mirror of https://gitee.com/openkylin/qemu.git
2631 lines
73 KiB
C
2631 lines
73 KiB
C
/*
|
|
* S/390 memory access helper routines
|
|
*
|
|
* Copyright (c) 2009 Ulrich Hecht
|
|
* Copyright (c) 2009 Alexander Graf
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "internal.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "qemu/int128.h"
|
|
#include "qemu/atomic128.h"
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#include "hw/s390x/storage-keys.h"
|
|
#endif
|
|
|
|
/*****************************************************************************/
|
|
/* Softmmu support */
|
|
|
|
/* #define DEBUG_HELPER */
|
|
#ifdef DEBUG_HELPER
|
|
#define HELPER_LOG(x...) qemu_log(x)
|
|
#else
|
|
#define HELPER_LOG(x...)
|
|
#endif
|
|
|
|
static inline bool psw_key_valid(CPUS390XState *env, uint8_t psw_key)
|
|
{
|
|
uint16_t pkm = env->cregs[3] >> 16;
|
|
|
|
if (env->psw.mask & PSW_MASK_PSTATE) {
|
|
/* PSW key has range 0..15, it is valid if the bit is 1 in the PKM */
|
|
return pkm & (0x80 >> psw_key);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Reduce the length so that addr + len doesn't cross a page boundary. */
|
|
static inline uint32_t adj_len_to_page(uint32_t len, uint64_t addr)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if ((addr & ~TARGET_PAGE_MASK) + len - 1 >= TARGET_PAGE_SIZE) {
|
|
return -(addr | TARGET_PAGE_MASK);
|
|
}
|
|
#endif
|
|
return len;
|
|
}
|
|
|
|
/* Trigger a SPECIFICATION exception if an address or a length is not
|
|
naturally aligned. */
|
|
static inline void check_alignment(CPUS390XState *env, uint64_t v,
|
|
int wordsize, uintptr_t ra)
|
|
{
|
|
if (v % wordsize) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 6, ra);
|
|
}
|
|
}
|
|
|
|
/* Load a value from memory according to its size. */
|
|
static inline uint64_t cpu_ldusize_data_ra(CPUS390XState *env, uint64_t addr,
|
|
int wordsize, uintptr_t ra)
|
|
{
|
|
switch (wordsize) {
|
|
case 1:
|
|
return cpu_ldub_data_ra(env, addr, ra);
|
|
case 2:
|
|
return cpu_lduw_data_ra(env, addr, ra);
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
/* Store a to memory according to its size. */
|
|
static inline void cpu_stsize_data_ra(CPUS390XState *env, uint64_t addr,
|
|
uint64_t value, int wordsize,
|
|
uintptr_t ra)
|
|
{
|
|
switch (wordsize) {
|
|
case 1:
|
|
cpu_stb_data_ra(env, addr, value, ra);
|
|
break;
|
|
case 2:
|
|
cpu_stw_data_ra(env, addr, value, ra);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void fast_memset(CPUS390XState *env, uint64_t dest, uint8_t byte,
|
|
uint32_t l, uintptr_t ra)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
|
|
while (l > 0) {
|
|
void *p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
|
|
if (p) {
|
|
/* Access to the whole page in write mode granted. */
|
|
uint32_t l_adj = adj_len_to_page(l, dest);
|
|
memset(p, byte, l_adj);
|
|
dest += l_adj;
|
|
l -= l_adj;
|
|
} else {
|
|
/* We failed to get access to the whole page. The next write
|
|
access will likely fill the QEMU TLB for the next iteration. */
|
|
cpu_stb_data_ra(env, dest, byte, ra);
|
|
dest++;
|
|
l--;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static void fast_memmove_idx(CPUS390XState *env, uint64_t dest, uint64_t src,
|
|
uint32_t len, int dest_idx, int src_idx,
|
|
uintptr_t ra)
|
|
{
|
|
TCGMemOpIdx oi_dest = make_memop_idx(MO_UB, dest_idx);
|
|
TCGMemOpIdx oi_src = make_memop_idx(MO_UB, src_idx);
|
|
uint32_t len_adj;
|
|
void *src_p;
|
|
void *dest_p;
|
|
uint8_t x;
|
|
|
|
while (len > 0) {
|
|
src = wrap_address(env, src);
|
|
dest = wrap_address(env, dest);
|
|
src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, src_idx);
|
|
dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, dest_idx);
|
|
|
|
if (src_p && dest_p) {
|
|
/* Access to both whole pages granted. */
|
|
len_adj = adj_len_to_page(adj_len_to_page(len, src), dest);
|
|
memmove(dest_p, src_p, len_adj);
|
|
} else {
|
|
/* We failed to get access to one or both whole pages. The next
|
|
read or write access will likely fill the QEMU TLB for the
|
|
next iteration. */
|
|
len_adj = 1;
|
|
x = helper_ret_ldub_mmu(env, src, oi_src, ra);
|
|
helper_ret_stb_mmu(env, dest, x, oi_dest, ra);
|
|
}
|
|
src += len_adj;
|
|
dest += len_adj;
|
|
len -= len_adj;
|
|
}
|
|
}
|
|
|
|
static int mmu_idx_from_as(uint8_t as)
|
|
{
|
|
switch (as) {
|
|
case AS_PRIMARY:
|
|
return MMU_PRIMARY_IDX;
|
|
case AS_SECONDARY:
|
|
return MMU_SECONDARY_IDX;
|
|
case AS_HOME:
|
|
return MMU_HOME_IDX;
|
|
default:
|
|
/* FIXME AS_ACCREG */
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void fast_memmove_as(CPUS390XState *env, uint64_t dest, uint64_t src,
|
|
uint32_t len, uint8_t dest_as, uint8_t src_as,
|
|
uintptr_t ra)
|
|
{
|
|
int src_idx = mmu_idx_from_as(src_as);
|
|
int dest_idx = mmu_idx_from_as(dest_as);
|
|
|
|
fast_memmove_idx(env, dest, src, len, dest_idx, src_idx, ra);
|
|
}
|
|
#endif
|
|
|
|
static void fast_memmove(CPUS390XState *env, uint64_t dest, uint64_t src,
|
|
uint32_t l, uintptr_t ra)
|
|
{
|
|
int mmu_idx = cpu_mmu_index(env, false);
|
|
|
|
while (l > 0) {
|
|
void *src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, mmu_idx);
|
|
void *dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
|
|
if (src_p && dest_p) {
|
|
/* Access to both whole pages granted. */
|
|
uint32_t l_adj = adj_len_to_page(l, src);
|
|
l_adj = adj_len_to_page(l_adj, dest);
|
|
memmove(dest_p, src_p, l_adj);
|
|
src += l_adj;
|
|
dest += l_adj;
|
|
l -= l_adj;
|
|
} else {
|
|
/* We failed to get access to one or both whole pages. The next
|
|
read or write access will likely fill the QEMU TLB for the
|
|
next iteration. */
|
|
cpu_stb_data_ra(env, dest, cpu_ldub_data_ra(env, src, ra), ra);
|
|
src++;
|
|
dest++;
|
|
l--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* and on array */
|
|
static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest,
|
|
uint64_t src, uintptr_t ra)
|
|
{
|
|
uint32_t i;
|
|
uint8_t c = 0;
|
|
|
|
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
|
|
__func__, l, dest, src);
|
|
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
|
|
x &= cpu_ldub_data_ra(env, dest + i, ra);
|
|
c |= x;
|
|
cpu_stb_data_ra(env, dest + i, x, ra);
|
|
}
|
|
return c != 0;
|
|
}
|
|
|
|
uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest,
|
|
uint64_t src)
|
|
{
|
|
return do_helper_nc(env, l, dest, src, GETPC());
|
|
}
|
|
|
|
/* xor on array */
|
|
static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest,
|
|
uint64_t src, uintptr_t ra)
|
|
{
|
|
uint32_t i;
|
|
uint8_t c = 0;
|
|
|
|
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
|
|
__func__, l, dest, src);
|
|
|
|
/* xor with itself is the same as memset(0) */
|
|
if (src == dest) {
|
|
fast_memset(env, dest, 0, l + 1, ra);
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
|
|
x ^= cpu_ldub_data_ra(env, dest + i, ra);
|
|
c |= x;
|
|
cpu_stb_data_ra(env, dest + i, x, ra);
|
|
}
|
|
return c != 0;
|
|
}
|
|
|
|
uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest,
|
|
uint64_t src)
|
|
{
|
|
return do_helper_xc(env, l, dest, src, GETPC());
|
|
}
|
|
|
|
/* or on array */
|
|
static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest,
|
|
uint64_t src, uintptr_t ra)
|
|
{
|
|
uint32_t i;
|
|
uint8_t c = 0;
|
|
|
|
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
|
|
__func__, l, dest, src);
|
|
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
|
|
x |= cpu_ldub_data_ra(env, dest + i, ra);
|
|
c |= x;
|
|
cpu_stb_data_ra(env, dest + i, x, ra);
|
|
}
|
|
return c != 0;
|
|
}
|
|
|
|
uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest,
|
|
uint64_t src)
|
|
{
|
|
return do_helper_oc(env, l, dest, src, GETPC());
|
|
}
|
|
|
|
/* memmove */
|
|
static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest,
|
|
uint64_t src, uintptr_t ra)
|
|
{
|
|
uint32_t i;
|
|
|
|
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
|
|
__func__, l, dest, src);
|
|
|
|
/* mvc and memmove do not behave the same when areas overlap! */
|
|
/* mvc with source pointing to the byte after the destination is the
|
|
same as memset with the first source byte */
|
|
if (dest == src + 1) {
|
|
fast_memset(env, dest, cpu_ldub_data_ra(env, src, ra), l + 1, ra);
|
|
} else if (dest < src || src + l < dest) {
|
|
fast_memmove(env, dest, src, l + 1, ra);
|
|
} else {
|
|
/* slow version with byte accesses which always work */
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
|
|
cpu_stb_data_ra(env, dest + i, x, ra);
|
|
}
|
|
}
|
|
|
|
return env->cc_op;
|
|
}
|
|
|
|
void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
|
|
{
|
|
do_helper_mvc(env, l, dest, src, GETPC());
|
|
}
|
|
|
|
/* move inverse */
|
|
void HELPER(mvcin)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int i;
|
|
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t v = cpu_ldub_data_ra(env, src - i, ra);
|
|
cpu_stb_data_ra(env, dest + i, v, ra);
|
|
}
|
|
}
|
|
|
|
/* move numerics */
|
|
void HELPER(mvn)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int i;
|
|
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t v = cpu_ldub_data_ra(env, dest + i, ra) & 0xf0;
|
|
v |= cpu_ldub_data_ra(env, src + i, ra) & 0x0f;
|
|
cpu_stb_data_ra(env, dest + i, v, ra);
|
|
}
|
|
}
|
|
|
|
/* move with offset */
|
|
void HELPER(mvo)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int len_dest = l >> 4;
|
|
int len_src = l & 0xf;
|
|
uint8_t byte_dest, byte_src;
|
|
int i;
|
|
|
|
src += len_src;
|
|
dest += len_dest;
|
|
|
|
/* Handle rightmost byte */
|
|
byte_src = cpu_ldub_data_ra(env, src, ra);
|
|
byte_dest = cpu_ldub_data_ra(env, dest, ra);
|
|
byte_dest = (byte_dest & 0x0f) | (byte_src << 4);
|
|
cpu_stb_data_ra(env, dest, byte_dest, ra);
|
|
|
|
/* Process remaining bytes from right to left */
|
|
for (i = 1; i <= len_dest; i++) {
|
|
byte_dest = byte_src >> 4;
|
|
if (len_src - i >= 0) {
|
|
byte_src = cpu_ldub_data_ra(env, src - i, ra);
|
|
} else {
|
|
byte_src = 0;
|
|
}
|
|
byte_dest |= byte_src << 4;
|
|
cpu_stb_data_ra(env, dest - i, byte_dest, ra);
|
|
}
|
|
}
|
|
|
|
/* move zones */
|
|
void HELPER(mvz)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int i;
|
|
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t b = cpu_ldub_data_ra(env, dest + i, ra) & 0x0f;
|
|
b |= cpu_ldub_data_ra(env, src + i, ra) & 0xf0;
|
|
cpu_stb_data_ra(env, dest + i, b, ra);
|
|
}
|
|
}
|
|
|
|
/* compare unsigned byte arrays */
|
|
static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1,
|
|
uint64_t s2, uintptr_t ra)
|
|
{
|
|
uint32_t i;
|
|
uint32_t cc = 0;
|
|
|
|
HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n",
|
|
__func__, l, s1, s2);
|
|
|
|
for (i = 0; i <= l; i++) {
|
|
uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra);
|
|
uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra);
|
|
HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y);
|
|
if (x < y) {
|
|
cc = 1;
|
|
break;
|
|
} else if (x > y) {
|
|
cc = 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
HELPER_LOG("\n");
|
|
return cc;
|
|
}
|
|
|
|
uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2)
|
|
{
|
|
return do_helper_clc(env, l, s1, s2, GETPC());
|
|
}
|
|
|
|
/* compare logical under mask */
|
|
uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask,
|
|
uint64_t addr)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint32_t cc = 0;
|
|
|
|
HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1,
|
|
mask, addr);
|
|
|
|
while (mask) {
|
|
if (mask & 8) {
|
|
uint8_t d = cpu_ldub_data_ra(env, addr, ra);
|
|
uint8_t r = extract32(r1, 24, 8);
|
|
HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d,
|
|
addr);
|
|
if (r < d) {
|
|
cc = 1;
|
|
break;
|
|
} else if (r > d) {
|
|
cc = 2;
|
|
break;
|
|
}
|
|
addr++;
|
|
}
|
|
mask = (mask << 1) & 0xf;
|
|
r1 <<= 8;
|
|
}
|
|
|
|
HELPER_LOG("\n");
|
|
return cc;
|
|
}
|
|
|
|
static inline uint64_t get_address(CPUS390XState *env, int reg)
|
|
{
|
|
return wrap_address(env, env->regs[reg]);
|
|
}
|
|
|
|
static inline void set_address(CPUS390XState *env, int reg, uint64_t address)
|
|
{
|
|
if (env->psw.mask & PSW_MASK_64) {
|
|
/* 64-Bit mode */
|
|
env->regs[reg] = address;
|
|
} else {
|
|
if (!(env->psw.mask & PSW_MASK_32)) {
|
|
/* 24-Bit mode. According to the PoO it is implementation
|
|
dependent if bits 32-39 remain unchanged or are set to
|
|
zeros. Choose the former so that the function can also be
|
|
used for TRT. */
|
|
env->regs[reg] = deposit64(env->regs[reg], 0, 24, address);
|
|
} else {
|
|
/* 31-Bit mode. According to the PoO it is implementation
|
|
dependent if bit 32 remains unchanged or is set to zero.
|
|
Choose the latter so that the function can also be used for
|
|
TRT. */
|
|
address &= 0x7fffffff;
|
|
env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline uint64_t wrap_length(CPUS390XState *env, uint64_t length)
|
|
{
|
|
if (!(env->psw.mask & PSW_MASK_64)) {
|
|
/* 24-Bit and 31-Bit mode */
|
|
length &= 0x7fffffff;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
static inline uint64_t get_length(CPUS390XState *env, int reg)
|
|
{
|
|
return wrap_length(env, env->regs[reg]);
|
|
}
|
|
|
|
static inline void set_length(CPUS390XState *env, int reg, uint64_t length)
|
|
{
|
|
if (env->psw.mask & PSW_MASK_64) {
|
|
/* 64-Bit mode */
|
|
env->regs[reg] = length;
|
|
} else {
|
|
/* 24-Bit and 31-Bit mode */
|
|
env->regs[reg] = deposit64(env->regs[reg], 0, 32, length);
|
|
}
|
|
}
|
|
|
|
/* search string (c is byte to search, r2 is string, r1 end of string) */
|
|
void HELPER(srst)(CPUS390XState *env, uint32_t r1, uint32_t r2)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t end, str;
|
|
uint32_t len;
|
|
uint8_t v, c = env->regs[0];
|
|
|
|
/* Bits 32-55 must contain all 0. */
|
|
if (env->regs[0] & 0xffffff00u) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 6, ra);
|
|
}
|
|
|
|
str = get_address(env, r2);
|
|
end = get_address(env, r1);
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. For now, let's cap at 8k. */
|
|
for (len = 0; len < 0x2000; ++len) {
|
|
if (str + len == end) {
|
|
/* Character not found. R1 & R2 are unmodified. */
|
|
env->cc_op = 2;
|
|
return;
|
|
}
|
|
v = cpu_ldub_data_ra(env, str + len, ra);
|
|
if (v == c) {
|
|
/* Character found. Set R1 to the location; R2 is unmodified. */
|
|
env->cc_op = 1;
|
|
set_address(env, r1, str + len);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* CPU-determined bytes processed. Advance R2 to next byte to process. */
|
|
env->cc_op = 3;
|
|
set_address(env, r2, str + len);
|
|
}
|
|
|
|
void HELPER(srstu)(CPUS390XState *env, uint32_t r1, uint32_t r2)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint32_t len;
|
|
uint16_t v, c = env->regs[0];
|
|
uint64_t end, str, adj_end;
|
|
|
|
/* Bits 32-47 of R0 must be zero. */
|
|
if (env->regs[0] & 0xffff0000u) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 6, ra);
|
|
}
|
|
|
|
str = get_address(env, r2);
|
|
end = get_address(env, r1);
|
|
|
|
/* If the LSB of the two addresses differ, use one extra byte. */
|
|
adj_end = end + ((str ^ end) & 1);
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. For now, let's cap at 8k. */
|
|
for (len = 0; len < 0x2000; len += 2) {
|
|
if (str + len == adj_end) {
|
|
/* End of input found. */
|
|
env->cc_op = 2;
|
|
return;
|
|
}
|
|
v = cpu_lduw_data_ra(env, str + len, ra);
|
|
if (v == c) {
|
|
/* Character found. Set R1 to the location; R2 is unmodified. */
|
|
env->cc_op = 1;
|
|
set_address(env, r1, str + len);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* CPU-determined bytes processed. Advance R2 to next byte to process. */
|
|
env->cc_op = 3;
|
|
set_address(env, r2, str + len);
|
|
}
|
|
|
|
/* unsigned string compare (c is string terminator) */
|
|
uint64_t HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint32_t len;
|
|
|
|
c = c & 0xff;
|
|
s1 = wrap_address(env, s1);
|
|
s2 = wrap_address(env, s2);
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. For now, let's cap at 8k. */
|
|
for (len = 0; len < 0x2000; ++len) {
|
|
uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra);
|
|
uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra);
|
|
if (v1 == v2) {
|
|
if (v1 == c) {
|
|
/* Equal. CC=0, and don't advance the registers. */
|
|
env->cc_op = 0;
|
|
env->retxl = s2;
|
|
return s1;
|
|
}
|
|
} else {
|
|
/* Unequal. CC={1,2}, and advance the registers. Note that
|
|
the terminator need not be zero, but the string that contains
|
|
the terminator is by definition "low". */
|
|
env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2);
|
|
env->retxl = s2 + len;
|
|
return s1 + len;
|
|
}
|
|
}
|
|
|
|
/* CPU-determined bytes equal; advance the registers. */
|
|
env->cc_op = 3;
|
|
env->retxl = s2 + len;
|
|
return s1 + len;
|
|
}
|
|
|
|
/* move page */
|
|
uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint64_t r1, uint64_t r2)
|
|
{
|
|
/* ??? missing r0 handling, which includes access keys, but more
|
|
importantly optional suppression of the exception! */
|
|
fast_memmove(env, r1, r2, TARGET_PAGE_SIZE, GETPC());
|
|
return 0; /* data moved */
|
|
}
|
|
|
|
/* string copy (c is string terminator) */
|
|
uint64_t HELPER(mvst)(CPUS390XState *env, uint64_t c, uint64_t d, uint64_t s)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint32_t len;
|
|
|
|
c = c & 0xff;
|
|
d = wrap_address(env, d);
|
|
s = wrap_address(env, s);
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. For now, let's cap at 8k. */
|
|
for (len = 0; len < 0x2000; ++len) {
|
|
uint8_t v = cpu_ldub_data_ra(env, s + len, ra);
|
|
cpu_stb_data_ra(env, d + len, v, ra);
|
|
if (v == c) {
|
|
/* Complete. Set CC=1 and advance R1. */
|
|
env->cc_op = 1;
|
|
env->retxl = s;
|
|
return d + len;
|
|
}
|
|
}
|
|
|
|
/* Incomplete. Set CC=3 and signal to advance R1 and R2. */
|
|
env->cc_op = 3;
|
|
env->retxl = s + len;
|
|
return d + len;
|
|
}
|
|
|
|
/* load access registers r1 to r3 from memory at a2 */
|
|
void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int i;
|
|
|
|
if (a2 & 0x3) {
|
|
/* we either came here by lam or lamy, which have different lengths */
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, ILEN_AUTO, ra);
|
|
}
|
|
|
|
for (i = r1;; i = (i + 1) % 16) {
|
|
env->aregs[i] = cpu_ldl_data_ra(env, a2, ra);
|
|
a2 += 4;
|
|
|
|
if (i == r3) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* store access registers r1 to r3 in memory at a2 */
|
|
void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int i;
|
|
|
|
if (a2 & 0x3) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 4, ra);
|
|
}
|
|
|
|
for (i = r1;; i = (i + 1) % 16) {
|
|
cpu_stl_data_ra(env, a2, env->aregs[i], ra);
|
|
a2 += 4;
|
|
|
|
if (i == r3) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* move long helper */
|
|
static inline uint32_t do_mvcl(CPUS390XState *env,
|
|
uint64_t *dest, uint64_t *destlen,
|
|
uint64_t *src, uint64_t *srclen,
|
|
uint16_t pad, int wordsize, uintptr_t ra)
|
|
{
|
|
uint64_t len = MIN(*srclen, *destlen);
|
|
uint32_t cc;
|
|
|
|
if (*destlen == *srclen) {
|
|
cc = 0;
|
|
} else if (*destlen < *srclen) {
|
|
cc = 1;
|
|
} else {
|
|
cc = 2;
|
|
}
|
|
|
|
/* Copy the src array */
|
|
fast_memmove(env, *dest, *src, len, ra);
|
|
*src += len;
|
|
*srclen -= len;
|
|
*dest += len;
|
|
*destlen -= len;
|
|
|
|
/* Pad the remaining area */
|
|
if (wordsize == 1) {
|
|
fast_memset(env, *dest, pad, *destlen, ra);
|
|
*dest += *destlen;
|
|
*destlen = 0;
|
|
} else {
|
|
/* If remaining length is odd, pad with odd byte first. */
|
|
if (*destlen & 1) {
|
|
cpu_stb_data_ra(env, *dest, pad & 0xff, ra);
|
|
*dest += 1;
|
|
*destlen -= 1;
|
|
}
|
|
/* The remaining length is even, pad using words. */
|
|
for (; *destlen; *dest += 2, *destlen -= 2) {
|
|
cpu_stw_data_ra(env, *dest, pad, ra);
|
|
}
|
|
}
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* move long */
|
|
uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t destlen = env->regs[r1 + 1] & 0xffffff;
|
|
uint64_t dest = get_address(env, r1);
|
|
uint64_t srclen = env->regs[r2 + 1] & 0xffffff;
|
|
uint64_t src = get_address(env, r2);
|
|
uint8_t pad = env->regs[r2 + 1] >> 24;
|
|
uint32_t cc;
|
|
|
|
cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);
|
|
|
|
env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, destlen);
|
|
env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, srclen);
|
|
set_address(env, r1, dest);
|
|
set_address(env, r2, src);
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* move long extended */
|
|
uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
|
|
uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t destlen = get_length(env, r1 + 1);
|
|
uint64_t dest = get_address(env, r1);
|
|
uint64_t srclen = get_length(env, r3 + 1);
|
|
uint64_t src = get_address(env, r3);
|
|
uint8_t pad = a2;
|
|
uint32_t cc;
|
|
|
|
cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);
|
|
|
|
set_length(env, r1 + 1, destlen);
|
|
set_length(env, r3 + 1, srclen);
|
|
set_address(env, r1, dest);
|
|
set_address(env, r3, src);
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* move long unicode */
|
|
uint32_t HELPER(mvclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
|
|
uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t destlen = get_length(env, r1 + 1);
|
|
uint64_t dest = get_address(env, r1);
|
|
uint64_t srclen = get_length(env, r3 + 1);
|
|
uint64_t src = get_address(env, r3);
|
|
uint16_t pad = a2;
|
|
uint32_t cc;
|
|
|
|
cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 2, ra);
|
|
|
|
set_length(env, r1 + 1, destlen);
|
|
set_length(env, r3 + 1, srclen);
|
|
set_address(env, r1, dest);
|
|
set_address(env, r3, src);
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* compare logical long helper */
|
|
static inline uint32_t do_clcl(CPUS390XState *env,
|
|
uint64_t *src1, uint64_t *src1len,
|
|
uint64_t *src3, uint64_t *src3len,
|
|
uint16_t pad, uint64_t limit,
|
|
int wordsize, uintptr_t ra)
|
|
{
|
|
uint64_t len = MAX(*src1len, *src3len);
|
|
uint32_t cc = 0;
|
|
|
|
check_alignment(env, *src1len | *src3len, wordsize, ra);
|
|
|
|
if (!len) {
|
|
return cc;
|
|
}
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. */
|
|
if (len > limit) {
|
|
len = limit;
|
|
cc = 3;
|
|
}
|
|
|
|
for (; len; len -= wordsize) {
|
|
uint16_t v1 = pad;
|
|
uint16_t v3 = pad;
|
|
|
|
if (*src1len) {
|
|
v1 = cpu_ldusize_data_ra(env, *src1, wordsize, ra);
|
|
}
|
|
if (*src3len) {
|
|
v3 = cpu_ldusize_data_ra(env, *src3, wordsize, ra);
|
|
}
|
|
|
|
if (v1 != v3) {
|
|
cc = (v1 < v3) ? 1 : 2;
|
|
break;
|
|
}
|
|
|
|
if (*src1len) {
|
|
*src1 += wordsize;
|
|
*src1len -= wordsize;
|
|
}
|
|
if (*src3len) {
|
|
*src3 += wordsize;
|
|
*src3len -= wordsize;
|
|
}
|
|
}
|
|
|
|
return cc;
|
|
}
|
|
|
|
|
|
/* compare logical long */
|
|
uint32_t HELPER(clcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t src1len = extract64(env->regs[r1 + 1], 0, 24);
|
|
uint64_t src1 = get_address(env, r1);
|
|
uint64_t src3len = extract64(env->regs[r2 + 1], 0, 24);
|
|
uint64_t src3 = get_address(env, r2);
|
|
uint8_t pad = env->regs[r2 + 1] >> 24;
|
|
uint32_t cc;
|
|
|
|
cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, -1, 1, ra);
|
|
|
|
env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, src1len);
|
|
env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, src3len);
|
|
set_address(env, r1, src1);
|
|
set_address(env, r2, src3);
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* compare logical long extended memcompare insn with padding */
|
|
uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
|
|
uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t src1len = get_length(env, r1 + 1);
|
|
uint64_t src1 = get_address(env, r1);
|
|
uint64_t src3len = get_length(env, r3 + 1);
|
|
uint64_t src3 = get_address(env, r3);
|
|
uint8_t pad = a2;
|
|
uint32_t cc;
|
|
|
|
cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x2000, 1, ra);
|
|
|
|
set_length(env, r1 + 1, src1len);
|
|
set_length(env, r3 + 1, src3len);
|
|
set_address(env, r1, src1);
|
|
set_address(env, r3, src3);
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* compare logical long unicode memcompare insn with padding */
|
|
uint32_t HELPER(clclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
|
|
uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t src1len = get_length(env, r1 + 1);
|
|
uint64_t src1 = get_address(env, r1);
|
|
uint64_t src3len = get_length(env, r3 + 1);
|
|
uint64_t src3 = get_address(env, r3);
|
|
uint16_t pad = a2;
|
|
uint32_t cc = 0;
|
|
|
|
cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x1000, 2, ra);
|
|
|
|
set_length(env, r1 + 1, src1len);
|
|
set_length(env, r3 + 1, src3len);
|
|
set_address(env, r1, src1);
|
|
set_address(env, r3, src3);
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* checksum */
|
|
uint64_t HELPER(cksm)(CPUS390XState *env, uint64_t r1,
|
|
uint64_t src, uint64_t src_len)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t max_len, len;
|
|
uint64_t cksm = (uint32_t)r1;
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. For now, let's cap at 8k. */
|
|
max_len = (src_len > 0x2000 ? 0x2000 : src_len);
|
|
|
|
/* Process full words as available. */
|
|
for (len = 0; len + 4 <= max_len; len += 4, src += 4) {
|
|
cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra);
|
|
}
|
|
|
|
switch (max_len - len) {
|
|
case 1:
|
|
cksm += cpu_ldub_data_ra(env, src, ra) << 24;
|
|
len += 1;
|
|
break;
|
|
case 2:
|
|
cksm += cpu_lduw_data_ra(env, src, ra) << 16;
|
|
len += 2;
|
|
break;
|
|
case 3:
|
|
cksm += cpu_lduw_data_ra(env, src, ra) << 16;
|
|
cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8;
|
|
len += 3;
|
|
break;
|
|
}
|
|
|
|
/* Fold the carry from the checksum. Note that we can see carry-out
|
|
during folding more than once (but probably not more than twice). */
|
|
while (cksm > 0xffffffffull) {
|
|
cksm = (uint32_t)cksm + (cksm >> 32);
|
|
}
|
|
|
|
/* Indicate whether or not we've processed everything. */
|
|
env->cc_op = (len == src_len ? 0 : 3);
|
|
|
|
/* Return both cksm and processed length. */
|
|
env->retxl = cksm;
|
|
return len;
|
|
}
|
|
|
|
void HELPER(pack)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int len_dest = len >> 4;
|
|
int len_src = len & 0xf;
|
|
uint8_t b;
|
|
|
|
dest += len_dest;
|
|
src += len_src;
|
|
|
|
/* last byte is special, it only flips the nibbles */
|
|
b = cpu_ldub_data_ra(env, src, ra);
|
|
cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
|
|
src--;
|
|
len_src--;
|
|
|
|
/* now pack every value */
|
|
while (len_dest > 0) {
|
|
b = 0;
|
|
|
|
if (len_src >= 0) {
|
|
b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
|
|
src--;
|
|
len_src--;
|
|
}
|
|
if (len_src >= 0) {
|
|
b |= cpu_ldub_data_ra(env, src, ra) << 4;
|
|
src--;
|
|
len_src--;
|
|
}
|
|
|
|
len_dest--;
|
|
dest--;
|
|
cpu_stb_data_ra(env, dest, b, ra);
|
|
}
|
|
}
|
|
|
|
static inline void do_pkau(CPUS390XState *env, uint64_t dest, uint64_t src,
|
|
uint32_t srclen, int ssize, uintptr_t ra)
|
|
{
|
|
int i;
|
|
/* The destination operand is always 16 bytes long. */
|
|
const int destlen = 16;
|
|
|
|
/* The operands are processed from right to left. */
|
|
src += srclen - 1;
|
|
dest += destlen - 1;
|
|
|
|
for (i = 0; i < destlen; i++) {
|
|
uint8_t b = 0;
|
|
|
|
/* Start with a positive sign */
|
|
if (i == 0) {
|
|
b = 0xc;
|
|
} else if (srclen > ssize) {
|
|
b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
|
|
src -= ssize;
|
|
srclen -= ssize;
|
|
}
|
|
|
|
if (srclen > ssize) {
|
|
b |= cpu_ldub_data_ra(env, src, ra) << 4;
|
|
src -= ssize;
|
|
srclen -= ssize;
|
|
}
|
|
|
|
cpu_stb_data_ra(env, dest, b, ra);
|
|
dest--;
|
|
}
|
|
}
|
|
|
|
|
|
void HELPER(pka)(CPUS390XState *env, uint64_t dest, uint64_t src,
|
|
uint32_t srclen)
|
|
{
|
|
do_pkau(env, dest, src, srclen, 1, GETPC());
|
|
}
|
|
|
|
void HELPER(pku)(CPUS390XState *env, uint64_t dest, uint64_t src,
|
|
uint32_t srclen)
|
|
{
|
|
do_pkau(env, dest, src, srclen, 2, GETPC());
|
|
}
|
|
|
|
void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest,
|
|
uint64_t src)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int len_dest = len >> 4;
|
|
int len_src = len & 0xf;
|
|
uint8_t b;
|
|
int second_nibble = 0;
|
|
|
|
dest += len_dest;
|
|
src += len_src;
|
|
|
|
/* last byte is special, it only flips the nibbles */
|
|
b = cpu_ldub_data_ra(env, src, ra);
|
|
cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
|
|
src--;
|
|
len_src--;
|
|
|
|
/* now pad every nibble with 0xf0 */
|
|
|
|
while (len_dest > 0) {
|
|
uint8_t cur_byte = 0;
|
|
|
|
if (len_src > 0) {
|
|
cur_byte = cpu_ldub_data_ra(env, src, ra);
|
|
}
|
|
|
|
len_dest--;
|
|
dest--;
|
|
|
|
/* only advance one nibble at a time */
|
|
if (second_nibble) {
|
|
cur_byte >>= 4;
|
|
len_src--;
|
|
src--;
|
|
}
|
|
second_nibble = !second_nibble;
|
|
|
|
/* digit */
|
|
cur_byte = (cur_byte & 0xf);
|
|
/* zone bits */
|
|
cur_byte |= 0xf0;
|
|
|
|
cpu_stb_data_ra(env, dest, cur_byte, ra);
|
|
}
|
|
}
|
|
|
|
static inline uint32_t do_unpkau(CPUS390XState *env, uint64_t dest,
|
|
uint32_t destlen, int dsize, uint64_t src,
|
|
uintptr_t ra)
|
|
{
|
|
int i;
|
|
uint32_t cc;
|
|
uint8_t b;
|
|
/* The source operand is always 16 bytes long. */
|
|
const int srclen = 16;
|
|
|
|
/* The operands are processed from right to left. */
|
|
src += srclen - 1;
|
|
dest += destlen - dsize;
|
|
|
|
/* Check for the sign. */
|
|
b = cpu_ldub_data_ra(env, src, ra);
|
|
src--;
|
|
switch (b & 0xf) {
|
|
case 0xa:
|
|
case 0xc:
|
|
case 0xe ... 0xf:
|
|
cc = 0; /* plus */
|
|
break;
|
|
case 0xb:
|
|
case 0xd:
|
|
cc = 1; /* minus */
|
|
break;
|
|
default:
|
|
case 0x0 ... 0x9:
|
|
cc = 3; /* invalid */
|
|
break;
|
|
}
|
|
|
|
/* Now pad every nibble with 0x30, advancing one nibble at a time. */
|
|
for (i = 0; i < destlen; i += dsize) {
|
|
if (i == (31 * dsize)) {
|
|
/* If length is 32/64 bytes, the leftmost byte is 0. */
|
|
b = 0;
|
|
} else if (i % (2 * dsize)) {
|
|
b = cpu_ldub_data_ra(env, src, ra);
|
|
src--;
|
|
} else {
|
|
b >>= 4;
|
|
}
|
|
cpu_stsize_data_ra(env, dest, 0x30 + (b & 0xf), dsize, ra);
|
|
dest -= dsize;
|
|
}
|
|
|
|
return cc;
|
|
}
|
|
|
|
uint32_t HELPER(unpka)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
|
|
uint64_t src)
|
|
{
|
|
return do_unpkau(env, dest, destlen, 1, src, GETPC());
|
|
}
|
|
|
|
uint32_t HELPER(unpku)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
|
|
uint64_t src)
|
|
{
|
|
return do_unpkau(env, dest, destlen, 2, src, GETPC());
|
|
}
|
|
|
|
uint32_t HELPER(tp)(CPUS390XState *env, uint64_t dest, uint32_t destlen)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint32_t cc = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < destlen; i++) {
|
|
uint8_t b = cpu_ldub_data_ra(env, dest + i, ra);
|
|
/* digit */
|
|
cc |= (b & 0xf0) > 0x90 ? 2 : 0;
|
|
|
|
if (i == (destlen - 1)) {
|
|
/* sign */
|
|
cc |= (b & 0xf) < 0xa ? 1 : 0;
|
|
} else {
|
|
/* digit */
|
|
cc |= (b & 0xf) > 0x9 ? 2 : 0;
|
|
}
|
|
}
|
|
|
|
return cc;
|
|
}
|
|
|
|
static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array,
|
|
uint64_t trans, uintptr_t ra)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i <= len; i++) {
|
|
uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
|
|
uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
|
|
cpu_stb_data_ra(env, array + i, new_byte, ra);
|
|
}
|
|
|
|
return env->cc_op;
|
|
}
|
|
|
|
void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array,
|
|
uint64_t trans)
|
|
{
|
|
do_helper_tr(env, len, array, trans, GETPC());
|
|
}
|
|
|
|
uint64_t HELPER(tre)(CPUS390XState *env, uint64_t array,
|
|
uint64_t len, uint64_t trans)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint8_t end = env->regs[0] & 0xff;
|
|
uint64_t l = len;
|
|
uint64_t i;
|
|
uint32_t cc = 0;
|
|
|
|
if (!(env->psw.mask & PSW_MASK_64)) {
|
|
array &= 0x7fffffff;
|
|
l = (uint32_t)l;
|
|
}
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. For now, let's cap at 8k. */
|
|
if (l > 0x2000) {
|
|
l = 0x2000;
|
|
cc = 3;
|
|
}
|
|
|
|
for (i = 0; i < l; i++) {
|
|
uint8_t byte, new_byte;
|
|
|
|
byte = cpu_ldub_data_ra(env, array + i, ra);
|
|
|
|
if (byte == end) {
|
|
cc = 1;
|
|
break;
|
|
}
|
|
|
|
new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
|
|
cpu_stb_data_ra(env, array + i, new_byte, ra);
|
|
}
|
|
|
|
env->cc_op = cc;
|
|
env->retxl = len - i;
|
|
return array + i;
|
|
}
|
|
|
|
static inline uint32_t do_helper_trt(CPUS390XState *env, int len,
|
|
uint64_t array, uint64_t trans,
|
|
int inc, uintptr_t ra)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i <= len; i++) {
|
|
uint8_t byte = cpu_ldub_data_ra(env, array + i * inc, ra);
|
|
uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra);
|
|
|
|
if (sbyte != 0) {
|
|
set_address(env, 1, array + i * inc);
|
|
env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte);
|
|
return (i == len) ? 2 : 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t do_helper_trt_fwd(CPUS390XState *env, uint32_t len,
|
|
uint64_t array, uint64_t trans,
|
|
uintptr_t ra)
|
|
{
|
|
return do_helper_trt(env, len, array, trans, 1, ra);
|
|
}
|
|
|
|
uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array,
|
|
uint64_t trans)
|
|
{
|
|
return do_helper_trt(env, len, array, trans, 1, GETPC());
|
|
}
|
|
|
|
static uint32_t do_helper_trt_bkwd(CPUS390XState *env, uint32_t len,
|
|
uint64_t array, uint64_t trans,
|
|
uintptr_t ra)
|
|
{
|
|
return do_helper_trt(env, len, array, trans, -1, ra);
|
|
}
|
|
|
|
uint32_t HELPER(trtr)(CPUS390XState *env, uint32_t len, uint64_t array,
|
|
uint64_t trans)
|
|
{
|
|
return do_helper_trt(env, len, array, trans, -1, GETPC());
|
|
}
|
|
|
|
/* Translate one/two to one/two */
|
|
uint32_t HELPER(trXX)(CPUS390XState *env, uint32_t r1, uint32_t r2,
|
|
uint32_t tst, uint32_t sizes)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int dsize = (sizes & 1) ? 1 : 2;
|
|
int ssize = (sizes & 2) ? 1 : 2;
|
|
uint64_t tbl = get_address(env, 1);
|
|
uint64_t dst = get_address(env, r1);
|
|
uint64_t len = get_length(env, r1 + 1);
|
|
uint64_t src = get_address(env, r2);
|
|
uint32_t cc = 3;
|
|
int i;
|
|
|
|
/* The lower address bits of TBL are ignored. For TROO, TROT, it's
|
|
the low 3 bits (double-word aligned). For TRTO, TRTT, it's either
|
|
the low 12 bits (4K, without ETF2-ENH) or 3 bits (with ETF2-ENH). */
|
|
if (ssize == 2 && !s390_has_feat(S390_FEAT_ETF2_ENH)) {
|
|
tbl &= -4096;
|
|
} else {
|
|
tbl &= -8;
|
|
}
|
|
|
|
check_alignment(env, len, ssize, ra);
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, */
|
|
/* limit the amount of work we're willing to do. */
|
|
for (i = 0; i < 0x2000; i++) {
|
|
uint16_t sval = cpu_ldusize_data_ra(env, src, ssize, ra);
|
|
uint64_t tble = tbl + (sval * dsize);
|
|
uint16_t dval = cpu_ldusize_data_ra(env, tble, dsize, ra);
|
|
if (dval == tst) {
|
|
cc = 1;
|
|
break;
|
|
}
|
|
cpu_stsize_data_ra(env, dst, dval, dsize, ra);
|
|
|
|
len -= ssize;
|
|
src += ssize;
|
|
dst += dsize;
|
|
|
|
if (len == 0) {
|
|
cc = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
set_address(env, r1, dst);
|
|
set_length(env, r1 + 1, len);
|
|
set_address(env, r2, src);
|
|
|
|
return cc;
|
|
}
|
|
|
|
void HELPER(cdsg)(CPUS390XState *env, uint64_t addr,
|
|
uint32_t r1, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
|
|
Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
|
|
Int128 oldv;
|
|
uint64_t oldh, oldl;
|
|
bool fail;
|
|
|
|
check_alignment(env, addr, 16, ra);
|
|
|
|
oldh = cpu_ldq_data_ra(env, addr + 0, ra);
|
|
oldl = cpu_ldq_data_ra(env, addr + 8, ra);
|
|
|
|
oldv = int128_make128(oldl, oldh);
|
|
fail = !int128_eq(oldv, cmpv);
|
|
if (fail) {
|
|
newv = oldv;
|
|
}
|
|
|
|
cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra);
|
|
cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra);
|
|
|
|
env->cc_op = fail;
|
|
env->regs[r1] = int128_gethi(oldv);
|
|
env->regs[r1 + 1] = int128_getlo(oldv);
|
|
}
|
|
|
|
void HELPER(cdsg_parallel)(CPUS390XState *env, uint64_t addr,
|
|
uint32_t r1, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
|
|
Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
|
|
int mem_idx;
|
|
TCGMemOpIdx oi;
|
|
Int128 oldv;
|
|
bool fail;
|
|
|
|
assert(HAVE_CMPXCHG128);
|
|
|
|
mem_idx = cpu_mmu_index(env, false);
|
|
oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
|
|
oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
|
|
fail = !int128_eq(oldv, cmpv);
|
|
|
|
env->cc_op = fail;
|
|
env->regs[r1] = int128_gethi(oldv);
|
|
env->regs[r1 + 1] = int128_getlo(oldv);
|
|
}
|
|
|
|
static uint32_t do_csst(CPUS390XState *env, uint32_t r3, uint64_t a1,
|
|
uint64_t a2, bool parallel)
|
|
{
|
|
uint32_t mem_idx = cpu_mmu_index(env, false);
|
|
uintptr_t ra = GETPC();
|
|
uint32_t fc = extract32(env->regs[0], 0, 8);
|
|
uint32_t sc = extract32(env->regs[0], 8, 8);
|
|
uint64_t pl = get_address(env, 1) & -16;
|
|
uint64_t svh, svl;
|
|
uint32_t cc;
|
|
|
|
/* Sanity check the function code and storage characteristic. */
|
|
if (fc > 1 || sc > 3) {
|
|
if (!s390_has_feat(S390_FEAT_COMPARE_AND_SWAP_AND_STORE_2)) {
|
|
goto spec_exception;
|
|
}
|
|
if (fc > 2 || sc > 4 || (fc == 2 && (r3 & 1))) {
|
|
goto spec_exception;
|
|
}
|
|
}
|
|
|
|
/* Sanity check the alignments. */
|
|
if (extract32(a1, 0, fc + 2) || extract32(a2, 0, sc)) {
|
|
goto spec_exception;
|
|
}
|
|
|
|
/* Sanity check writability of the store address. */
|
|
probe_write(env, a2, 1 << sc, mem_idx, ra);
|
|
|
|
/*
|
|
* Note that the compare-and-swap is atomic, and the store is atomic,
|
|
* but the complete operation is not. Therefore we do not need to
|
|
* assert serial context in order to implement this. That said,
|
|
* restart early if we can't support either operation that is supposed
|
|
* to be atomic.
|
|
*/
|
|
if (parallel) {
|
|
uint32_t max = 2;
|
|
#ifdef CONFIG_ATOMIC64
|
|
max = 3;
|
|
#endif
|
|
if ((HAVE_CMPXCHG128 ? 0 : fc + 2 > max) ||
|
|
(HAVE_ATOMIC128 ? 0 : sc > max)) {
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
}
|
|
|
|
/* All loads happen before all stores. For simplicity, load the entire
|
|
store value area from the parameter list. */
|
|
svh = cpu_ldq_data_ra(env, pl + 16, ra);
|
|
svl = cpu_ldq_data_ra(env, pl + 24, ra);
|
|
|
|
switch (fc) {
|
|
case 0:
|
|
{
|
|
uint32_t nv = cpu_ldl_data_ra(env, pl, ra);
|
|
uint32_t cv = env->regs[r3];
|
|
uint32_t ov;
|
|
|
|
if (parallel) {
|
|
#ifdef CONFIG_USER_ONLY
|
|
uint32_t *haddr = g2h(a1);
|
|
ov = atomic_cmpxchg__nocheck(haddr, cv, nv);
|
|
#else
|
|
TCGMemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mem_idx);
|
|
ov = helper_atomic_cmpxchgl_be_mmu(env, a1, cv, nv, oi, ra);
|
|
#endif
|
|
} else {
|
|
ov = cpu_ldl_data_ra(env, a1, ra);
|
|
cpu_stl_data_ra(env, a1, (ov == cv ? nv : ov), ra);
|
|
}
|
|
cc = (ov != cv);
|
|
env->regs[r3] = deposit64(env->regs[r3], 32, 32, ov);
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
{
|
|
uint64_t nv = cpu_ldq_data_ra(env, pl, ra);
|
|
uint64_t cv = env->regs[r3];
|
|
uint64_t ov;
|
|
|
|
if (parallel) {
|
|
#ifdef CONFIG_ATOMIC64
|
|
# ifdef CONFIG_USER_ONLY
|
|
uint64_t *haddr = g2h(a1);
|
|
ov = atomic_cmpxchg__nocheck(haddr, cv, nv);
|
|
# else
|
|
TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN, mem_idx);
|
|
ov = helper_atomic_cmpxchgq_be_mmu(env, a1, cv, nv, oi, ra);
|
|
# endif
|
|
#else
|
|
/* Note that we asserted !parallel above. */
|
|
g_assert_not_reached();
|
|
#endif
|
|
} else {
|
|
ov = cpu_ldq_data_ra(env, a1, ra);
|
|
cpu_stq_data_ra(env, a1, (ov == cv ? nv : ov), ra);
|
|
}
|
|
cc = (ov != cv);
|
|
env->regs[r3] = ov;
|
|
}
|
|
break;
|
|
|
|
case 2:
|
|
{
|
|
uint64_t nvh = cpu_ldq_data_ra(env, pl, ra);
|
|
uint64_t nvl = cpu_ldq_data_ra(env, pl + 8, ra);
|
|
Int128 nv = int128_make128(nvl, nvh);
|
|
Int128 cv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
|
|
Int128 ov;
|
|
|
|
if (!parallel) {
|
|
uint64_t oh = cpu_ldq_data_ra(env, a1 + 0, ra);
|
|
uint64_t ol = cpu_ldq_data_ra(env, a1 + 8, ra);
|
|
|
|
ov = int128_make128(ol, oh);
|
|
cc = !int128_eq(ov, cv);
|
|
if (cc) {
|
|
nv = ov;
|
|
}
|
|
|
|
cpu_stq_data_ra(env, a1 + 0, int128_gethi(nv), ra);
|
|
cpu_stq_data_ra(env, a1 + 8, int128_getlo(nv), ra);
|
|
} else if (HAVE_CMPXCHG128) {
|
|
TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
|
|
ov = helper_atomic_cmpxchgo_be_mmu(env, a1, cv, nv, oi, ra);
|
|
cc = !int128_eq(ov, cv);
|
|
} else {
|
|
/* Note that we asserted !parallel above. */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
env->regs[r3 + 0] = int128_gethi(ov);
|
|
env->regs[r3 + 1] = int128_getlo(ov);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Store only if the comparison succeeded. Note that above we use a pair
|
|
of 64-bit big-endian loads, so for sc < 3 we must extract the value
|
|
from the most-significant bits of svh. */
|
|
if (cc == 0) {
|
|
switch (sc) {
|
|
case 0:
|
|
cpu_stb_data_ra(env, a2, svh >> 56, ra);
|
|
break;
|
|
case 1:
|
|
cpu_stw_data_ra(env, a2, svh >> 48, ra);
|
|
break;
|
|
case 2:
|
|
cpu_stl_data_ra(env, a2, svh >> 32, ra);
|
|
break;
|
|
case 3:
|
|
cpu_stq_data_ra(env, a2, svh, ra);
|
|
break;
|
|
case 4:
|
|
if (!parallel) {
|
|
cpu_stq_data_ra(env, a2 + 0, svh, ra);
|
|
cpu_stq_data_ra(env, a2 + 8, svl, ra);
|
|
} else if (HAVE_ATOMIC128) {
|
|
TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
|
|
Int128 sv = int128_make128(svl, svh);
|
|
helper_atomic_sto_be_mmu(env, a2, sv, oi, ra);
|
|
} else {
|
|
/* Note that we asserted !parallel above. */
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
return cc;
|
|
|
|
spec_exception:
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 6, ra);
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
uint32_t HELPER(csst)(CPUS390XState *env, uint32_t r3, uint64_t a1, uint64_t a2)
|
|
{
|
|
return do_csst(env, r3, a1, a2, false);
|
|
}
|
|
|
|
uint32_t HELPER(csst_parallel)(CPUS390XState *env, uint32_t r3, uint64_t a1,
|
|
uint64_t a2)
|
|
{
|
|
return do_csst(env, r3, a1, a2, true);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
bool PERchanged = false;
|
|
uint64_t src = a2;
|
|
uint32_t i;
|
|
|
|
if (src & 0x7) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 6, ra);
|
|
}
|
|
|
|
for (i = r1;; i = (i + 1) % 16) {
|
|
uint64_t val = cpu_ldq_data_ra(env, src, ra);
|
|
if (env->cregs[i] != val && i >= 9 && i <= 11) {
|
|
PERchanged = true;
|
|
}
|
|
env->cregs[i] = val;
|
|
HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n",
|
|
i, src, val);
|
|
src += sizeof(uint64_t);
|
|
|
|
if (i == r3) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (PERchanged && env->psw.mask & PSW_MASK_PER) {
|
|
s390_cpu_recompute_watchpoints(env_cpu(env));
|
|
}
|
|
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
|
|
void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
bool PERchanged = false;
|
|
uint64_t src = a2;
|
|
uint32_t i;
|
|
|
|
if (src & 0x3) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 4, ra);
|
|
}
|
|
|
|
for (i = r1;; i = (i + 1) % 16) {
|
|
uint32_t val = cpu_ldl_data_ra(env, src, ra);
|
|
if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) {
|
|
PERchanged = true;
|
|
}
|
|
env->cregs[i] = deposit64(env->cregs[i], 0, 32, val);
|
|
HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val);
|
|
src += sizeof(uint32_t);
|
|
|
|
if (i == r3) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (PERchanged && env->psw.mask & PSW_MASK_PER) {
|
|
s390_cpu_recompute_watchpoints(env_cpu(env));
|
|
}
|
|
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
|
|
void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t dest = a2;
|
|
uint32_t i;
|
|
|
|
if (dest & 0x7) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 6, ra);
|
|
}
|
|
|
|
for (i = r1;; i = (i + 1) % 16) {
|
|
cpu_stq_data_ra(env, dest, env->cregs[i], ra);
|
|
dest += sizeof(uint64_t);
|
|
|
|
if (i == r3) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t dest = a2;
|
|
uint32_t i;
|
|
|
|
if (dest & 0x3) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 4, ra);
|
|
}
|
|
|
|
for (i = r1;; i = (i + 1) % 16) {
|
|
cpu_stl_data_ra(env, dest, env->cregs[i], ra);
|
|
dest += sizeof(uint32_t);
|
|
|
|
if (i == r3) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int i;
|
|
|
|
real_addr = wrap_address(env, real_addr) & TARGET_PAGE_MASK;
|
|
|
|
for (i = 0; i < TARGET_PAGE_SIZE; i += 8) {
|
|
cpu_stq_real_ra(env, real_addr + i, 0, ra);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t HELPER(tprot)(CPUS390XState *env, uint64_t a1, uint64_t a2)
|
|
{
|
|
S390CPU *cpu = env_archcpu(env);
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
/*
|
|
* TODO: we currently don't handle all access protection types
|
|
* (including access-list and key-controlled) as well as AR mode.
|
|
*/
|
|
if (!s390_cpu_virt_mem_check_write(cpu, a1, 0, 1)) {
|
|
/* Fetching permitted; storing permitted */
|
|
return 0;
|
|
}
|
|
|
|
if (env->int_pgm_code == PGM_PROTECTION) {
|
|
/* retry if reading is possible */
|
|
cs->exception_index = 0;
|
|
if (!s390_cpu_virt_mem_check_read(cpu, a1, 0, 1)) {
|
|
/* Fetching permitted; storing not permitted */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
switch (env->int_pgm_code) {
|
|
case PGM_PROTECTION:
|
|
/* Fetching not permitted; storing not permitted */
|
|
cs->exception_index = 0;
|
|
return 2;
|
|
case PGM_ADDRESSING:
|
|
case PGM_TRANS_SPEC:
|
|
/* exceptions forwarded to the guest */
|
|
s390_cpu_virt_mem_handle_exc(cpu, GETPC());
|
|
return 0;
|
|
}
|
|
|
|
/* Translation not available */
|
|
cs->exception_index = 0;
|
|
return 3;
|
|
}
|
|
|
|
/* insert storage key extended */
|
|
uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2)
|
|
{
|
|
static S390SKeysState *ss;
|
|
static S390SKeysClass *skeyclass;
|
|
uint64_t addr = wrap_address(env, r2);
|
|
uint8_t key;
|
|
|
|
if (addr > ram_size) {
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(!ss)) {
|
|
ss = s390_get_skeys_device();
|
|
skeyclass = S390_SKEYS_GET_CLASS(ss);
|
|
}
|
|
|
|
if (skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key)) {
|
|
return 0;
|
|
}
|
|
return key;
|
|
}
|
|
|
|
/* set storage key extended */
|
|
void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2)
|
|
{
|
|
static S390SKeysState *ss;
|
|
static S390SKeysClass *skeyclass;
|
|
uint64_t addr = wrap_address(env, r2);
|
|
uint8_t key;
|
|
|
|
if (addr > ram_size) {
|
|
return;
|
|
}
|
|
|
|
if (unlikely(!ss)) {
|
|
ss = s390_get_skeys_device();
|
|
skeyclass = S390_SKEYS_GET_CLASS(ss);
|
|
}
|
|
|
|
key = (uint8_t) r1;
|
|
skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
|
|
/*
|
|
* As we can only flush by virtual address and not all the entries
|
|
* that point to a physical address we have to flush the whole TLB.
|
|
*/
|
|
tlb_flush_all_cpus_synced(env_cpu(env));
|
|
}
|
|
|
|
/* reset reference bit extended */
|
|
uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2)
|
|
{
|
|
static S390SKeysState *ss;
|
|
static S390SKeysClass *skeyclass;
|
|
uint8_t re, key;
|
|
|
|
if (r2 > ram_size) {
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(!ss)) {
|
|
ss = s390_get_skeys_device();
|
|
skeyclass = S390_SKEYS_GET_CLASS(ss);
|
|
}
|
|
|
|
if (skeyclass->get_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
|
|
return 0;
|
|
}
|
|
|
|
re = key & (SK_R | SK_C);
|
|
key &= ~SK_R;
|
|
|
|
if (skeyclass->set_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
|
|
return 0;
|
|
}
|
|
/*
|
|
* As we can only flush by virtual address and not all the entries
|
|
* that point to a physical address we have to flush the whole TLB.
|
|
*/
|
|
tlb_flush_all_cpus_synced(env_cpu(env));
|
|
|
|
/*
|
|
* cc
|
|
*
|
|
* 0 Reference bit zero; change bit zero
|
|
* 1 Reference bit zero; change bit one
|
|
* 2 Reference bit one; change bit zero
|
|
* 3 Reference bit one; change bit one
|
|
*/
|
|
|
|
return re >> 1;
|
|
}
|
|
|
|
uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int cc = 0, i;
|
|
|
|
HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
|
|
__func__, l, a1, a2);
|
|
|
|
if (l > 256) {
|
|
/* max 256 */
|
|
l = 256;
|
|
cc = 3;
|
|
}
|
|
|
|
/* XXX replace w/ memcpy */
|
|
for (i = 0; i < l; i++) {
|
|
uint8_t x = cpu_ldub_primary_ra(env, a2 + i, ra);
|
|
cpu_stb_secondary_ra(env, a1 + i, x, ra);
|
|
}
|
|
|
|
return cc;
|
|
}
|
|
|
|
uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int cc = 0, i;
|
|
|
|
HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
|
|
__func__, l, a1, a2);
|
|
|
|
if (l > 256) {
|
|
/* max 256 */
|
|
l = 256;
|
|
cc = 3;
|
|
}
|
|
|
|
/* XXX replace w/ memcpy */
|
|
for (i = 0; i < l; i++) {
|
|
uint8_t x = cpu_ldub_secondary_ra(env, a2 + i, ra);
|
|
cpu_stb_primary_ra(env, a1 + i, x, ra);
|
|
}
|
|
|
|
return cc;
|
|
}
|
|
|
|
void HELPER(idte)(CPUS390XState *env, uint64_t r1, uint64_t r2, uint32_t m4)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
const uintptr_t ra = GETPC();
|
|
uint64_t table, entry, raddr;
|
|
uint16_t entries, i, index = 0;
|
|
|
|
if (r2 & 0xff000) {
|
|
s390_program_interrupt(env, PGM_SPECIFICATION, 4, ra);
|
|
}
|
|
|
|
if (!(r2 & 0x800)) {
|
|
/* invalidation-and-clearing operation */
|
|
table = r1 & ASCE_ORIGIN;
|
|
entries = (r2 & 0x7ff) + 1;
|
|
|
|
switch (r1 & ASCE_TYPE_MASK) {
|
|
case ASCE_TYPE_REGION1:
|
|
index = (r2 >> 53) & 0x7ff;
|
|
break;
|
|
case ASCE_TYPE_REGION2:
|
|
index = (r2 >> 42) & 0x7ff;
|
|
break;
|
|
case ASCE_TYPE_REGION3:
|
|
index = (r2 >> 31) & 0x7ff;
|
|
break;
|
|
case ASCE_TYPE_SEGMENT:
|
|
index = (r2 >> 20) & 0x7ff;
|
|
break;
|
|
}
|
|
for (i = 0; i < entries; i++) {
|
|
/* addresses are not wrapped in 24/31bit mode but table index is */
|
|
raddr = table + ((index + i) & 0x7ff) * sizeof(entry);
|
|
entry = cpu_ldq_real_ra(env, raddr, ra);
|
|
if (!(entry & REGION_ENTRY_INV)) {
|
|
/* we are allowed to not store if already invalid */
|
|
entry |= REGION_ENTRY_INV;
|
|
cpu_stq_real_ra(env, raddr, entry, ra);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We simply flush the complete tlb, therefore we can ignore r3. */
|
|
if (m4 & 1) {
|
|
tlb_flush(cs);
|
|
} else {
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
}
|
|
|
|
/* invalidate pte */
|
|
void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr,
|
|
uint32_t m4)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
const uintptr_t ra = GETPC();
|
|
uint64_t page = vaddr & TARGET_PAGE_MASK;
|
|
uint64_t pte_addr, pte;
|
|
|
|
/* Compute the page table entry address */
|
|
pte_addr = (pto & SEGMENT_ENTRY_ORIGIN);
|
|
pte_addr += (vaddr & VADDR_PX) >> 9;
|
|
|
|
/* Mark the page table entry as invalid */
|
|
pte = cpu_ldq_real_ra(env, pte_addr, ra);
|
|
pte |= PAGE_INVALID;
|
|
cpu_stq_real_ra(env, pte_addr, pte, ra);
|
|
|
|
/* XXX we exploit the fact that Linux passes the exact virtual
|
|
address here - it's not obliged to! */
|
|
if (m4 & 1) {
|
|
if (vaddr & ~VADDR_PX) {
|
|
tlb_flush_page(cs, page);
|
|
/* XXX 31-bit hack */
|
|
tlb_flush_page(cs, page ^ 0x80000000);
|
|
} else {
|
|
/* looks like we don't have a valid virtual address */
|
|
tlb_flush(cs);
|
|
}
|
|
} else {
|
|
if (vaddr & ~VADDR_PX) {
|
|
tlb_flush_page_all_cpus_synced(cs, page);
|
|
/* XXX 31-bit hack */
|
|
tlb_flush_page_all_cpus_synced(cs, page ^ 0x80000000);
|
|
} else {
|
|
/* looks like we don't have a valid virtual address */
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* flush local tlb */
|
|
void HELPER(ptlb)(CPUS390XState *env)
|
|
{
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
|
|
/* flush global tlb */
|
|
void HELPER(purge)(CPUS390XState *env)
|
|
{
|
|
tlb_flush_all_cpus_synced(env_cpu(env));
|
|
}
|
|
|
|
/* load using real address */
|
|
uint64_t HELPER(lura)(CPUS390XState *env, uint64_t addr)
|
|
{
|
|
return cpu_ldl_real_ra(env, wrap_address(env, addr), GETPC());
|
|
}
|
|
|
|
uint64_t HELPER(lurag)(CPUS390XState *env, uint64_t addr)
|
|
{
|
|
return cpu_ldq_real_ra(env, wrap_address(env, addr), GETPC());
|
|
}
|
|
|
|
/* store using real address */
|
|
void HELPER(stura)(CPUS390XState *env, uint64_t addr, uint64_t v1)
|
|
{
|
|
cpu_stl_real_ra(env, wrap_address(env, addr), (uint32_t)v1, GETPC());
|
|
|
|
if ((env->psw.mask & PSW_MASK_PER) &&
|
|
(env->cregs[9] & PER_CR9_EVENT_STORE) &&
|
|
(env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
|
|
/* PSW is saved just before calling the helper. */
|
|
env->per_address = env->psw.addr;
|
|
env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
|
|
}
|
|
}
|
|
|
|
void HELPER(sturg)(CPUS390XState *env, uint64_t addr, uint64_t v1)
|
|
{
|
|
cpu_stq_real_ra(env, wrap_address(env, addr), v1, GETPC());
|
|
|
|
if ((env->psw.mask & PSW_MASK_PER) &&
|
|
(env->cregs[9] & PER_CR9_EVENT_STORE) &&
|
|
(env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
|
|
/* PSW is saved just before calling the helper. */
|
|
env->per_address = env->psw.addr;
|
|
env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
|
|
}
|
|
}
|
|
|
|
/* load real address */
|
|
uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint32_t cc = 0;
|
|
uint64_t asc = env->psw.mask & PSW_MASK_ASC;
|
|
uint64_t ret;
|
|
int old_exc, flags;
|
|
|
|
/* XXX incomplete - has more corner cases */
|
|
if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) {
|
|
s390_program_interrupt(env, PGM_SPECIAL_OP, 2, GETPC());
|
|
}
|
|
|
|
old_exc = cs->exception_index;
|
|
if (mmu_translate(env, addr, 0, asc, &ret, &flags, true)) {
|
|
cc = 3;
|
|
}
|
|
if (cs->exception_index == EXCP_PGM) {
|
|
ret = env->int_pgm_code | 0x80000000;
|
|
} else {
|
|
ret |= addr & ~TARGET_PAGE_MASK;
|
|
}
|
|
cs->exception_index = old_exc;
|
|
|
|
env->cc_op = cc;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* load pair from quadword */
|
|
uint64_t HELPER(lpq)(CPUS390XState *env, uint64_t addr)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t hi, lo;
|
|
|
|
check_alignment(env, addr, 16, ra);
|
|
hi = cpu_ldq_data_ra(env, addr + 0, ra);
|
|
lo = cpu_ldq_data_ra(env, addr + 8, ra);
|
|
|
|
env->retxl = lo;
|
|
return hi;
|
|
}
|
|
|
|
uint64_t HELPER(lpq_parallel)(CPUS390XState *env, uint64_t addr)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t hi, lo;
|
|
int mem_idx;
|
|
TCGMemOpIdx oi;
|
|
Int128 v;
|
|
|
|
assert(HAVE_ATOMIC128);
|
|
|
|
mem_idx = cpu_mmu_index(env, false);
|
|
oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
|
|
v = helper_atomic_ldo_be_mmu(env, addr, oi, ra);
|
|
hi = int128_gethi(v);
|
|
lo = int128_getlo(v);
|
|
|
|
env->retxl = lo;
|
|
return hi;
|
|
}
|
|
|
|
/* store pair to quadword */
|
|
void HELPER(stpq)(CPUS390XState *env, uint64_t addr,
|
|
uint64_t low, uint64_t high)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
|
|
check_alignment(env, addr, 16, ra);
|
|
cpu_stq_data_ra(env, addr + 0, high, ra);
|
|
cpu_stq_data_ra(env, addr + 8, low, ra);
|
|
}
|
|
|
|
void HELPER(stpq_parallel)(CPUS390XState *env, uint64_t addr,
|
|
uint64_t low, uint64_t high)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
int mem_idx;
|
|
TCGMemOpIdx oi;
|
|
Int128 v;
|
|
|
|
assert(HAVE_ATOMIC128);
|
|
|
|
mem_idx = cpu_mmu_index(env, false);
|
|
oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
|
|
v = int128_make128(low, high);
|
|
helper_atomic_sto_be_mmu(env, addr, v, oi, ra);
|
|
}
|
|
|
|
/* Execute instruction. This instruction executes an insn modified with
|
|
the contents of r1. It does not change the executed instruction in memory;
|
|
it does not change the program counter.
|
|
|
|
Perform this by recording the modified instruction in env->ex_value.
|
|
This will be noticed by cpu_get_tb_cpu_state and thus tb translation.
|
|
*/
|
|
void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr)
|
|
{
|
|
uint64_t insn = cpu_lduw_code(env, addr);
|
|
uint8_t opc = insn >> 8;
|
|
|
|
/* Or in the contents of R1[56:63]. */
|
|
insn |= r1 & 0xff;
|
|
|
|
/* Load the rest of the instruction. */
|
|
insn <<= 48;
|
|
switch (get_ilen(opc)) {
|
|
case 2:
|
|
break;
|
|
case 4:
|
|
insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32;
|
|
break;
|
|
case 6:
|
|
insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* The very most common cases can be sped up by avoiding a new TB. */
|
|
if ((opc & 0xf0) == 0xd0) {
|
|
typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t,
|
|
uint64_t, uintptr_t);
|
|
static const dx_helper dx[16] = {
|
|
[0x0] = do_helper_trt_bkwd,
|
|
[0x2] = do_helper_mvc,
|
|
[0x4] = do_helper_nc,
|
|
[0x5] = do_helper_clc,
|
|
[0x6] = do_helper_oc,
|
|
[0x7] = do_helper_xc,
|
|
[0xc] = do_helper_tr,
|
|
[0xd] = do_helper_trt_fwd,
|
|
};
|
|
dx_helper helper = dx[opc & 0xf];
|
|
|
|
if (helper) {
|
|
uint32_t l = extract64(insn, 48, 8);
|
|
uint32_t b1 = extract64(insn, 44, 4);
|
|
uint32_t d1 = extract64(insn, 32, 12);
|
|
uint32_t b2 = extract64(insn, 28, 4);
|
|
uint32_t d2 = extract64(insn, 16, 12);
|
|
uint64_t a1 = wrap_address(env, env->regs[b1] + d1);
|
|
uint64_t a2 = wrap_address(env, env->regs[b2] + d2);
|
|
|
|
env->cc_op = helper(env, l, a1, a2, 0);
|
|
env->psw.addr += ilen;
|
|
return;
|
|
}
|
|
} else if (opc == 0x0a) {
|
|
env->int_svc_code = extract64(insn, 48, 8);
|
|
env->int_svc_ilen = ilen;
|
|
helper_exception(env, EXCP_SVC);
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Record the insn we want to execute as well as the ilen to use
|
|
during the execution of the target insn. This will also ensure
|
|
that ex_value is non-zero, which flags that we are in a state
|
|
that requires such execution. */
|
|
env->ex_value = insn | ilen;
|
|
}
|
|
|
|
uint32_t HELPER(mvcos)(CPUS390XState *env, uint64_t dest, uint64_t src,
|
|
uint64_t len)
|
|
{
|
|
const uint8_t psw_key = (env->psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY;
|
|
const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
|
|
const uint64_t r0 = env->regs[0];
|
|
const uintptr_t ra = GETPC();
|
|
uint8_t dest_key, dest_as, dest_k, dest_a;
|
|
uint8_t src_key, src_as, src_k, src_a;
|
|
uint64_t val;
|
|
int cc = 0;
|
|
|
|
HELPER_LOG("%s dest %" PRIx64 ", src %" PRIx64 ", len %" PRIx64 "\n",
|
|
__func__, dest, src, len);
|
|
|
|
if (!(env->psw.mask & PSW_MASK_DAT)) {
|
|
s390_program_interrupt(env, PGM_SPECIAL_OP, 6, ra);
|
|
}
|
|
|
|
/* OAC (operand access control) for the first operand -> dest */
|
|
val = (r0 & 0xffff0000ULL) >> 16;
|
|
dest_key = (val >> 12) & 0xf;
|
|
dest_as = (val >> 6) & 0x3;
|
|
dest_k = (val >> 1) & 0x1;
|
|
dest_a = val & 0x1;
|
|
|
|
/* OAC (operand access control) for the second operand -> src */
|
|
val = (r0 & 0x0000ffffULL);
|
|
src_key = (val >> 12) & 0xf;
|
|
src_as = (val >> 6) & 0x3;
|
|
src_k = (val >> 1) & 0x1;
|
|
src_a = val & 0x1;
|
|
|
|
if (!dest_k) {
|
|
dest_key = psw_key;
|
|
}
|
|
if (!src_k) {
|
|
src_key = psw_key;
|
|
}
|
|
if (!dest_a) {
|
|
dest_as = psw_as;
|
|
}
|
|
if (!src_a) {
|
|
src_as = psw_as;
|
|
}
|
|
|
|
if (dest_a && dest_as == AS_HOME && (env->psw.mask & PSW_MASK_PSTATE)) {
|
|
s390_program_interrupt(env, PGM_SPECIAL_OP, 6, ra);
|
|
}
|
|
if (!(env->cregs[0] & CR0_SECONDARY) &&
|
|
(dest_as == AS_SECONDARY || src_as == AS_SECONDARY)) {
|
|
s390_program_interrupt(env, PGM_SPECIAL_OP, 6, ra);
|
|
}
|
|
if (!psw_key_valid(env, dest_key) || !psw_key_valid(env, src_key)) {
|
|
s390_program_interrupt(env, PGM_PRIVILEGED, 6, ra);
|
|
}
|
|
|
|
len = wrap_length(env, len);
|
|
if (len > 4096) {
|
|
cc = 3;
|
|
len = 4096;
|
|
}
|
|
|
|
/* FIXME: AR-mode and proper problem state mode (using PSW keys) missing */
|
|
if (src_as == AS_ACCREG || dest_as == AS_ACCREG ||
|
|
(env->psw.mask & PSW_MASK_PSTATE)) {
|
|
qemu_log_mask(LOG_UNIMP, "%s: AR-mode and PSTATE support missing\n",
|
|
__func__);
|
|
s390_program_interrupt(env, PGM_ADDRESSING, 6, ra);
|
|
}
|
|
|
|
/* FIXME: a) LAP
|
|
* b) Access using correct keys
|
|
* c) AR-mode
|
|
*/
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* psw keys are never valid in user mode, we will never reach this */
|
|
g_assert_not_reached();
|
|
#else
|
|
fast_memmove_as(env, dest, src, len, dest_as, src_as, ra);
|
|
#endif
|
|
|
|
return cc;
|
|
}
|
|
|
|
/* Decode a Unicode character. A return value < 0 indicates success, storing
|
|
the UTF-32 result into OCHAR and the input length into OLEN. A return
|
|
value >= 0 indicates failure, and the CC value to be returned. */
|
|
typedef int (*decode_unicode_fn)(CPUS390XState *env, uint64_t addr,
|
|
uint64_t ilen, bool enh_check, uintptr_t ra,
|
|
uint32_t *ochar, uint32_t *olen);
|
|
|
|
/* Encode a Unicode character. A return value < 0 indicates success, storing
|
|
the bytes into ADDR and the output length into OLEN. A return value >= 0
|
|
indicates failure, and the CC value to be returned. */
|
|
typedef int (*encode_unicode_fn)(CPUS390XState *env, uint64_t addr,
|
|
uint64_t ilen, uintptr_t ra, uint32_t c,
|
|
uint32_t *olen);
|
|
|
|
static int decode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
|
|
bool enh_check, uintptr_t ra,
|
|
uint32_t *ochar, uint32_t *olen)
|
|
{
|
|
uint8_t s0, s1, s2, s3;
|
|
uint32_t c, l;
|
|
|
|
if (ilen < 1) {
|
|
return 0;
|
|
}
|
|
s0 = cpu_ldub_data_ra(env, addr, ra);
|
|
if (s0 <= 0x7f) {
|
|
/* one byte character */
|
|
l = 1;
|
|
c = s0;
|
|
} else if (s0 <= (enh_check ? 0xc1 : 0xbf)) {
|
|
/* invalid character */
|
|
return 2;
|
|
} else if (s0 <= 0xdf) {
|
|
/* two byte character */
|
|
l = 2;
|
|
if (ilen < 2) {
|
|
return 0;
|
|
}
|
|
s1 = cpu_ldub_data_ra(env, addr + 1, ra);
|
|
c = s0 & 0x1f;
|
|
c = (c << 6) | (s1 & 0x3f);
|
|
if (enh_check && (s1 & 0xc0) != 0x80) {
|
|
return 2;
|
|
}
|
|
} else if (s0 <= 0xef) {
|
|
/* three byte character */
|
|
l = 3;
|
|
if (ilen < 3) {
|
|
return 0;
|
|
}
|
|
s1 = cpu_ldub_data_ra(env, addr + 1, ra);
|
|
s2 = cpu_ldub_data_ra(env, addr + 2, ra);
|
|
c = s0 & 0x0f;
|
|
c = (c << 6) | (s1 & 0x3f);
|
|
c = (c << 6) | (s2 & 0x3f);
|
|
/* Fold the byte-by-byte range descriptions in the PoO into
|
|
tests against the complete value. It disallows encodings
|
|
that could be smaller, and the UTF-16 surrogates. */
|
|
if (enh_check
|
|
&& ((s1 & 0xc0) != 0x80
|
|
|| (s2 & 0xc0) != 0x80
|
|
|| c < 0x1000
|
|
|| (c >= 0xd800 && c <= 0xdfff))) {
|
|
return 2;
|
|
}
|
|
} else if (s0 <= (enh_check ? 0xf4 : 0xf7)) {
|
|
/* four byte character */
|
|
l = 4;
|
|
if (ilen < 4) {
|
|
return 0;
|
|
}
|
|
s1 = cpu_ldub_data_ra(env, addr + 1, ra);
|
|
s2 = cpu_ldub_data_ra(env, addr + 2, ra);
|
|
s3 = cpu_ldub_data_ra(env, addr + 3, ra);
|
|
c = s0 & 0x07;
|
|
c = (c << 6) | (s1 & 0x3f);
|
|
c = (c << 6) | (s2 & 0x3f);
|
|
c = (c << 6) | (s3 & 0x3f);
|
|
/* See above. */
|
|
if (enh_check
|
|
&& ((s1 & 0xc0) != 0x80
|
|
|| (s2 & 0xc0) != 0x80
|
|
|| (s3 & 0xc0) != 0x80
|
|
|| c < 0x010000
|
|
|| c > 0x10ffff)) {
|
|
return 2;
|
|
}
|
|
} else {
|
|
/* invalid character */
|
|
return 2;
|
|
}
|
|
|
|
*ochar = c;
|
|
*olen = l;
|
|
return -1;
|
|
}
|
|
|
|
static int decode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
|
|
bool enh_check, uintptr_t ra,
|
|
uint32_t *ochar, uint32_t *olen)
|
|
{
|
|
uint16_t s0, s1;
|
|
uint32_t c, l;
|
|
|
|
if (ilen < 2) {
|
|
return 0;
|
|
}
|
|
s0 = cpu_lduw_data_ra(env, addr, ra);
|
|
if ((s0 & 0xfc00) != 0xd800) {
|
|
/* one word character */
|
|
l = 2;
|
|
c = s0;
|
|
} else {
|
|
/* two word character */
|
|
l = 4;
|
|
if (ilen < 4) {
|
|
return 0;
|
|
}
|
|
s1 = cpu_lduw_data_ra(env, addr + 2, ra);
|
|
c = extract32(s0, 6, 4) + 1;
|
|
c = (c << 6) | (s0 & 0x3f);
|
|
c = (c << 10) | (s1 & 0x3ff);
|
|
if (enh_check && (s1 & 0xfc00) != 0xdc00) {
|
|
/* invalid surrogate character */
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
*ochar = c;
|
|
*olen = l;
|
|
return -1;
|
|
}
|
|
|
|
static int decode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
|
|
bool enh_check, uintptr_t ra,
|
|
uint32_t *ochar, uint32_t *olen)
|
|
{
|
|
uint32_t c;
|
|
|
|
if (ilen < 4) {
|
|
return 0;
|
|
}
|
|
c = cpu_ldl_data_ra(env, addr, ra);
|
|
if ((c >= 0xd800 && c <= 0xdbff) || c > 0x10ffff) {
|
|
/* invalid unicode character */
|
|
return 2;
|
|
}
|
|
|
|
*ochar = c;
|
|
*olen = 4;
|
|
return -1;
|
|
}
|
|
|
|
static int encode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
|
|
uintptr_t ra, uint32_t c, uint32_t *olen)
|
|
{
|
|
uint8_t d[4];
|
|
uint32_t l, i;
|
|
|
|
if (c <= 0x7f) {
|
|
/* one byte character */
|
|
l = 1;
|
|
d[0] = c;
|
|
} else if (c <= 0x7ff) {
|
|
/* two byte character */
|
|
l = 2;
|
|
d[1] = 0x80 | extract32(c, 0, 6);
|
|
d[0] = 0xc0 | extract32(c, 6, 5);
|
|
} else if (c <= 0xffff) {
|
|
/* three byte character */
|
|
l = 3;
|
|
d[2] = 0x80 | extract32(c, 0, 6);
|
|
d[1] = 0x80 | extract32(c, 6, 6);
|
|
d[0] = 0xe0 | extract32(c, 12, 4);
|
|
} else {
|
|
/* four byte character */
|
|
l = 4;
|
|
d[3] = 0x80 | extract32(c, 0, 6);
|
|
d[2] = 0x80 | extract32(c, 6, 6);
|
|
d[1] = 0x80 | extract32(c, 12, 6);
|
|
d[0] = 0xf0 | extract32(c, 18, 3);
|
|
}
|
|
|
|
if (ilen < l) {
|
|
return 1;
|
|
}
|
|
for (i = 0; i < l; ++i) {
|
|
cpu_stb_data_ra(env, addr + i, d[i], ra);
|
|
}
|
|
|
|
*olen = l;
|
|
return -1;
|
|
}
|
|
|
|
static int encode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
|
|
uintptr_t ra, uint32_t c, uint32_t *olen)
|
|
{
|
|
uint16_t d0, d1;
|
|
|
|
if (c <= 0xffff) {
|
|
/* one word character */
|
|
if (ilen < 2) {
|
|
return 1;
|
|
}
|
|
cpu_stw_data_ra(env, addr, c, ra);
|
|
*olen = 2;
|
|
} else {
|
|
/* two word character */
|
|
if (ilen < 4) {
|
|
return 1;
|
|
}
|
|
d1 = 0xdc00 | extract32(c, 0, 10);
|
|
d0 = 0xd800 | extract32(c, 10, 6);
|
|
d0 = deposit32(d0, 6, 4, extract32(c, 16, 5) - 1);
|
|
cpu_stw_data_ra(env, addr + 0, d0, ra);
|
|
cpu_stw_data_ra(env, addr + 2, d1, ra);
|
|
*olen = 4;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int encode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
|
|
uintptr_t ra, uint32_t c, uint32_t *olen)
|
|
{
|
|
if (ilen < 4) {
|
|
return 1;
|
|
}
|
|
cpu_stl_data_ra(env, addr, c, ra);
|
|
*olen = 4;
|
|
return -1;
|
|
}
|
|
|
|
static inline uint32_t convert_unicode(CPUS390XState *env, uint32_t r1,
|
|
uint32_t r2, uint32_t m3, uintptr_t ra,
|
|
decode_unicode_fn decode,
|
|
encode_unicode_fn encode)
|
|
{
|
|
uint64_t dst = get_address(env, r1);
|
|
uint64_t dlen = get_length(env, r1 + 1);
|
|
uint64_t src = get_address(env, r2);
|
|
uint64_t slen = get_length(env, r2 + 1);
|
|
bool enh_check = m3 & 1;
|
|
int cc, i;
|
|
|
|
/* Lest we fail to service interrupts in a timely manner, limit the
|
|
amount of work we're willing to do. For now, let's cap at 256. */
|
|
for (i = 0; i < 256; ++i) {
|
|
uint32_t c, ilen, olen;
|
|
|
|
cc = decode(env, src, slen, enh_check, ra, &c, &ilen);
|
|
if (unlikely(cc >= 0)) {
|
|
break;
|
|
}
|
|
cc = encode(env, dst, dlen, ra, c, &olen);
|
|
if (unlikely(cc >= 0)) {
|
|
break;
|
|
}
|
|
|
|
src += ilen;
|
|
slen -= ilen;
|
|
dst += olen;
|
|
dlen -= olen;
|
|
cc = 3;
|
|
}
|
|
|
|
set_address(env, r1, dst);
|
|
set_length(env, r1 + 1, dlen);
|
|
set_address(env, r2, src);
|
|
set_length(env, r2 + 1, slen);
|
|
|
|
return cc;
|
|
}
|
|
|
|
uint32_t HELPER(cu12)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
|
|
{
|
|
return convert_unicode(env, r1, r2, m3, GETPC(),
|
|
decode_utf8, encode_utf16);
|
|
}
|
|
|
|
uint32_t HELPER(cu14)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
|
|
{
|
|
return convert_unicode(env, r1, r2, m3, GETPC(),
|
|
decode_utf8, encode_utf32);
|
|
}
|
|
|
|
uint32_t HELPER(cu21)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
|
|
{
|
|
return convert_unicode(env, r1, r2, m3, GETPC(),
|
|
decode_utf16, encode_utf8);
|
|
}
|
|
|
|
uint32_t HELPER(cu24)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
|
|
{
|
|
return convert_unicode(env, r1, r2, m3, GETPC(),
|
|
decode_utf16, encode_utf32);
|
|
}
|
|
|
|
uint32_t HELPER(cu41)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
|
|
{
|
|
return convert_unicode(env, r1, r2, m3, GETPC(),
|
|
decode_utf32, encode_utf8);
|
|
}
|
|
|
|
uint32_t HELPER(cu42)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
|
|
{
|
|
return convert_unicode(env, r1, r2, m3, GETPC(),
|
|
decode_utf32, encode_utf16);
|
|
}
|
|
|
|
void probe_write_access(CPUS390XState *env, uint64_t addr, uint64_t len,
|
|
uintptr_t ra)
|
|
{
|
|
/* test the actual access, not just any access to the page due to LAP */
|
|
while (len) {
|
|
const uint64_t pagelen = -(addr | TARGET_PAGE_MASK);
|
|
const uint64_t curlen = MIN(pagelen, len);
|
|
|
|
probe_write(env, addr, curlen, cpu_mmu_index(env, false), ra);
|
|
addr = wrap_address(env, addr + curlen);
|
|
len -= curlen;
|
|
}
|
|
}
|
|
|
|
void HELPER(probe_write_access)(CPUS390XState *env, uint64_t addr, uint64_t len)
|
|
{
|
|
probe_write_access(env, addr, len, GETPC());
|
|
}
|