qemu/hw/i386/kvmvapic.c

861 lines
24 KiB
C

/*
* TPR optimization for 32-bit Windows guests (XP and Server 2003)
*
* Copyright (C) 2007-2008 Qumranet Technologies
* Copyright (C) 2012 Jan Kiszka, Siemens AG
*
* This work is licensed under the terms of the GNU GPL version 2, or
* (at your option) any later version. See the COPYING file in the
* top-level directory.
*/
#include "sysemu/sysemu.h"
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
#include "hw/i386/apic_internal.h"
#include "hw/sysbus.h"
#define VAPIC_IO_PORT 0x7e
#define VAPIC_CPU_SHIFT 7
#define ROM_BLOCK_SIZE 512
#define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
typedef enum VAPICMode {
VAPIC_INACTIVE = 0,
VAPIC_ACTIVE = 1,
VAPIC_STANDBY = 2,
} VAPICMode;
typedef struct VAPICHandlers {
uint32_t set_tpr;
uint32_t set_tpr_eax;
uint32_t get_tpr[8];
uint32_t get_tpr_stack;
} QEMU_PACKED VAPICHandlers;
typedef struct GuestROMState {
char signature[8];
uint32_t vaddr;
uint32_t fixup_start;
uint32_t fixup_end;
uint32_t vapic_vaddr;
uint32_t vapic_size;
uint32_t vcpu_shift;
uint32_t real_tpr_addr;
VAPICHandlers up;
VAPICHandlers mp;
} QEMU_PACKED GuestROMState;
typedef struct VAPICROMState {
SysBusDevice busdev;
MemoryRegion io;
MemoryRegion rom;
uint32_t state;
uint32_t rom_state_paddr;
uint32_t rom_state_vaddr;
uint32_t vapic_paddr;
uint32_t real_tpr_addr;
GuestROMState rom_state;
size_t rom_size;
bool rom_mapped_writable;
VMChangeStateEntry *vmsentry;
} VAPICROMState;
#define TYPE_VAPIC "kvmvapic"
#define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
#define TPR_INSTR_ABS_MODRM 0x1
#define TPR_INSTR_MATCH_MODRM_REG 0x2
typedef struct TPRInstruction {
uint8_t opcode;
uint8_t modrm_reg;
unsigned int flags;
TPRAccess access;
size_t length;
off_t addr_offset;
} TPRInstruction;
/* must be sorted by length, shortest first */
static const TPRInstruction tpr_instr[] = {
{ /* mov abs to eax */
.opcode = 0xa1,
.access = TPR_ACCESS_READ,
.length = 5,
.addr_offset = 1,
},
{ /* mov eax to abs */
.opcode = 0xa3,
.access = TPR_ACCESS_WRITE,
.length = 5,
.addr_offset = 1,
},
{ /* mov r32 to r/m32 */
.opcode = 0x89,
.flags = TPR_INSTR_ABS_MODRM,
.access = TPR_ACCESS_WRITE,
.length = 6,
.addr_offset = 2,
},
{ /* mov r/m32 to r32 */
.opcode = 0x8b,
.flags = TPR_INSTR_ABS_MODRM,
.access = TPR_ACCESS_READ,
.length = 6,
.addr_offset = 2,
},
{ /* push r/m32 */
.opcode = 0xff,
.modrm_reg = 6,
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
.access = TPR_ACCESS_READ,
.length = 6,
.addr_offset = 2,
},
{ /* mov imm32, r/m32 (c7/0) */
.opcode = 0xc7,
.modrm_reg = 0,
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
.access = TPR_ACCESS_WRITE,
.length = 10,
.addr_offset = 2,
},
};
static void read_guest_rom_state(VAPICROMState *s)
{
cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
sizeof(GuestROMState));
}
static void write_guest_rom_state(VAPICROMState *s)
{
cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
sizeof(GuestROMState));
}
static void update_guest_rom_state(VAPICROMState *s)
{
read_guest_rom_state(s);
s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
write_guest_rom_state(s);
}
static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
hwaddr paddr;
target_ulong addr;
if (s->state == VAPIC_ACTIVE) {
return 0;
}
/*
* If there is no prior TPR access instruction we could analyze (which is
* the case after resume from hibernation), we need to scan the possible
* virtual address space for the APIC mapping.
*/
for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
paddr = cpu_get_phys_page_debug(cs, addr);
if (paddr != APIC_DEFAULT_ADDRESS) {
continue;
}
s->real_tpr_addr = addr + 0x80;
update_guest_rom_state(s);
return 0;
}
return -1;
}
static uint8_t modrm_reg(uint8_t modrm)
{
return (modrm >> 3) & 7;
}
static bool is_abs_modrm(uint8_t modrm)
{
return (modrm & 0xc7) == 0x05;
}
static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
{
return opcode[0] == instr->opcode &&
(!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
(!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
modrm_reg(opcode[1]) == instr->modrm_reg);
}
static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
target_ulong *pip, TPRAccess access)
{
CPUState *cs = CPU(cpu);
const TPRInstruction *instr;
target_ulong ip = *pip;
uint8_t opcode[2];
uint32_t real_tpr_addr;
int i;
if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
(ip & 0xf0000000ULL) != 0xe0000000ULL) {
return -1;
}
/*
* Early Windows 2003 SMP initialization contains a
*
* mov imm32, r/m32
*
* instruction that is patched by TPR optimization. The problem is that
* RSP, used by the patched instruction, is zero, so the guest gets a
* double fault and dies.
*/
if (cpu->env.regs[R_ESP] == 0) {
return -1;
}
if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
/*
* KVM without kernel-based TPR access reporting will pass an IP that
* points after the accessing instruction. So we need to look backward
* to find the reason.
*/
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
instr = &tpr_instr[i];
if (instr->access != access) {
continue;
}
if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
sizeof(opcode), 0) < 0) {
return -1;
}
if (opcode_matches(opcode, instr)) {
ip -= instr->length;
goto instruction_ok;
}
}
return -1;
} else {
if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
return -1;
}
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
instr = &tpr_instr[i];
if (opcode_matches(opcode, instr)) {
goto instruction_ok;
}
}
return -1;
}
instruction_ok:
/*
* Grab the virtual TPR address from the instruction
* and update the cached values.
*/
if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
(void *)&real_tpr_addr,
sizeof(real_tpr_addr), 0) < 0) {
return -1;
}
real_tpr_addr = le32_to_cpu(real_tpr_addr);
if ((real_tpr_addr & 0xfff) != 0x80) {
return -1;
}
s->real_tpr_addr = real_tpr_addr;
update_guest_rom_state(s);
*pip = ip;
return 0;
}
static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
{
CPUState *cs = CPU(x86_env_get_cpu(env));
hwaddr paddr;
uint32_t rom_state_vaddr;
uint32_t pos, patch, offset;
/* nothing to do if already activated */
if (s->state == VAPIC_ACTIVE) {
return 0;
}
/* bail out if ROM init code was not executed (missing ROM?) */
if (s->state == VAPIC_INACTIVE) {
return -1;
}
/* find out virtual address of the ROM */
rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
if (paddr == -1) {
return -1;
}
paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
if (paddr != s->rom_state_paddr) {
return -1;
}
read_guest_rom_state(s);
if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
return -1;
}
s->rom_state_vaddr = rom_state_vaddr;
/* fixup addresses in ROM if needed */
if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
return 0;
}
for (pos = le32_to_cpu(s->rom_state.fixup_start);
pos < le32_to_cpu(s->rom_state.fixup_end);
pos += 4) {
cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
&offset, sizeof(offset));
offset = le32_to_cpu(offset);
cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
patch = le32_to_cpu(patch);
patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
patch = cpu_to_le32(patch);
cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
}
read_guest_rom_state(s);
s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
le32_to_cpu(s->rom_state.vaddr);
return 0;
}
/*
* Tries to read the unique processor number from the Kernel Processor Control
* Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
* cannot be accessed or is considered invalid. This also ensures that we are
* not patching the wrong guest.
*/
static int get_kpcr_number(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kpcr {
uint8_t fill1[0x1c];
uint32_t self;
uint8_t fill2[0x31];
uint8_t number;
} QEMU_PACKED kpcr;
if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
(void *)&kpcr, sizeof(kpcr), 0) < 0 ||
kpcr.self != env->segs[R_FS].base) {
return -1;
}
return kpcr.number;
}
static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
{
int cpu_number = get_kpcr_number(cpu);
hwaddr vapic_paddr;
static const uint8_t enabled = 1;
if (cpu_number < 0) {
return -1;
}
vapic_paddr = s->vapic_paddr +
(((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
&enabled, sizeof(enabled));
apic_enable_vapic(cpu->apic_state, vapic_paddr);
s->state = VAPIC_ACTIVE;
return 0;
}
static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
{
cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
}
static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
uint32_t target)
{
uint32_t offset;
offset = cpu_to_le32(target - ip - 5);
patch_byte(cpu, ip, 0xe8); /* call near */
cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
}
static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
{
CPUState *cs = CPU(cpu);
CPUX86State *env = &cpu->env;
VAPICHandlers *handlers;
uint8_t opcode[2];
uint32_t imm32;
target_ulong current_pc = 0;
target_ulong current_cs_base = 0;
int current_flags = 0;
if (smp_cpus == 1) {
handlers = &s->rom_state.up;
} else {
handlers = &s->rom_state.mp;
}
if (!kvm_enabled()) {
cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
&current_flags);
}
pause_all_vcpus();
cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
switch (opcode[0]) {
case 0x89: /* mov r32 to r/m32 */
patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
patch_call(s, cpu, ip + 1, handlers->set_tpr);
break;
case 0x8b: /* mov r/m32 to r32 */
patch_byte(cpu, ip, 0x90);
patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
break;
case 0xa1: /* mov abs to eax */
patch_call(s, cpu, ip, handlers->get_tpr[0]);
break;
case 0xa3: /* mov eax to abs */
patch_call(s, cpu, ip, handlers->set_tpr_eax);
break;
case 0xc7: /* mov imm32, r/m32 (c7/0) */
patch_byte(cpu, ip, 0x68); /* push imm32 */
cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
patch_call(s, cpu, ip + 5, handlers->set_tpr);
break;
case 0xff: /* push r/m32 */
patch_byte(cpu, ip, 0x50); /* push eax */
patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
break;
default:
abort();
}
resume_all_vcpus();
if (!kvm_enabled()) {
cs->current_tb = NULL;
tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
cpu_resume_from_signal(cs, NULL);
}
}
void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
TPRAccess access)
{
VAPICROMState *s = VAPIC(dev);
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
cpu_synchronize_state(cs);
if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
if (s->state == VAPIC_ACTIVE) {
vapic_enable(s, cpu);
}
return;
}
if (update_rom_mapping(s, env, ip) < 0) {
return;
}
if (vapic_enable(s, cpu) < 0) {
return;
}
patch_instruction(s, cpu, ip);
}
typedef struct VAPICEnableTPRReporting {
DeviceState *apic;
bool enable;
} VAPICEnableTPRReporting;
static void vapic_do_enable_tpr_reporting(void *data)
{
VAPICEnableTPRReporting *info = data;
apic_enable_tpr_access_reporting(info->apic, info->enable);
}
static void vapic_enable_tpr_reporting(bool enable)
{
VAPICEnableTPRReporting info = {
.enable = enable,
};
CPUState *cs;
X86CPU *cpu;
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
info.apic = cpu->apic_state;
run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
}
}
static void vapic_reset(DeviceState *dev)
{
VAPICROMState *s = VAPIC(dev);
s->state = VAPIC_INACTIVE;
s->rom_state_paddr = 0;
vapic_enable_tpr_reporting(false);
}
/*
* Set the IRQ polling hypercalls to the supported variant:
* - vmcall if using KVM in-kernel irqchip
* - 32-bit VAPIC port write otherwise
*/
static int patch_hypercalls(VAPICROMState *s)
{
hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
static const uint8_t vmcall_pattern[] = { /* vmcall */
0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
};
static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
};
uint8_t alternates[2];
const uint8_t *pattern;
const uint8_t *patch;
int patches = 0;
off_t pos;
uint8_t *rom;
rom = g_malloc(s->rom_size);
cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
if (kvm_irqchip_in_kernel()) {
pattern = outl_pattern;
alternates[0] = outl_pattern[7];
alternates[1] = outl_pattern[7];
patch = &vmcall_pattern[5];
} else {
pattern = vmcall_pattern;
alternates[0] = vmcall_pattern[7];
alternates[1] = 0xd9; /* AMD's VMMCALL */
patch = &outl_pattern[5];
}
if (memcmp(rom + pos, pattern, 7) == 0 &&
(rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
/*
* Don't flush the tb here. Under ordinary conditions, the patched
* calls are miles away from the current IP. Under malicious
* conditions, the guest could trick us to crash.
*/
}
}
g_free(rom);
if (patches != 0 && patches != 2) {
return -1;
}
return 0;
}
/*
* For TCG mode or the time KVM honors read-only memory regions, we need to
* enable write access to the option ROM so that variables can be updated by
* the guest.
*/
static int vapic_map_rom_writable(VAPICROMState *s)
{
hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
MemoryRegionSection section;
MemoryRegion *as;
size_t rom_size;
uint8_t *ram;
as = sysbus_address_space(&s->busdev);
if (s->rom_mapped_writable) {
memory_region_del_subregion(as, &s->rom);
object_unparent(OBJECT(&s->rom));
}
/* grab RAM memory region (region @rom_paddr may still be pc.rom) */
section = memory_region_find(as, 0, 1);
/* read ROM size from RAM region */
if (rom_paddr + 2 >= memory_region_size(section.mr)) {
return -1;
}
ram = memory_region_get_ram_ptr(section.mr);
rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
if (rom_size == 0) {
return -1;
}
s->rom_size = rom_size;
/* We need to round to avoid creating subpages
* from which we cannot run code. */
rom_size += rom_paddr & ~TARGET_PAGE_MASK;
rom_paddr &= TARGET_PAGE_MASK;
rom_size = TARGET_PAGE_ALIGN(rom_size);
memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
rom_paddr, rom_size);
memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
s->rom_mapped_writable = true;
memory_region_unref(section.mr);
return 0;
}
static int vapic_prepare(VAPICROMState *s)
{
if (vapic_map_rom_writable(s) < 0) {
return -1;
}
if (patch_hypercalls(s) < 0) {
return -1;
}
vapic_enable_tpr_reporting(true);
return 0;
}
static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
CPUState *cs = current_cpu;
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
hwaddr rom_paddr;
VAPICROMState *s = opaque;
cpu_synchronize_state(cs);
/*
* The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
* o 16-bit write access:
* Reports the option ROM initialization to the hypervisor. Written
* value is the offset of the state structure in the ROM.
* o 8-bit write access:
* Reactivates the VAPIC after a guest hibernation, i.e. after the
* option ROM content has been re-initialized by a guest power cycle.
* o 32-bit write access:
* Poll for pending IRQs, considering the current VAPIC state.
*/
switch (size) {
case 2:
if (s->state == VAPIC_INACTIVE) {
rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
s->rom_state_paddr = rom_paddr + data;
s->state = VAPIC_STANDBY;
}
if (vapic_prepare(s) < 0) {
s->state = VAPIC_INACTIVE;
s->rom_state_paddr = 0;
break;
}
break;
case 1:
if (kvm_enabled()) {
/*
* Disable triggering instruction in ROM by writing a NOP.
*
* We cannot do this in TCG mode as the reported IP is not
* accurate.
*/
pause_all_vcpus();
patch_byte(cpu, env->eip - 2, 0x66);
patch_byte(cpu, env->eip - 1, 0x90);
resume_all_vcpus();
}
if (s->state == VAPIC_ACTIVE) {
break;
}
if (update_rom_mapping(s, env, env->eip) < 0) {
break;
}
if (find_real_tpr_addr(s, env) < 0) {
break;
}
vapic_enable(s, cpu);
break;
default:
case 4:
if (!kvm_irqchip_in_kernel()) {
apic_poll_irq(cpu->apic_state);
}
break;
}
}
static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffff;
}
static const MemoryRegionOps vapic_ops = {
.write = vapic_write,
.read = vapic_read,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void vapic_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
VAPICROMState *s = VAPIC(dev);
memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
option_rom[nb_option_roms].name = "kvmvapic.bin";
option_rom[nb_option_roms].bootindex = -1;
nb_option_roms++;
}
static void do_vapic_enable(void *data)
{
VAPICROMState *s = data;
X86CPU *cpu = X86_CPU(first_cpu);
static const uint8_t enabled = 1;
cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
&enabled, sizeof(enabled));
apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
s->state = VAPIC_ACTIVE;
}
static void kvmvapic_vm_state_change(void *opaque, int running,
RunState state)
{
VAPICROMState *s = opaque;
uint8_t *zero;
if (!running) {
return;
}
if (s->state == VAPIC_ACTIVE) {
if (smp_cpus == 1) {
run_on_cpu(first_cpu, do_vapic_enable, s);
} else {
zero = g_malloc0(s->rom_state.vapic_size);
cpu_physical_memory_write(s->vapic_paddr, zero,
s->rom_state.vapic_size);
g_free(zero);
}
}
qemu_del_vm_change_state_handler(s->vmsentry);
}
static int vapic_post_load(void *opaque, int version_id)
{
VAPICROMState *s = opaque;
/*
* The old implementation of qemu-kvm did not provide the state
* VAPIC_STANDBY. Reconstruct it.
*/
if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
s->state = VAPIC_STANDBY;
}
if (s->state != VAPIC_INACTIVE) {
if (vapic_prepare(s) < 0) {
return -1;
}
}
if (!s->vmsentry) {
s->vmsentry =
qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
}
return 0;
}
static const VMStateDescription vmstate_handlers = {
.name = "kvmvapic-handlers",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(set_tpr, VAPICHandlers),
VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_guest_rom = {
.name = "kvmvapic-guest-rom",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(8), /* signature */
VMSTATE_UINT32(vaddr, GuestROMState),
VMSTATE_UINT32(fixup_start, GuestROMState),
VMSTATE_UINT32(fixup_end, GuestROMState),
VMSTATE_UINT32(vapic_vaddr, GuestROMState),
VMSTATE_UINT32(vapic_size, GuestROMState),
VMSTATE_UINT32(vcpu_shift, GuestROMState),
VMSTATE_UINT32(real_tpr_addr, GuestROMState),
VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vapic = {
.name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
.version_id = 1,
.minimum_version_id = 1,
.post_load = vapic_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
GuestROMState),
VMSTATE_UINT32(state, VAPICROMState),
VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
VMSTATE_UINT32(vapic_paddr, VAPICROMState),
VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
VMSTATE_END_OF_LIST()
}
};
static void vapic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = vapic_reset;
dc->vmsd = &vmstate_vapic;
dc->realize = vapic_realize;
}
static const TypeInfo vapic_type = {
.name = TYPE_VAPIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(VAPICROMState),
.class_init = vapic_class_init,
};
static void vapic_register(void)
{
type_register_static(&vapic_type);
}
type_init(vapic_register);