qemu/disas/libvixl/vixl/a64/instructions-a64.h

758 lines
25 KiB
C++

// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of ARM Limited nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
#define VIXL_A64_INSTRUCTIONS_A64_H_
#include "vixl/globals.h"
#include "vixl/utils.h"
#include "vixl/a64/constants-a64.h"
namespace vixl {
// ISA constants. --------------------------------------------------------------
typedef uint32_t Instr;
const unsigned kInstructionSize = 4;
const unsigned kInstructionSizeLog2 = 2;
const unsigned kLiteralEntrySize = 4;
const unsigned kLiteralEntrySizeLog2 = 2;
const unsigned kMaxLoadLiteralRange = 1 * MBytes;
// This is the nominal page size (as used by the adrp instruction); the actual
// size of the memory pages allocated by the kernel is likely to differ.
const unsigned kPageSize = 4 * KBytes;
const unsigned kPageSizeLog2 = 12;
const unsigned kBRegSize = 8;
const unsigned kBRegSizeLog2 = 3;
const unsigned kBRegSizeInBytes = kBRegSize / 8;
const unsigned kBRegSizeInBytesLog2 = kBRegSizeLog2 - 3;
const unsigned kHRegSize = 16;
const unsigned kHRegSizeLog2 = 4;
const unsigned kHRegSizeInBytes = kHRegSize / 8;
const unsigned kHRegSizeInBytesLog2 = kHRegSizeLog2 - 3;
const unsigned kWRegSize = 32;
const unsigned kWRegSizeLog2 = 5;
const unsigned kWRegSizeInBytes = kWRegSize / 8;
const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
const unsigned kXRegSize = 64;
const unsigned kXRegSizeLog2 = 6;
const unsigned kXRegSizeInBytes = kXRegSize / 8;
const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
const unsigned kSRegSize = 32;
const unsigned kSRegSizeLog2 = 5;
const unsigned kSRegSizeInBytes = kSRegSize / 8;
const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
const unsigned kDRegSize = 64;
const unsigned kDRegSizeLog2 = 6;
const unsigned kDRegSizeInBytes = kDRegSize / 8;
const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
const unsigned kQRegSize = 128;
const unsigned kQRegSizeLog2 = 7;
const unsigned kQRegSizeInBytes = kQRegSize / 8;
const unsigned kQRegSizeInBytesLog2 = kQRegSizeLog2 - 3;
const uint64_t kWRegMask = UINT64_C(0xffffffff);
const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSRegMask = UINT64_C(0xffffffff);
const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
const uint64_t kSSignMask = UINT64_C(0x80000000);
const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
const uint64_t kWSignMask = UINT64_C(0x80000000);
const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
const uint64_t kByteMask = UINT64_C(0xff);
const uint64_t kHalfWordMask = UINT64_C(0xffff);
const uint64_t kWordMask = UINT64_C(0xffffffff);
const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
const int64_t kXMinInt = INT64_C(0x8000000000000000);
const int32_t kWMaxInt = INT32_C(0x7fffffff);
const int32_t kWMinInt = INT32_C(0x80000000);
const unsigned kLinkRegCode = 30;
const unsigned kZeroRegCode = 31;
const unsigned kSPRegInternalCode = 63;
const unsigned kRegCodeMask = 0x1f;
const unsigned kAddressTagOffset = 56;
const unsigned kAddressTagWidth = 8;
const uint64_t kAddressTagMask =
((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
// AArch64 floating-point specifics. These match IEEE-754.
const unsigned kDoubleMantissaBits = 52;
const unsigned kDoubleExponentBits = 11;
const unsigned kFloatMantissaBits = 23;
const unsigned kFloatExponentBits = 8;
const unsigned kFloat16MantissaBits = 10;
const unsigned kFloat16ExponentBits = 5;
// Floating-point infinity values.
extern const float16 kFP16PositiveInfinity;
extern const float16 kFP16NegativeInfinity;
extern const float kFP32PositiveInfinity;
extern const float kFP32NegativeInfinity;
extern const double kFP64PositiveInfinity;
extern const double kFP64NegativeInfinity;
// The default NaN values (for FPCR.DN=1).
extern const float16 kFP16DefaultNaN;
extern const float kFP32DefaultNaN;
extern const double kFP64DefaultNaN;
unsigned CalcLSDataSize(LoadStoreOp op);
unsigned CalcLSPairDataSize(LoadStorePairOp op);
enum ImmBranchType {
UnknownBranchType = 0,
CondBranchType = 1,
UncondBranchType = 2,
CompareBranchType = 3,
TestBranchType = 4
};
enum AddrMode {
Offset,
PreIndex,
PostIndex
};
enum FPRounding {
// The first four values are encodable directly by FPCR<RMode>.
FPTieEven = 0x0,
FPPositiveInfinity = 0x1,
FPNegativeInfinity = 0x2,
FPZero = 0x3,
// The final rounding modes are only available when explicitly specified by
// the instruction (such as with fcvta). It cannot be set in FPCR.
FPTieAway,
FPRoundOdd
};
enum Reg31Mode {
Reg31IsStackPointer,
Reg31IsZeroRegister
};
// Instructions. ---------------------------------------------------------------
class Instruction {
public:
Instr InstructionBits() const {
return *(reinterpret_cast<const Instr*>(this));
}
void SetInstructionBits(Instr new_instr) {
*(reinterpret_cast<Instr*>(this)) = new_instr;
}
int Bit(int pos) const {
return (InstructionBits() >> pos) & 1;
}
uint32_t Bits(int msb, int lsb) const {
return unsigned_bitextract_32(msb, lsb, InstructionBits());
}
int32_t SignedBits(int msb, int lsb) const {
int32_t bits = *(reinterpret_cast<const int32_t*>(this));
return signed_bitextract_32(msb, lsb, bits);
}
Instr Mask(uint32_t mask) const {
return InstructionBits() & mask;
}
#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
int32_t Name() const { return Func(HighBit, LowBit); }
INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
#undef DEFINE_GETTER
// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
// formed from ImmPCRelLo and ImmPCRelHi.
int ImmPCRel() const {
int offset =
static_cast<int>((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
int width = ImmPCRelLo_width + ImmPCRelHi_width;
return signed_bitextract_32(width - 1, 0, offset);
}
uint64_t ImmLogical() const;
unsigned ImmNEONabcdefgh() const;
float ImmFP32() const;
double ImmFP64() const;
float ImmNEONFP32() const;
double ImmNEONFP64() const;
unsigned SizeLS() const {
return CalcLSDataSize(static_cast<LoadStoreOp>(Mask(LoadStoreMask)));
}
unsigned SizeLSPair() const {
return CalcLSPairDataSize(
static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
}
int NEONLSIndex(int access_size_shift) const {
int64_t q = NEONQ();
int64_t s = NEONS();
int64_t size = NEONLSSize();
int64_t index = (q << 3) | (s << 2) | size;
return static_cast<int>(index >> access_size_shift);
}
// Helpers.
bool IsCondBranchImm() const {
return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
}
bool IsUncondBranchImm() const {
return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
}
bool IsCompareBranch() const {
return Mask(CompareBranchFMask) == CompareBranchFixed;
}
bool IsTestBranch() const {
return Mask(TestBranchFMask) == TestBranchFixed;
}
bool IsImmBranch() const {
return BranchType() != UnknownBranchType;
}
bool IsPCRelAddressing() const {
return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
}
bool IsLogicalImmediate() const {
return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
}
bool IsAddSubImmediate() const {
return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
}
bool IsAddSubExtended() const {
return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
}
bool IsLoadOrStore() const {
return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
}
bool IsLoad() const;
bool IsStore() const;
bool IsLoadLiteral() const {
// This includes PRFM_lit.
return Mask(LoadLiteralFMask) == LoadLiteralFixed;
}
bool IsMovn() const {
return (Mask(MoveWideImmediateMask) == MOVN_x) ||
(Mask(MoveWideImmediateMask) == MOVN_w);
}
static int ImmBranchRangeBitwidth(ImmBranchType branch_type);
static int32_t ImmBranchForwardRange(ImmBranchType branch_type);
static bool IsValidImmPCOffset(ImmBranchType branch_type, int64_t offset);
// Indicate whether Rd can be the stack pointer or the zero register. This
// does not check that the instruction actually has an Rd field.
Reg31Mode RdMode() const {
// The following instructions use sp or wsp as Rd:
// Add/sub (immediate) when not setting the flags.
// Add/sub (extended) when not setting the flags.
// Logical (immediate) when not setting the flags.
// Otherwise, r31 is the zero register.
if (IsAddSubImmediate() || IsAddSubExtended()) {
if (Mask(AddSubSetFlagsBit)) {
return Reg31IsZeroRegister;
} else {
return Reg31IsStackPointer;
}
}
if (IsLogicalImmediate()) {
// Of the logical (immediate) instructions, only ANDS (and its aliases)
// can set the flags. The others can all write into sp.
// Note that some logical operations are not available to
// immediate-operand instructions, so we have to combine two masks here.
if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
return Reg31IsZeroRegister;
} else {
return Reg31IsStackPointer;
}
}
return Reg31IsZeroRegister;
}
// Indicate whether Rn can be the stack pointer or the zero register. This
// does not check that the instruction actually has an Rn field.
Reg31Mode RnMode() const {
// The following instructions use sp or wsp as Rn:
// All loads and stores.
// Add/sub (immediate).
// Add/sub (extended).
// Otherwise, r31 is the zero register.
if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
return Reg31IsStackPointer;
}
return Reg31IsZeroRegister;
}
ImmBranchType BranchType() const {
if (IsCondBranchImm()) {
return CondBranchType;
} else if (IsUncondBranchImm()) {
return UncondBranchType;
} else if (IsCompareBranch()) {
return CompareBranchType;
} else if (IsTestBranch()) {
return TestBranchType;
} else {
return UnknownBranchType;
}
}
// Find the target of this instruction. 'this' may be a branch or a
// PC-relative addressing instruction.
const Instruction* ImmPCOffsetTarget() const;
// Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
// a PC-relative addressing instruction.
void SetImmPCOffsetTarget(const Instruction* target);
// Patch a literal load instruction to load from 'source'.
void SetImmLLiteral(const Instruction* source);
// The range of a load literal instruction, expressed as 'instr +- range'.
// The range is actually the 'positive' range; the branch instruction can
// target [instr - range - kInstructionSize, instr + range].
static const int kLoadLiteralImmBitwidth = 19;
static const int kLoadLiteralRange =
(1 << kLoadLiteralImmBitwidth) / 2 - kInstructionSize;
// Calculate the address of a literal referred to by a load-literal
// instruction, and return it as the specified type.
//
// The literal itself is safely mutable only if the backing buffer is safely
// mutable.
template <typename T>
T LiteralAddress() const {
uint64_t base_raw = reinterpret_cast<uint64_t>(this);
int64_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
uint64_t address_raw = base_raw + offset;
// Cast the address using a C-style cast. A reinterpret_cast would be
// appropriate, but it can't cast one integral type to another.
T address = (T)(address_raw);
// Assert that the address can be represented by the specified type.
VIXL_ASSERT((uint64_t)(address) == address_raw);
return address;
}
uint32_t Literal32() const {
uint32_t literal;
memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
return literal;
}
uint64_t Literal64() const {
uint64_t literal;
memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
return literal;
}
float LiteralFP32() const {
return rawbits_to_float(Literal32());
}
double LiteralFP64() const {
return rawbits_to_double(Literal64());
}
const Instruction* NextInstruction() const {
return this + kInstructionSize;
}
const Instruction* InstructionAtOffset(int64_t offset) const {
VIXL_ASSERT(IsWordAligned(this + offset));
return this + offset;
}
template<typename T> static Instruction* Cast(T src) {
return reinterpret_cast<Instruction*>(src);
}
template<typename T> static const Instruction* CastConst(T src) {
return reinterpret_cast<const Instruction*>(src);
}
private:
int ImmBranch() const;
static float Imm8ToFP32(uint32_t imm8);
static double Imm8ToFP64(uint32_t imm8);
void SetPCRelImmTarget(const Instruction* target);
void SetBranchImmTarget(const Instruction* target);
};
// Functions for handling NEON vector format information.
enum VectorFormat {
kFormatUndefined = 0xffffffff,
kFormat8B = NEON_8B,
kFormat16B = NEON_16B,
kFormat4H = NEON_4H,
kFormat8H = NEON_8H,
kFormat2S = NEON_2S,
kFormat4S = NEON_4S,
kFormat1D = NEON_1D,
kFormat2D = NEON_2D,
// Scalar formats. We add the scalar bit to distinguish between scalar and
// vector enumerations; the bit is always set in the encoding of scalar ops
// and always clear for vector ops. Although kFormatD and kFormat1D appear
// to be the same, their meaning is subtly different. The first is a scalar
// operation, the second a vector operation that only affects one lane.
kFormatB = NEON_B | NEONScalar,
kFormatH = NEON_H | NEONScalar,
kFormatS = NEON_S | NEONScalar,
kFormatD = NEON_D | NEONScalar
};
VectorFormat VectorFormatHalfWidth(const VectorFormat vform);
VectorFormat VectorFormatDoubleWidth(const VectorFormat vform);
VectorFormat VectorFormatDoubleLanes(const VectorFormat vform);
VectorFormat VectorFormatHalfLanes(const VectorFormat vform);
VectorFormat ScalarFormatFromLaneSize(int lanesize);
VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform);
VectorFormat VectorFormatFillQ(const VectorFormat vform);
unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
// TODO: Make the return types of these functions consistent.
unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
int LaneSizeInBytesFromFormat(VectorFormat vform);
int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
int LaneCountFromFormat(VectorFormat vform);
int MaxLaneCountFromFormat(VectorFormat vform);
bool IsVectorFormat(VectorFormat vform);
int64_t MaxIntFromFormat(VectorFormat vform);
int64_t MinIntFromFormat(VectorFormat vform);
uint64_t MaxUintFromFormat(VectorFormat vform);
enum NEONFormat {
NF_UNDEF = 0,
NF_8B = 1,
NF_16B = 2,
NF_4H = 3,
NF_8H = 4,
NF_2S = 5,
NF_4S = 6,
NF_1D = 7,
NF_2D = 8,
NF_B = 9,
NF_H = 10,
NF_S = 11,
NF_D = 12
};
static const unsigned kNEONFormatMaxBits = 6;
struct NEONFormatMap {
// The bit positions in the instruction to consider.
uint8_t bits[kNEONFormatMaxBits];
// Mapping from concatenated bits to format.
NEONFormat map[1 << kNEONFormatMaxBits];
};
class NEONFormatDecoder {
public:
enum SubstitutionMode {
kPlaceholder,
kFormat
};
// Construct a format decoder with increasingly specific format maps for each
// subsitution. If no format map is specified, the default is the integer
// format map.
explicit NEONFormatDecoder(const Instruction* instr) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(IntegerFormatMap());
}
NEONFormatDecoder(const Instruction* instr,
const NEONFormatMap* format) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(format);
}
NEONFormatDecoder(const Instruction* instr,
const NEONFormatMap* format0,
const NEONFormatMap* format1) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(format0, format1);
}
NEONFormatDecoder(const Instruction* instr,
const NEONFormatMap* format0,
const NEONFormatMap* format1,
const NEONFormatMap* format2) {
instrbits_ = instr->InstructionBits();
SetFormatMaps(format0, format1, format2);
}
// Set the format mapping for all or individual substitutions.
void SetFormatMaps(const NEONFormatMap* format0,
const NEONFormatMap* format1 = NULL,
const NEONFormatMap* format2 = NULL) {
VIXL_ASSERT(format0 != NULL);
formats_[0] = format0;
formats_[1] = (format1 == NULL) ? formats_[0] : format1;
formats_[2] = (format2 == NULL) ? formats_[1] : format2;
}
void SetFormatMap(unsigned index, const NEONFormatMap* format) {
VIXL_ASSERT(index <= (sizeof(formats_) / sizeof(formats_[0])));
VIXL_ASSERT(format != NULL);
formats_[index] = format;
}
// Substitute %s in the input string with the placeholder string for each
// register, ie. "'B", "'H", etc.
const char* SubstitutePlaceholders(const char* string) {
return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
}
// Substitute %s in the input string with a new string based on the
// substitution mode.
const char* Substitute(const char* string,
SubstitutionMode mode0 = kFormat,
SubstitutionMode mode1 = kFormat,
SubstitutionMode mode2 = kFormat) {
snprintf(form_buffer_, sizeof(form_buffer_), string,
GetSubstitute(0, mode0),
GetSubstitute(1, mode1),
GetSubstitute(2, mode2));
return form_buffer_;
}
// Append a "2" to a mnemonic string based of the state of the Q bit.
const char* Mnemonic(const char* mnemonic) {
if ((instrbits_ & NEON_Q) != 0) {
snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
return mne_buffer_;
}
return mnemonic;
}
VectorFormat GetVectorFormat(int format_index = 0) {
return GetVectorFormat(formats_[format_index]);
}
VectorFormat GetVectorFormat(const NEONFormatMap* format_map) {
static const VectorFormat vform[] = {
kFormatUndefined,
kFormat8B, kFormat16B, kFormat4H, kFormat8H,
kFormat2S, kFormat4S, kFormat1D, kFormat2D,
kFormatB, kFormatH, kFormatS, kFormatD
};
VIXL_ASSERT(GetNEONFormat(format_map) < (sizeof(vform) / sizeof(vform[0])));
return vform[GetNEONFormat(format_map)];
}
// Built in mappings for common cases.
// The integer format map uses three bits (Q, size<1:0>) to encode the
// "standard" set of NEON integer vector formats.
static const NEONFormatMap* IntegerFormatMap() {
static const NEONFormatMap map = {
{23, 22, 30},
{NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_UNDEF, NF_2D}
};
return &map;
}
// The long integer format map uses two bits (size<1:0>) to encode the
// long set of NEON integer vector formats. These are used in narrow, wide
// and long operations.
static const NEONFormatMap* LongIntegerFormatMap() {
static const NEONFormatMap map = {
{23, 22}, {NF_8H, NF_4S, NF_2D}
};
return &map;
}
// The FP format map uses two bits (Q, size<0>) to encode the NEON FP vector
// formats: NF_2S, NF_4S, NF_2D.
static const NEONFormatMap* FPFormatMap() {
// The FP format map assumes two bits (Q, size<0>) are used to encode the
// NEON FP vector formats: NF_2S, NF_4S, NF_2D.
static const NEONFormatMap map = {
{22, 30}, {NF_2S, NF_4S, NF_UNDEF, NF_2D}
};
return &map;
}
// The load/store format map uses three bits (Q, 11, 10) to encode the
// set of NEON vector formats.
static const NEONFormatMap* LoadStoreFormatMap() {
static const NEONFormatMap map = {
{11, 10, 30},
{NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
};
return &map;
}
// The logical format map uses one bit (Q) to encode the NEON vector format:
// NF_8B, NF_16B.
static const NEONFormatMap* LogicalFormatMap() {
static const NEONFormatMap map = {
{30}, {NF_8B, NF_16B}
};
return &map;
}
// The triangular format map uses between two and five bits to encode the NEON
// vector format:
// xxx10->8B, xxx11->16B, xx100->4H, xx101->8H
// x1000->2S, x1001->4S, 10001->2D, all others undefined.
static const NEONFormatMap* TriangularFormatMap() {
static const NEONFormatMap map = {
{19, 18, 17, 16, 30},
{NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S,
NF_4S, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_UNDEF, NF_2D,
NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S, NF_4S, NF_8B, NF_16B,
NF_4H, NF_8H, NF_8B, NF_16B}
};
return &map;
}
// The scalar format map uses two bits (size<1:0>) to encode the NEON scalar
// formats: NF_B, NF_H, NF_S, NF_D.
static const NEONFormatMap* ScalarFormatMap() {
static const NEONFormatMap map = {
{23, 22}, {NF_B, NF_H, NF_S, NF_D}
};
return &map;
}
// The long scalar format map uses two bits (size<1:0>) to encode the longer
// NEON scalar formats: NF_H, NF_S, NF_D.
static const NEONFormatMap* LongScalarFormatMap() {
static const NEONFormatMap map = {
{23, 22}, {NF_H, NF_S, NF_D}
};
return &map;
}
// The FP scalar format map assumes one bit (size<0>) is used to encode the
// NEON FP scalar formats: NF_S, NF_D.
static const NEONFormatMap* FPScalarFormatMap() {
static const NEONFormatMap map = {
{22}, {NF_S, NF_D}
};
return &map;
}
// The triangular scalar format map uses between one and four bits to encode
// the NEON FP scalar formats:
// xxx1->B, xx10->H, x100->S, 1000->D, all others undefined.
static const NEONFormatMap* TriangularScalarFormatMap() {
static const NEONFormatMap map = {
{19, 18, 17, 16},
{NF_UNDEF, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B,
NF_D, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B}
};
return &map;
}
private:
// Get a pointer to a string that represents the format or placeholder for
// the specified substitution index, based on the format map and instruction.
const char* GetSubstitute(int index, SubstitutionMode mode) {
if (mode == kFormat) {
return NEONFormatAsString(GetNEONFormat(formats_[index]));
}
VIXL_ASSERT(mode == kPlaceholder);
return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
}
// Get the NEONFormat enumerated value for bits obtained from the
// instruction based on the specified format mapping.
NEONFormat GetNEONFormat(const NEONFormatMap* format_map) {
return format_map->map[PickBits(format_map->bits)];
}
// Convert a NEONFormat into a string.
static const char* NEONFormatAsString(NEONFormat format) {
static const char* formats[] = {
"undefined",
"8b", "16b", "4h", "8h", "2s", "4s", "1d", "2d",
"b", "h", "s", "d"
};
VIXL_ASSERT(format < (sizeof(formats) / sizeof(formats[0])));
return formats[format];
}
// Convert a NEONFormat into a register placeholder string.
static const char* NEONFormatAsPlaceholder(NEONFormat format) {
VIXL_ASSERT((format == NF_B) || (format == NF_H) ||
(format == NF_S) || (format == NF_D) ||
(format == NF_UNDEF));
static const char* formats[] = {
"undefined",
"undefined", "undefined", "undefined", "undefined",
"undefined", "undefined", "undefined", "undefined",
"'B", "'H", "'S", "'D"
};
return formats[format];
}
// Select bits from instrbits_ defined by the bits array, concatenate them,
// and return the value.
uint8_t PickBits(const uint8_t bits[]) {
uint8_t result = 0;
for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
if (bits[b] == 0) break;
result <<= 1;
result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
}
return result;
}
Instr instrbits_;
const NEONFormatMap* formats_[3];
char form_buffer_[64];
char mne_buffer_[16];
};
} // namespace vixl
#endif // VIXL_A64_INSTRUCTIONS_A64_H_