qemu/hw/misc/tz-ppc.c

339 lines
9.1 KiB
C

/*
* ARM TrustZone peripheral protection controller emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/registerfields.h"
#include "hw/irq.h"
#include "hw/misc/tz-ppc.h"
#include "hw/qdev-properties.h"
static void tz_ppc_update_irq(TZPPC *s)
{
bool level = s->irq_status && s->irq_enable;
trace_tz_ppc_update_irq(level);
qemu_set_irq(s->irq, level);
}
static void tz_ppc_cfg_nonsec(void *opaque, int n, int level)
{
TZPPC *s = TZ_PPC(opaque);
assert(n < TZ_NUM_PORTS);
trace_tz_ppc_cfg_nonsec(n, level);
s->cfg_nonsec[n] = level;
}
static void tz_ppc_cfg_ap(void *opaque, int n, int level)
{
TZPPC *s = TZ_PPC(opaque);
assert(n < TZ_NUM_PORTS);
trace_tz_ppc_cfg_ap(n, level);
s->cfg_ap[n] = level;
}
static void tz_ppc_cfg_sec_resp(void *opaque, int n, int level)
{
TZPPC *s = TZ_PPC(opaque);
trace_tz_ppc_cfg_sec_resp(level);
s->cfg_sec_resp = level;
}
static void tz_ppc_irq_enable(void *opaque, int n, int level)
{
TZPPC *s = TZ_PPC(opaque);
trace_tz_ppc_irq_enable(level);
s->irq_enable = level;
tz_ppc_update_irq(s);
}
static void tz_ppc_irq_clear(void *opaque, int n, int level)
{
TZPPC *s = TZ_PPC(opaque);
trace_tz_ppc_irq_clear(level);
s->irq_clear = level;
if (level) {
s->irq_status = false;
tz_ppc_update_irq(s);
}
}
static bool tz_ppc_check(TZPPC *s, int n, MemTxAttrs attrs)
{
/* Check whether to allow an access to port n; return true if
* the check passes, and false if the transaction must be blocked.
* If the latter, the caller must check cfg_sec_resp to determine
* whether to abort or RAZ/WI the transaction.
* The checks are:
* + nonsec_mask suppresses any check of the secure attribute
* + otherwise, block if cfg_nonsec is 1 and transaction is secure,
* or if cfg_nonsec is 0 and transaction is non-secure
* + block if transaction is usermode and cfg_ap is 0
*/
if ((attrs.secure == s->cfg_nonsec[n] && !(s->nonsec_mask & (1 << n))) ||
(attrs.user && !s->cfg_ap[n])) {
/* Block the transaction. */
if (!s->irq_clear) {
/* Note that holding irq_clear high suppresses interrupts */
s->irq_status = true;
tz_ppc_update_irq(s);
}
return false;
}
return true;
}
static MemTxResult tz_ppc_read(void *opaque, hwaddr addr, uint64_t *pdata,
unsigned size, MemTxAttrs attrs)
{
TZPPCPort *p = opaque;
TZPPC *s = p->ppc;
int n = p - s->port;
AddressSpace *as = &p->downstream_as;
uint64_t data;
MemTxResult res;
if (!tz_ppc_check(s, n, attrs)) {
trace_tz_ppc_read_blocked(n, addr, attrs.secure, attrs.user);
if (s->cfg_sec_resp) {
return MEMTX_ERROR;
} else {
*pdata = 0;
return MEMTX_OK;
}
}
switch (size) {
case 1:
data = address_space_ldub(as, addr, attrs, &res);
break;
case 2:
data = address_space_lduw_le(as, addr, attrs, &res);
break;
case 4:
data = address_space_ldl_le(as, addr, attrs, &res);
break;
case 8:
data = address_space_ldq_le(as, addr, attrs, &res);
break;
default:
g_assert_not_reached();
}
*pdata = data;
return res;
}
static MemTxResult tz_ppc_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size, MemTxAttrs attrs)
{
TZPPCPort *p = opaque;
TZPPC *s = p->ppc;
AddressSpace *as = &p->downstream_as;
int n = p - s->port;
MemTxResult res;
if (!tz_ppc_check(s, n, attrs)) {
trace_tz_ppc_write_blocked(n, addr, attrs.secure, attrs.user);
if (s->cfg_sec_resp) {
return MEMTX_ERROR;
} else {
return MEMTX_OK;
}
}
switch (size) {
case 1:
address_space_stb(as, addr, val, attrs, &res);
break;
case 2:
address_space_stw_le(as, addr, val, attrs, &res);
break;
case 4:
address_space_stl_le(as, addr, val, attrs, &res);
break;
case 8:
address_space_stq_le(as, addr, val, attrs, &res);
break;
default:
g_assert_not_reached();
}
return res;
}
static const MemoryRegionOps tz_ppc_ops = {
.read_with_attrs = tz_ppc_read,
.write_with_attrs = tz_ppc_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static bool tz_ppc_dummy_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
/*
* Board code should never map the upstream end of an unused port,
* so we should never try to make a memory access to it.
*/
g_assert_not_reached();
}
static const MemoryRegionOps tz_ppc_dummy_ops = {
.valid.accepts = tz_ppc_dummy_accepts,
};
static void tz_ppc_reset(DeviceState *dev)
{
TZPPC *s = TZ_PPC(dev);
trace_tz_ppc_reset();
s->cfg_sec_resp = false;
memset(s->cfg_nonsec, 0, sizeof(s->cfg_nonsec));
memset(s->cfg_ap, 0, sizeof(s->cfg_ap));
}
static void tz_ppc_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
TZPPC *s = TZ_PPC(obj);
qdev_init_gpio_in_named(dev, tz_ppc_cfg_nonsec, "cfg_nonsec", TZ_NUM_PORTS);
qdev_init_gpio_in_named(dev, tz_ppc_cfg_ap, "cfg_ap", TZ_NUM_PORTS);
qdev_init_gpio_in_named(dev, tz_ppc_cfg_sec_resp, "cfg_sec_resp", 1);
qdev_init_gpio_in_named(dev, tz_ppc_irq_enable, "irq_enable", 1);
qdev_init_gpio_in_named(dev, tz_ppc_irq_clear, "irq_clear", 1);
qdev_init_gpio_out_named(dev, &s->irq, "irq", 1);
}
static void tz_ppc_realize(DeviceState *dev, Error **errp)
{
Object *obj = OBJECT(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
TZPPC *s = TZ_PPC(dev);
int i;
int max_port = 0;
/* We can't create the upstream end of the port until realize,
* as we don't know the size of the MR used as the downstream until then.
*/
for (i = 0; i < TZ_NUM_PORTS; i++) {
if (s->port[i].downstream) {
max_port = i;
}
}
for (i = 0; i <= max_port; i++) {
TZPPCPort *port = &s->port[i];
char *name;
uint64_t size;
if (!port->downstream) {
/*
* Create dummy sysbus MMIO region so the sysbus region
* numbering doesn't get out of sync with the port numbers.
* The size is entirely arbitrary.
*/
name = g_strdup_printf("tz-ppc-dummy-port[%d]", i);
memory_region_init_io(&port->upstream, obj, &tz_ppc_dummy_ops,
port, name, 0x10000);
sysbus_init_mmio(sbd, &port->upstream);
g_free(name);
continue;
}
name = g_strdup_printf("tz-ppc-port[%d]", i);
port->ppc = s;
address_space_init(&port->downstream_as, port->downstream, name);
size = memory_region_size(port->downstream);
memory_region_init_io(&port->upstream, obj, &tz_ppc_ops,
port, name, size);
sysbus_init_mmio(sbd, &port->upstream);
g_free(name);
}
}
static const VMStateDescription tz_ppc_vmstate = {
.name = "tz-ppc",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_BOOL_ARRAY(cfg_nonsec, TZPPC, 16),
VMSTATE_BOOL_ARRAY(cfg_ap, TZPPC, 16),
VMSTATE_BOOL(cfg_sec_resp, TZPPC),
VMSTATE_BOOL(irq_enable, TZPPC),
VMSTATE_BOOL(irq_clear, TZPPC),
VMSTATE_BOOL(irq_status, TZPPC),
VMSTATE_END_OF_LIST()
}
};
#define DEFINE_PORT(N) \
DEFINE_PROP_LINK("port[" #N "]", TZPPC, port[N].downstream, \
TYPE_MEMORY_REGION, MemoryRegion *)
static Property tz_ppc_properties[] = {
DEFINE_PROP_UINT32("NONSEC_MASK", TZPPC, nonsec_mask, 0),
DEFINE_PORT(0),
DEFINE_PORT(1),
DEFINE_PORT(2),
DEFINE_PORT(3),
DEFINE_PORT(4),
DEFINE_PORT(5),
DEFINE_PORT(6),
DEFINE_PORT(7),
DEFINE_PORT(8),
DEFINE_PORT(9),
DEFINE_PORT(10),
DEFINE_PORT(11),
DEFINE_PORT(12),
DEFINE_PORT(13),
DEFINE_PORT(14),
DEFINE_PORT(15),
DEFINE_PROP_END_OF_LIST(),
};
static void tz_ppc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = tz_ppc_realize;
dc->vmsd = &tz_ppc_vmstate;
dc->reset = tz_ppc_reset;
device_class_set_props(dc, tz_ppc_properties);
}
static const TypeInfo tz_ppc_info = {
.name = TYPE_TZ_PPC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(TZPPC),
.instance_init = tz_ppc_init,
.class_init = tz_ppc_class_init,
};
static void tz_ppc_register_types(void)
{
type_register_static(&tz_ppc_info);
}
type_init(tz_ppc_register_types);