mirror of https://gitee.com/openkylin/qemu.git
379 lines
10 KiB
C
379 lines
10 KiB
C
/*
|
|
* ARM PrimeCell Timer modules.
|
|
*
|
|
* Copyright (c) 2005-2006 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licenced under the GPL.
|
|
*/
|
|
|
|
#include "vl.h"
|
|
#include "arm_pic.h"
|
|
|
|
/* Common timer implementation. */
|
|
|
|
#define TIMER_CTRL_ONESHOT (1 << 0)
|
|
#define TIMER_CTRL_32BIT (1 << 1)
|
|
#define TIMER_CTRL_DIV1 (0 << 2)
|
|
#define TIMER_CTRL_DIV16 (1 << 2)
|
|
#define TIMER_CTRL_DIV256 (2 << 2)
|
|
#define TIMER_CTRL_IE (1 << 5)
|
|
#define TIMER_CTRL_PERIODIC (1 << 6)
|
|
#define TIMER_CTRL_ENABLE (1 << 7)
|
|
|
|
typedef struct {
|
|
int64_t next_time;
|
|
int64_t expires;
|
|
int64_t loaded;
|
|
QEMUTimer *timer;
|
|
uint32_t control;
|
|
uint32_t count;
|
|
uint32_t limit;
|
|
int raw_freq;
|
|
int freq;
|
|
int int_level;
|
|
qemu_irq irq;
|
|
} arm_timer_state;
|
|
|
|
/* Calculate the new expiry time of the given timer. */
|
|
|
|
static void arm_timer_reload(arm_timer_state *s)
|
|
{
|
|
int64_t delay;
|
|
|
|
s->loaded = s->expires;
|
|
delay = muldiv64(s->count, ticks_per_sec, s->freq);
|
|
if (delay == 0)
|
|
delay = 1;
|
|
s->expires += delay;
|
|
}
|
|
|
|
/* Check all active timers, and schedule the next timer interrupt. */
|
|
|
|
static void arm_timer_update(arm_timer_state *s, int64_t now)
|
|
{
|
|
int64_t next;
|
|
|
|
/* Ignore disabled timers. */
|
|
if ((s->control & TIMER_CTRL_ENABLE) == 0)
|
|
return;
|
|
/* Ignore expired one-shot timers. */
|
|
if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
|
|
return;
|
|
if (s->expires - now <= 0) {
|
|
/* Timer has expired. */
|
|
s->int_level = 1;
|
|
if (s->control & TIMER_CTRL_ONESHOT) {
|
|
/* One-shot. */
|
|
s->count = 0;
|
|
} else {
|
|
if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
|
|
/* Free running. */
|
|
if (s->control & TIMER_CTRL_32BIT)
|
|
s->count = 0xffffffff;
|
|
else
|
|
s->count = 0xffff;
|
|
} else {
|
|
/* Periodic. */
|
|
s->count = s->limit;
|
|
}
|
|
}
|
|
}
|
|
while (s->expires - now <= 0) {
|
|
arm_timer_reload(s);
|
|
}
|
|
/* Update interrupts. */
|
|
if (s->int_level && (s->control & TIMER_CTRL_IE)) {
|
|
qemu_irq_raise(s->irq);
|
|
} else {
|
|
qemu_irq_lower(s->irq);
|
|
}
|
|
|
|
next = now;
|
|
if (next - s->expires < 0)
|
|
next = s->expires;
|
|
|
|
/* Schedule the next timer interrupt. */
|
|
if (next == now) {
|
|
qemu_del_timer(s->timer);
|
|
s->next_time = 0;
|
|
} else if (next != s->next_time) {
|
|
qemu_mod_timer(s->timer, next);
|
|
s->next_time = next;
|
|
}
|
|
}
|
|
|
|
/* Return the current value of the timer. */
|
|
static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
|
|
{
|
|
int64_t left;
|
|
int64_t period;
|
|
|
|
if (s->count == 0)
|
|
return 0;
|
|
if ((s->control & TIMER_CTRL_ENABLE) == 0)
|
|
return s->count;
|
|
left = s->expires - now;
|
|
period = s->expires - s->loaded;
|
|
/* If the timer should have expired then return 0. This can happen
|
|
when the host timer signal doesnt occur immediately. It's better to
|
|
have a timer appear to sit at zero for a while than have it wrap
|
|
around before the guest interrupt is raised. */
|
|
/* ??? Could we trigger the interrupt here? */
|
|
if (left < 0)
|
|
return 0;
|
|
/* We need to calculate count * elapsed / period without overfowing.
|
|
Scale both elapsed and period so they fit in a 32-bit int. */
|
|
while (period != (int32_t)period) {
|
|
period >>= 1;
|
|
left >>= 1;
|
|
}
|
|
return ((uint64_t)s->count * (uint64_t)(int32_t)left)
|
|
/ (int32_t)period;
|
|
}
|
|
|
|
uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
arm_timer_state *s = (arm_timer_state *)opaque;
|
|
|
|
switch (offset >> 2) {
|
|
case 0: /* TimerLoad */
|
|
case 6: /* TimerBGLoad */
|
|
return s->limit;
|
|
case 1: /* TimerValue */
|
|
return arm_timer_getcount(s, qemu_get_clock(vm_clock));
|
|
case 2: /* TimerControl */
|
|
return s->control;
|
|
case 4: /* TimerRIS */
|
|
return s->int_level;
|
|
case 5: /* TimerMIS */
|
|
if ((s->control & TIMER_CTRL_IE) == 0)
|
|
return 0;
|
|
return s->int_level;
|
|
default:
|
|
cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void arm_timer_write(void *opaque, target_phys_addr_t offset,
|
|
uint32_t value)
|
|
{
|
|
arm_timer_state *s = (arm_timer_state *)opaque;
|
|
int64_t now;
|
|
|
|
now = qemu_get_clock(vm_clock);
|
|
switch (offset >> 2) {
|
|
case 0: /* TimerLoad */
|
|
s->limit = value;
|
|
s->count = value;
|
|
s->expires = now;
|
|
arm_timer_reload(s);
|
|
break;
|
|
case 1: /* TimerValue */
|
|
/* ??? Linux seems to want to write to this readonly register.
|
|
Ignore it. */
|
|
break;
|
|
case 2: /* TimerControl */
|
|
if (s->control & TIMER_CTRL_ENABLE) {
|
|
/* Pause the timer if it is running. This may cause some
|
|
inaccuracy dure to rounding, but avoids a whole lot of other
|
|
messyness. */
|
|
s->count = arm_timer_getcount(s, now);
|
|
}
|
|
s->control = value;
|
|
s->freq = s->raw_freq;
|
|
/* ??? Need to recalculate expiry time after changing divisor. */
|
|
switch ((value >> 2) & 3) {
|
|
case 1: s->freq >>= 4; break;
|
|
case 2: s->freq >>= 8; break;
|
|
}
|
|
if (s->control & TIMER_CTRL_ENABLE) {
|
|
/* Restart the timer if still enabled. */
|
|
s->expires = now;
|
|
arm_timer_reload(s);
|
|
}
|
|
break;
|
|
case 3: /* TimerIntClr */
|
|
s->int_level = 0;
|
|
break;
|
|
case 6: /* TimerBGLoad */
|
|
s->limit = value;
|
|
break;
|
|
default:
|
|
cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
|
|
}
|
|
arm_timer_update(s, now);
|
|
}
|
|
|
|
static void arm_timer_tick(void *opaque)
|
|
{
|
|
int64_t now;
|
|
|
|
now = qemu_get_clock(vm_clock);
|
|
arm_timer_update((arm_timer_state *)opaque, now);
|
|
}
|
|
|
|
static void *arm_timer_init(uint32_t freq, qemu_irq irq)
|
|
{
|
|
arm_timer_state *s;
|
|
|
|
s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
|
|
s->irq = irq;
|
|
s->raw_freq = s->freq = 1000000;
|
|
s->control = TIMER_CTRL_IE;
|
|
s->count = 0xffffffff;
|
|
|
|
s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
|
|
/* ??? Save/restore. */
|
|
return s;
|
|
}
|
|
|
|
/* ARM PrimeCell SP804 dual timer module.
|
|
Docs for this device don't seem to be publicly available. This
|
|
implementation is based on guesswork, the linux kernel sources and the
|
|
Integrator/CP timer modules. */
|
|
|
|
typedef struct {
|
|
void *timer[2];
|
|
int level[2];
|
|
uint32_t base;
|
|
qemu_irq irq;
|
|
} sp804_state;
|
|
|
|
/* Merge the IRQs from the two component devices. */
|
|
static void sp804_set_irq(void *opaque, int irq, int level)
|
|
{
|
|
sp804_state *s = (sp804_state *)opaque;
|
|
|
|
s->level[irq] = level;
|
|
qemu_set_irq(s->irq, s->level[0] || s->level[1]);
|
|
}
|
|
|
|
static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
sp804_state *s = (sp804_state *)opaque;
|
|
|
|
/* ??? Don't know the PrimeCell ID for this device. */
|
|
offset -= s->base;
|
|
if (offset < 0x20) {
|
|
return arm_timer_read(s->timer[0], offset);
|
|
} else {
|
|
return arm_timer_read(s->timer[1], offset - 0x20);
|
|
}
|
|
}
|
|
|
|
static void sp804_write(void *opaque, target_phys_addr_t offset,
|
|
uint32_t value)
|
|
{
|
|
sp804_state *s = (sp804_state *)opaque;
|
|
|
|
offset -= s->base;
|
|
if (offset < 0x20) {
|
|
arm_timer_write(s->timer[0], offset, value);
|
|
} else {
|
|
arm_timer_write(s->timer[1], offset - 0x20, value);
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *sp804_readfn[] = {
|
|
sp804_read,
|
|
sp804_read,
|
|
sp804_read
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *sp804_writefn[] = {
|
|
sp804_write,
|
|
sp804_write,
|
|
sp804_write
|
|
};
|
|
|
|
void sp804_init(uint32_t base, qemu_irq irq)
|
|
{
|
|
int iomemtype;
|
|
sp804_state *s;
|
|
qemu_irq *qi;
|
|
|
|
s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
|
|
qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
|
|
s->base = base;
|
|
s->irq = irq;
|
|
/* ??? The timers are actually configurable between 32kHz and 1MHz, but
|
|
we don't implement that. */
|
|
s->timer[0] = arm_timer_init(1000000, qi[0]);
|
|
s->timer[1] = arm_timer_init(1000000, qi[1]);
|
|
iomemtype = cpu_register_io_memory(0, sp804_readfn,
|
|
sp804_writefn, s);
|
|
cpu_register_physical_memory(base, 0x00000fff, iomemtype);
|
|
/* ??? Save/restore. */
|
|
}
|
|
|
|
|
|
/* Integrator/CP timer module. */
|
|
|
|
typedef struct {
|
|
void *timer[3];
|
|
uint32_t base;
|
|
} icp_pit_state;
|
|
|
|
static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
icp_pit_state *s = (icp_pit_state *)opaque;
|
|
int n;
|
|
|
|
/* ??? Don't know the PrimeCell ID for this device. */
|
|
offset -= s->base;
|
|
n = offset >> 8;
|
|
if (n > 3)
|
|
cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
|
|
|
|
return arm_timer_read(s->timer[n], offset & 0xff);
|
|
}
|
|
|
|
static void icp_pit_write(void *opaque, target_phys_addr_t offset,
|
|
uint32_t value)
|
|
{
|
|
icp_pit_state *s = (icp_pit_state *)opaque;
|
|
int n;
|
|
|
|
offset -= s->base;
|
|
n = offset >> 8;
|
|
if (n > 3)
|
|
cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
|
|
|
|
arm_timer_write(s->timer[n], offset & 0xff, value);
|
|
}
|
|
|
|
|
|
static CPUReadMemoryFunc *icp_pit_readfn[] = {
|
|
icp_pit_read,
|
|
icp_pit_read,
|
|
icp_pit_read
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *icp_pit_writefn[] = {
|
|
icp_pit_write,
|
|
icp_pit_write,
|
|
icp_pit_write
|
|
};
|
|
|
|
void icp_pit_init(uint32_t base, qemu_irq *pic, int irq)
|
|
{
|
|
int iomemtype;
|
|
icp_pit_state *s;
|
|
|
|
s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
|
|
s->base = base;
|
|
/* Timer 0 runs at the system clock speed (40MHz). */
|
|
s->timer[0] = arm_timer_init(40000000, pic[irq]);
|
|
/* The other two timers run at 1MHz. */
|
|
s->timer[1] = arm_timer_init(1000000, pic[irq + 1]);
|
|
s->timer[2] = arm_timer_init(1000000, pic[irq + 2]);
|
|
|
|
iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
|
|
icp_pit_writefn, s);
|
|
cpu_register_physical_memory(base, 0x00000fff, iomemtype);
|
|
/* ??? Save/restore. */
|
|
}
|
|
|