mirror of https://gitee.com/openkylin/qemu.git
623 lines
17 KiB
C++
623 lines
17 KiB
C++
// Copyright 2015, ARM Limited
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "vixl/a64/instructions-a64.h"
|
|
#include "vixl/a64/assembler-a64.h"
|
|
|
|
namespace vixl {
|
|
|
|
|
|
// Floating-point infinity values.
|
|
const float16 kFP16PositiveInfinity = 0x7c00;
|
|
const float16 kFP16NegativeInfinity = 0xfc00;
|
|
const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
|
|
const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
|
|
const double kFP64PositiveInfinity =
|
|
rawbits_to_double(UINT64_C(0x7ff0000000000000));
|
|
const double kFP64NegativeInfinity =
|
|
rawbits_to_double(UINT64_C(0xfff0000000000000));
|
|
|
|
|
|
// The default NaN values (for FPCR.DN=1).
|
|
const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
|
|
const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
|
|
const float16 kFP16DefaultNaN = 0x7e00;
|
|
|
|
|
|
static uint64_t RotateRight(uint64_t value,
|
|
unsigned int rotate,
|
|
unsigned int width) {
|
|
VIXL_ASSERT(width <= 64);
|
|
rotate &= 63;
|
|
return ((value & ((UINT64_C(1) << rotate) - 1)) <<
|
|
(width - rotate)) | (value >> rotate);
|
|
}
|
|
|
|
|
|
static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
|
|
uint64_t value,
|
|
unsigned width) {
|
|
VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
|
|
(width == 32));
|
|
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
|
uint64_t result = value & ((UINT64_C(1) << width) - 1);
|
|
for (unsigned i = width; i < reg_size; i *= 2) {
|
|
result |= (result << i);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
bool Instruction::IsLoad() const {
|
|
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
|
return false;
|
|
}
|
|
|
|
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
|
return Mask(LoadStorePairLBit) != 0;
|
|
} else {
|
|
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
|
|
switch (op) {
|
|
case LDRB_w:
|
|
case LDRH_w:
|
|
case LDR_w:
|
|
case LDR_x:
|
|
case LDRSB_w:
|
|
case LDRSB_x:
|
|
case LDRSH_w:
|
|
case LDRSH_x:
|
|
case LDRSW_x:
|
|
case LDR_b:
|
|
case LDR_h:
|
|
case LDR_s:
|
|
case LDR_d:
|
|
case LDR_q: return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool Instruction::IsStore() const {
|
|
if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
|
|
return false;
|
|
}
|
|
|
|
if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
|
|
return Mask(LoadStorePairLBit) == 0;
|
|
} else {
|
|
LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
|
|
switch (op) {
|
|
case STRB_w:
|
|
case STRH_w:
|
|
case STR_w:
|
|
case STR_x:
|
|
case STR_b:
|
|
case STR_h:
|
|
case STR_s:
|
|
case STR_d:
|
|
case STR_q: return true;
|
|
default: return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Logical immediates can't encode zero, so a return value of zero is used to
|
|
// indicate a failure case. Specifically, where the constraints on imm_s are
|
|
// not met.
|
|
uint64_t Instruction::ImmLogical() const {
|
|
unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
|
|
int32_t n = BitN();
|
|
int32_t imm_s = ImmSetBits();
|
|
int32_t imm_r = ImmRotate();
|
|
|
|
// An integer is constructed from the n, imm_s and imm_r bits according to
|
|
// the following table:
|
|
//
|
|
// N imms immr size S R
|
|
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
|
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
|
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
|
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
|
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
|
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
|
// (s bits must not be all set)
|
|
//
|
|
// A pattern is constructed of size bits, where the least significant S+1
|
|
// bits are set. The pattern is rotated right by R, and repeated across a
|
|
// 32 or 64-bit value, depending on destination register width.
|
|
//
|
|
|
|
if (n == 1) {
|
|
if (imm_s == 0x3f) {
|
|
return 0;
|
|
}
|
|
uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
|
|
return RotateRight(bits, imm_r, 64);
|
|
} else {
|
|
if ((imm_s >> 1) == 0x1f) {
|
|
return 0;
|
|
}
|
|
for (int width = 0x20; width >= 0x2; width >>= 1) {
|
|
if ((imm_s & width) == 0) {
|
|
int mask = width - 1;
|
|
if ((imm_s & mask) == mask) {
|
|
return 0;
|
|
}
|
|
uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
|
|
return RepeatBitsAcrossReg(reg_size,
|
|
RotateRight(bits, imm_r & mask, width),
|
|
width);
|
|
}
|
|
}
|
|
}
|
|
VIXL_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
|
|
uint32_t Instruction::ImmNEONabcdefgh() const {
|
|
return ImmNEONabc() << 5 | ImmNEONdefgh();
|
|
}
|
|
|
|
|
|
float Instruction::Imm8ToFP32(uint32_t imm8) {
|
|
// Imm8: abcdefgh (8 bits)
|
|
// Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
|
|
// where B is b ^ 1
|
|
uint32_t bits = imm8;
|
|
uint32_t bit7 = (bits >> 7) & 0x1;
|
|
uint32_t bit6 = (bits >> 6) & 0x1;
|
|
uint32_t bit5_to_0 = bits & 0x3f;
|
|
uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
|
|
|
|
return rawbits_to_float(result);
|
|
}
|
|
|
|
|
|
float Instruction::ImmFP32() const {
|
|
return Imm8ToFP32(ImmFP());
|
|
}
|
|
|
|
|
|
double Instruction::Imm8ToFP64(uint32_t imm8) {
|
|
// Imm8: abcdefgh (8 bits)
|
|
// Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
|
// 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
|
|
// where B is b ^ 1
|
|
uint32_t bits = imm8;
|
|
uint64_t bit7 = (bits >> 7) & 0x1;
|
|
uint64_t bit6 = (bits >> 6) & 0x1;
|
|
uint64_t bit5_to_0 = bits & 0x3f;
|
|
uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
|
|
|
|
return rawbits_to_double(result);
|
|
}
|
|
|
|
|
|
double Instruction::ImmFP64() const {
|
|
return Imm8ToFP64(ImmFP());
|
|
}
|
|
|
|
|
|
float Instruction::ImmNEONFP32() const {
|
|
return Imm8ToFP32(ImmNEONabcdefgh());
|
|
}
|
|
|
|
|
|
double Instruction::ImmNEONFP64() const {
|
|
return Imm8ToFP64(ImmNEONabcdefgh());
|
|
}
|
|
|
|
|
|
unsigned CalcLSDataSize(LoadStoreOp op) {
|
|
VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
|
|
unsigned size = static_cast<Instr>(op) >> LSSize_offset;
|
|
if ((op & LSVector_mask) != 0) {
|
|
// Vector register memory operations encode the access size in the "size"
|
|
// and "opc" fields.
|
|
if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
|
|
size = kQRegSizeInBytesLog2;
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
|
|
unsigned CalcLSPairDataSize(LoadStorePairOp op) {
|
|
VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
|
|
VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
|
|
switch (op) {
|
|
case STP_q:
|
|
case LDP_q: return kQRegSizeInBytesLog2;
|
|
case STP_x:
|
|
case LDP_x:
|
|
case STP_d:
|
|
case LDP_d: return kXRegSizeInBytesLog2;
|
|
default: return kWRegSizeInBytesLog2;
|
|
}
|
|
}
|
|
|
|
|
|
int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
|
|
switch (branch_type) {
|
|
case UncondBranchType:
|
|
return ImmUncondBranch_width;
|
|
case CondBranchType:
|
|
return ImmCondBranch_width;
|
|
case CompareBranchType:
|
|
return ImmCmpBranch_width;
|
|
case TestBranchType:
|
|
return ImmTestBranch_width;
|
|
default:
|
|
VIXL_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
|
|
int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
|
|
return encoded_max * kInstructionSize;
|
|
}
|
|
|
|
|
|
bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
|
|
int64_t offset) {
|
|
return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
|
|
}
|
|
|
|
|
|
const Instruction* Instruction::ImmPCOffsetTarget() const {
|
|
const Instruction * base = this;
|
|
ptrdiff_t offset;
|
|
if (IsPCRelAddressing()) {
|
|
// ADR and ADRP.
|
|
offset = ImmPCRel();
|
|
if (Mask(PCRelAddressingMask) == ADRP) {
|
|
base = AlignDown(base, kPageSize);
|
|
offset *= kPageSize;
|
|
} else {
|
|
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
|
|
}
|
|
} else {
|
|
// All PC-relative branches.
|
|
VIXL_ASSERT(BranchType() != UnknownBranchType);
|
|
// Relative branch offsets are instruction-size-aligned.
|
|
offset = ImmBranch() << kInstructionSizeLog2;
|
|
}
|
|
return base + offset;
|
|
}
|
|
|
|
|
|
int Instruction::ImmBranch() const {
|
|
switch (BranchType()) {
|
|
case CondBranchType: return ImmCondBranch();
|
|
case UncondBranchType: return ImmUncondBranch();
|
|
case CompareBranchType: return ImmCmpBranch();
|
|
case TestBranchType: return ImmTestBranch();
|
|
default: VIXL_UNREACHABLE();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
|
|
if (IsPCRelAddressing()) {
|
|
SetPCRelImmTarget(target);
|
|
} else {
|
|
SetBranchImmTarget(target);
|
|
}
|
|
}
|
|
|
|
|
|
void Instruction::SetPCRelImmTarget(const Instruction* target) {
|
|
ptrdiff_t imm21;
|
|
if ((Mask(PCRelAddressingMask) == ADR)) {
|
|
imm21 = target - this;
|
|
} else {
|
|
VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
|
|
uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
|
|
uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
|
|
imm21 = target_page - this_page;
|
|
}
|
|
Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
|
|
|
|
SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
|
|
}
|
|
|
|
|
|
void Instruction::SetBranchImmTarget(const Instruction* target) {
|
|
VIXL_ASSERT(((target - this) & 3) == 0);
|
|
Instr branch_imm = 0;
|
|
uint32_t imm_mask = 0;
|
|
int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
|
|
switch (BranchType()) {
|
|
case CondBranchType: {
|
|
branch_imm = Assembler::ImmCondBranch(offset);
|
|
imm_mask = ImmCondBranch_mask;
|
|
break;
|
|
}
|
|
case UncondBranchType: {
|
|
branch_imm = Assembler::ImmUncondBranch(offset);
|
|
imm_mask = ImmUncondBranch_mask;
|
|
break;
|
|
}
|
|
case CompareBranchType: {
|
|
branch_imm = Assembler::ImmCmpBranch(offset);
|
|
imm_mask = ImmCmpBranch_mask;
|
|
break;
|
|
}
|
|
case TestBranchType: {
|
|
branch_imm = Assembler::ImmTestBranch(offset);
|
|
imm_mask = ImmTestBranch_mask;
|
|
break;
|
|
}
|
|
default: VIXL_UNREACHABLE();
|
|
}
|
|
SetInstructionBits(Mask(~imm_mask) | branch_imm);
|
|
}
|
|
|
|
|
|
void Instruction::SetImmLLiteral(const Instruction* source) {
|
|
VIXL_ASSERT(IsWordAligned(source));
|
|
ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
|
|
Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
|
|
Instr mask = ImmLLiteral_mask;
|
|
|
|
SetInstructionBits(Mask(~mask) | imm);
|
|
}
|
|
|
|
|
|
VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
|
|
VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
|
|
vform == kFormatH || vform == kFormatS || vform == kFormatD);
|
|
switch (vform) {
|
|
case kFormat8H: return kFormat8B;
|
|
case kFormat4S: return kFormat4H;
|
|
case kFormat2D: return kFormat2S;
|
|
case kFormatH: return kFormatB;
|
|
case kFormatS: return kFormatH;
|
|
case kFormatD: return kFormatS;
|
|
default: VIXL_UNREACHABLE(); return kFormatUndefined;
|
|
}
|
|
}
|
|
|
|
|
|
VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
|
|
VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
|
|
vform == kFormatB || vform == kFormatH || vform == kFormatS);
|
|
switch (vform) {
|
|
case kFormat8B: return kFormat8H;
|
|
case kFormat4H: return kFormat4S;
|
|
case kFormat2S: return kFormat2D;
|
|
case kFormatB: return kFormatH;
|
|
case kFormatH: return kFormatS;
|
|
case kFormatS: return kFormatD;
|
|
default: VIXL_UNREACHABLE(); return kFormatUndefined;
|
|
}
|
|
}
|
|
|
|
|
|
VectorFormat VectorFormatFillQ(const VectorFormat vform) {
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B: return kFormat16B;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H: return kFormat8H;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S: return kFormat4S;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D: return kFormat2D;
|
|
default: VIXL_UNREACHABLE(); return kFormatUndefined;
|
|
}
|
|
}
|
|
|
|
VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
|
|
switch (vform) {
|
|
case kFormat4H: return kFormat8B;
|
|
case kFormat8H: return kFormat16B;
|
|
case kFormat2S: return kFormat4H;
|
|
case kFormat4S: return kFormat8H;
|
|
case kFormat1D: return kFormat2S;
|
|
case kFormat2D: return kFormat4S;
|
|
default: VIXL_UNREACHABLE(); return kFormatUndefined;
|
|
}
|
|
}
|
|
|
|
VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
|
|
VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
|
|
switch (vform) {
|
|
case kFormat8B: return kFormat16B;
|
|
case kFormat4H: return kFormat8H;
|
|
case kFormat2S: return kFormat4S;
|
|
default: VIXL_UNREACHABLE(); return kFormatUndefined;
|
|
}
|
|
}
|
|
|
|
|
|
VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
|
|
VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
|
|
switch (vform) {
|
|
case kFormat16B: return kFormat8B;
|
|
case kFormat8H: return kFormat4H;
|
|
case kFormat4S: return kFormat2S;
|
|
default: VIXL_UNREACHABLE(); return kFormatUndefined;
|
|
}
|
|
}
|
|
|
|
|
|
VectorFormat ScalarFormatFromLaneSize(int laneSize) {
|
|
switch (laneSize) {
|
|
case 8: return kFormatB;
|
|
case 16: return kFormatH;
|
|
case 32: return kFormatS;
|
|
case 64: return kFormatD;
|
|
default: VIXL_UNREACHABLE(); return kFormatUndefined;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
|
|
VIXL_ASSERT(vform != kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB: return kBRegSize;
|
|
case kFormatH: return kHRegSize;
|
|
case kFormatS: return kSRegSize;
|
|
case kFormatD: return kDRegSize;
|
|
case kFormat8B:
|
|
case kFormat4H:
|
|
case kFormat2S:
|
|
case kFormat1D: return kDRegSize;
|
|
default: return kQRegSize;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
|
|
return RegisterSizeInBitsFromFormat(vform) / 8;
|
|
}
|
|
|
|
|
|
unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
|
|
VIXL_ASSERT(vform != kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B: return 8;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H: return 16;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S: return 32;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D: return 64;
|
|
default: VIXL_UNREACHABLE(); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int LaneSizeInBytesFromFormat(VectorFormat vform) {
|
|
return LaneSizeInBitsFromFormat(vform) / 8;
|
|
}
|
|
|
|
|
|
int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
|
|
VIXL_ASSERT(vform != kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B: return 0;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H: return 1;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S: return 2;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D: return 3;
|
|
default: VIXL_UNREACHABLE(); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int LaneCountFromFormat(VectorFormat vform) {
|
|
VIXL_ASSERT(vform != kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormat16B: return 16;
|
|
case kFormat8B:
|
|
case kFormat8H: return 8;
|
|
case kFormat4H:
|
|
case kFormat4S: return 4;
|
|
case kFormat2S:
|
|
case kFormat2D: return 2;
|
|
case kFormat1D:
|
|
case kFormatB:
|
|
case kFormatH:
|
|
case kFormatS:
|
|
case kFormatD: return 1;
|
|
default: VIXL_UNREACHABLE(); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int MaxLaneCountFromFormat(VectorFormat vform) {
|
|
VIXL_ASSERT(vform != kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormat8B:
|
|
case kFormat16B: return 16;
|
|
case kFormatH:
|
|
case kFormat4H:
|
|
case kFormat8H: return 8;
|
|
case kFormatS:
|
|
case kFormat2S:
|
|
case kFormat4S: return 4;
|
|
case kFormatD:
|
|
case kFormat1D:
|
|
case kFormat2D: return 2;
|
|
default: VIXL_UNREACHABLE(); return 0;
|
|
}
|
|
}
|
|
|
|
|
|
// Does 'vform' indicate a vector format or a scalar format?
|
|
bool IsVectorFormat(VectorFormat vform) {
|
|
VIXL_ASSERT(vform != kFormatUndefined);
|
|
switch (vform) {
|
|
case kFormatB:
|
|
case kFormatH:
|
|
case kFormatS:
|
|
case kFormatD: return false;
|
|
default: return true;
|
|
}
|
|
}
|
|
|
|
|
|
int64_t MaxIntFromFormat(VectorFormat vform) {
|
|
return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
|
|
}
|
|
|
|
|
|
int64_t MinIntFromFormat(VectorFormat vform) {
|
|
return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
|
|
}
|
|
|
|
|
|
uint64_t MaxUintFromFormat(VectorFormat vform) {
|
|
return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
|
|
}
|
|
} // namespace vixl
|
|
|