignments");
goto out;
}
out:
g_slist_free(list);
return new_addr;
}
MemoryDeviceInfoList *qmp_memory_device_list(void)
{
GSList *devices = NULL, *item;
MemoryDeviceInfoList *list = NULL, *prev = NULL;
object_child_foreach(qdev_get_machine(), memory_device_build_list,
&devices);
for (item = devices; item; item = g_slist_next(item)) {
const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
mdc->fill_device_info(md, info);
elem->value = info;
elem->next = NULL;
if (prev) {
prev->next = elem;
} else {
list = elem;
}
prev = elem;
}
g_slist_free(devices);
return list;
}
static int memory_device_plugged_size(Object *obj, void *opaque)
{
uint64_t *size = opaque;
if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
const DeviceState *dev = DEVICE(obj);
const MemoryDeviceState *md = MEMORY_DEVICE(obj);
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
if (dev->realized) {
*size += mdc->get_plugged_size(md);
}
}
object_child_foreach(obj, memory_device_plugged_size, opaque);
return 0;
}
uint64_t get_plugged_memory_size(void)
{
uint64_t size = 0;
memory_device_plugged_size(qdev_get_machine(), &size);
return size;
}
void memory_device_plug_region(MachineState *ms, MemoryRegion *mr,
uint64_t addr)
{
/* we expect a previous call to memory_device_get_free_addr() */
g_assert(ms->device_memory);
memory_region_add_subregion(&ms->device_memory->mr,
addr - ms->device_memory->base, mr);
}
void memory_device_unplug_region(MachineState *ms, MemoryRegion *mr)
{
/* we expect a previous call to memory_device_get_free_addr() */
g_assert(ms->device_memory);
memory_region_del_subregion(&ms->device_memory->mr, mr);
}
static const TypeInfo memory_device_info = {
.name = TYPE_MEMORY_DEVICE,
.parent = TYPE_INTERFACE,
.class_size = sizeof(MemoryDeviceClass),
};
static void memory_device_register_types(void)
{
type_register_static(&memory_device_info);
}
type_init(memory_device_register_types)