mirror of https://gitee.com/openkylin/qemu.git
1007 lines
28 KiB
C
1007 lines
28 KiB
C
/*
|
|
* QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "hw/irq.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "hw/qdev-properties-system.h"
|
|
#include "hw/sysbus.h"
|
|
#include "migration/vmstate.h"
|
|
#include "qemu/module.h"
|
|
#include "hw/char/escc.h"
|
|
#include "ui/console.h"
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* Chipset docs:
|
|
* "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
|
|
* http://www.zilog.com/docs/serial/scc_escc_um.pdf
|
|
*
|
|
* On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
|
|
* (Slave I/O), also produced as NCR89C105. See
|
|
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
|
|
*
|
|
* The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
|
|
* mouse and keyboard ports don't implement all functions and they are
|
|
* only asynchronous. There is no DMA.
|
|
*
|
|
* Z85C30 is also used on PowerMacs and m68k Macs.
|
|
*
|
|
* There are some small differences between Sparc version (sunzilog)
|
|
* and PowerMac (pmac):
|
|
* Offset between control and data registers
|
|
* There is some kind of lockup bug, but we can ignore it
|
|
* CTS is inverted
|
|
* DMA on pmac using DBDMA chip
|
|
* pmac can do IRDA and faster rates, sunzilog can only do 38400
|
|
* pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
|
|
*
|
|
* Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog),
|
|
* but registers are grouped by type and not by channel:
|
|
* channel is selected by bit 0 of the address (instead of bit 1)
|
|
* and register is selected by bit 1 of the address (instead of bit 0).
|
|
*/
|
|
|
|
/*
|
|
* Modifications:
|
|
* 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
|
|
* serial mouse queue.
|
|
* Implemented serial mouse protocol.
|
|
*
|
|
* 2010-May-23 Artyom Tarasenko: Reworked IUS logic
|
|
*/
|
|
|
|
#define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
|
|
|
|
#define SERIAL_CTRL 0
|
|
#define SERIAL_DATA 1
|
|
|
|
#define W_CMD 0
|
|
#define CMD_PTR_MASK 0x07
|
|
#define CMD_CMD_MASK 0x38
|
|
#define CMD_HI 0x08
|
|
#define CMD_CLR_TXINT 0x28
|
|
#define CMD_CLR_IUS 0x38
|
|
#define W_INTR 1
|
|
#define INTR_INTALL 0x01
|
|
#define INTR_TXINT 0x02
|
|
#define INTR_PAR_SPEC 0x04
|
|
#define INTR_RXMODEMSK 0x18
|
|
#define INTR_RXINT1ST 0x08
|
|
#define INTR_RXINTALL 0x10
|
|
#define INTR_WTRQ_TXRX 0x20
|
|
#define W_IVEC 2
|
|
#define W_RXCTRL 3
|
|
#define RXCTRL_RXEN 0x01
|
|
#define RXCTRL_HUNT 0x10
|
|
#define W_TXCTRL1 4
|
|
#define TXCTRL1_PAREN 0x01
|
|
#define TXCTRL1_PAREV 0x02
|
|
#define TXCTRL1_1STOP 0x04
|
|
#define TXCTRL1_1HSTOP 0x08
|
|
#define TXCTRL1_2STOP 0x0c
|
|
#define TXCTRL1_STPMSK 0x0c
|
|
#define TXCTRL1_CLK1X 0x00
|
|
#define TXCTRL1_CLK16X 0x40
|
|
#define TXCTRL1_CLK32X 0x80
|
|
#define TXCTRL1_CLK64X 0xc0
|
|
#define TXCTRL1_CLKMSK 0xc0
|
|
#define W_TXCTRL2 5
|
|
#define TXCTRL2_TXCRC 0x01
|
|
#define TXCTRL2_TXEN 0x08
|
|
#define TXCTRL2_BITMSK 0x60
|
|
#define TXCTRL2_5BITS 0x00
|
|
#define TXCTRL2_7BITS 0x20
|
|
#define TXCTRL2_6BITS 0x40
|
|
#define TXCTRL2_8BITS 0x60
|
|
#define W_SYNC1 6
|
|
#define W_SYNC2 7
|
|
#define W_TXBUF 8
|
|
#define W_MINTR 9
|
|
#define MINTR_VIS 0x01
|
|
#define MINTR_NV 0x02
|
|
#define MINTR_STATUSHI 0x10
|
|
#define MINTR_SOFTIACK 0x20
|
|
#define MINTR_RST_MASK 0xc0
|
|
#define MINTR_RST_B 0x40
|
|
#define MINTR_RST_A 0x80
|
|
#define MINTR_RST_ALL 0xc0
|
|
#define W_MISC1 10
|
|
#define MISC1_ENC_MASK 0x60
|
|
#define W_CLOCK 11
|
|
#define CLOCK_TRXC 0x08
|
|
#define W_BRGLO 12
|
|
#define W_BRGHI 13
|
|
#define W_MISC2 14
|
|
#define MISC2_BRG_EN 0x01
|
|
#define MISC2_BRG_SRC 0x02
|
|
#define MISC2_LCL_LOOP 0x10
|
|
#define MISC2_PLLCMD0 0x20
|
|
#define MISC2_PLLCMD1 0x40
|
|
#define MISC2_PLLCMD2 0x80
|
|
#define W_EXTINT 15
|
|
#define EXTINT_DCD 0x08
|
|
#define EXTINT_SYNCINT 0x10
|
|
#define EXTINT_CTSINT 0x20
|
|
#define EXTINT_TXUNDRN 0x40
|
|
#define EXTINT_BRKINT 0x80
|
|
|
|
#define R_STATUS 0
|
|
#define STATUS_RXAV 0x01
|
|
#define STATUS_ZERO 0x02
|
|
#define STATUS_TXEMPTY 0x04
|
|
#define STATUS_DCD 0x08
|
|
#define STATUS_SYNC 0x10
|
|
#define STATUS_CTS 0x20
|
|
#define STATUS_TXUNDRN 0x40
|
|
#define STATUS_BRK 0x80
|
|
#define R_SPEC 1
|
|
#define SPEC_ALLSENT 0x01
|
|
#define SPEC_BITS8 0x06
|
|
#define R_IVEC 2
|
|
#define IVEC_TXINTB 0x00
|
|
#define IVEC_LONOINT 0x06
|
|
#define IVEC_LORXINTA 0x0c
|
|
#define IVEC_LORXINTB 0x04
|
|
#define IVEC_LOTXINTA 0x08
|
|
#define IVEC_HINOINT 0x60
|
|
#define IVEC_HIRXINTA 0x30
|
|
#define IVEC_HIRXINTB 0x20
|
|
#define IVEC_HITXINTA 0x10
|
|
#define R_INTR 3
|
|
#define INTR_EXTINTB 0x01
|
|
#define INTR_TXINTB 0x02
|
|
#define INTR_RXINTB 0x04
|
|
#define INTR_EXTINTA 0x08
|
|
#define INTR_TXINTA 0x10
|
|
#define INTR_RXINTA 0x20
|
|
#define R_IPEN 4
|
|
#define R_TXCTRL1 5
|
|
#define R_TXCTRL2 6
|
|
#define R_BC 7
|
|
#define R_RXBUF 8
|
|
#define R_RXCTRL 9
|
|
#define R_MISC 10
|
|
#define MISC_2CLKMISS 0x40
|
|
#define R_MISC1 11
|
|
#define R_BRGLO 12
|
|
#define R_BRGHI 13
|
|
#define R_MISC1I 14
|
|
#define R_EXTINT 15
|
|
|
|
static void handle_kbd_command(ESCCChannelState *s, int val);
|
|
static int serial_can_receive(void *opaque);
|
|
static void serial_receive_byte(ESCCChannelState *s, int ch);
|
|
|
|
static int reg_shift(ESCCState *s)
|
|
{
|
|
return s->bit_swap ? s->it_shift + 1 : s->it_shift;
|
|
}
|
|
|
|
static int chn_shift(ESCCState *s)
|
|
{
|
|
return s->bit_swap ? s->it_shift : s->it_shift + 1;
|
|
}
|
|
|
|
static void clear_queue(void *opaque)
|
|
{
|
|
ESCCChannelState *s = opaque;
|
|
ESCCSERIOQueue *q = &s->queue;
|
|
q->rptr = q->wptr = q->count = 0;
|
|
}
|
|
|
|
static void put_queue(void *opaque, int b)
|
|
{
|
|
ESCCChannelState *s = opaque;
|
|
ESCCSERIOQueue *q = &s->queue;
|
|
|
|
trace_escc_put_queue(CHN_C(s), b);
|
|
if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
|
|
return;
|
|
}
|
|
q->data[q->wptr] = b;
|
|
if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
|
|
q->wptr = 0;
|
|
}
|
|
q->count++;
|
|
serial_receive_byte(s, 0);
|
|
}
|
|
|
|
static uint32_t get_queue(void *opaque)
|
|
{
|
|
ESCCChannelState *s = opaque;
|
|
ESCCSERIOQueue *q = &s->queue;
|
|
int val;
|
|
|
|
if (q->count == 0) {
|
|
return 0;
|
|
} else {
|
|
val = q->data[q->rptr];
|
|
if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
|
|
q->rptr = 0;
|
|
}
|
|
q->count--;
|
|
}
|
|
trace_escc_get_queue(CHN_C(s), val);
|
|
if (q->count > 0) {
|
|
serial_receive_byte(s, 0);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
static int escc_update_irq_chn(ESCCChannelState *s)
|
|
{
|
|
if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
|
|
/* tx ints enabled, pending */
|
|
((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
|
|
((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
|
|
s->rxint == 1) ||
|
|
/* rx ints enabled, pending */
|
|
((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
|
|
(s->rregs[R_STATUS] & STATUS_BRK)))) {
|
|
/* break int e&p */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void escc_update_irq(ESCCChannelState *s)
|
|
{
|
|
int irq;
|
|
|
|
irq = escc_update_irq_chn(s);
|
|
irq |= escc_update_irq_chn(s->otherchn);
|
|
|
|
trace_escc_update_irq(irq);
|
|
qemu_set_irq(s->irq, irq);
|
|
}
|
|
|
|
static void escc_reset_chn(ESCCChannelState *s)
|
|
{
|
|
s->reg = 0;
|
|
s->rx = s->tx = 0;
|
|
s->rxint = s->txint = 0;
|
|
s->rxint_under_svc = s->txint_under_svc = 0;
|
|
s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
|
|
clear_queue(s);
|
|
}
|
|
|
|
static void escc_soft_reset_chn(ESCCChannelState *s)
|
|
{
|
|
escc_reset_chn(s);
|
|
|
|
s->wregs[W_CMD] = 0;
|
|
s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX;
|
|
s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN;
|
|
/* 1 stop bit */
|
|
s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP;
|
|
s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS;
|
|
s->wregs[W_MINTR] &= ~MINTR_SOFTIACK;
|
|
s->wregs[W_MISC1] &= MISC1_ENC_MASK;
|
|
/* PLL disabled */
|
|
s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC |
|
|
MISC2_PLLCMD1 | MISC2_PLLCMD2;
|
|
s->wregs[W_MISC2] |= MISC2_PLLCMD0;
|
|
/* Enable most interrupts */
|
|
s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
|
|
EXTINT_TXUNDRN | EXTINT_BRKINT;
|
|
|
|
s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK;
|
|
s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN;
|
|
if (s->disabled) {
|
|
s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS;
|
|
}
|
|
s->rregs[R_SPEC] &= SPEC_ALLSENT;
|
|
s->rregs[R_SPEC] |= SPEC_BITS8;
|
|
s->rregs[R_INTR] = 0;
|
|
s->rregs[R_MISC] &= MISC_2CLKMISS;
|
|
}
|
|
|
|
static void escc_hard_reset_chn(ESCCChannelState *s)
|
|
{
|
|
escc_soft_reset_chn(s);
|
|
|
|
/*
|
|
* Hard reset is almost identical to soft reset above, except that the
|
|
* values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14
|
|
* (W_MISC2) have extra bits forced to 0/1
|
|
*/
|
|
s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV;
|
|
s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A;
|
|
s->wregs[W_MISC1] = 0;
|
|
s->wregs[W_CLOCK] = CLOCK_TRXC;
|
|
s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2;
|
|
s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0;
|
|
}
|
|
|
|
static void escc_reset(DeviceState *d)
|
|
{
|
|
ESCCState *s = ESCC(d);
|
|
int i, j;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
ESCCChannelState *cs = &s->chn[i];
|
|
|
|
/*
|
|
* According to the ESCC datasheet "Miscellaneous Questions" section
|
|
* on page 384, the values of the ESCC registers are not guaranteed on
|
|
* power-on until an explicit hardware or software reset has been
|
|
* issued. For now we zero the registers so that a device reset always
|
|
* returns the emulated device to a fixed state.
|
|
*/
|
|
for (j = 0; j < ESCC_SERIAL_REGS; j++) {
|
|
cs->rregs[j] = 0;
|
|
cs->wregs[j] = 0;
|
|
}
|
|
|
|
/*
|
|
* ...but there is an exception. The "Transmit Interrupts and Transmit
|
|
* Buffer Empty Bit" section on page 50 of the ESCC datasheet says of
|
|
* the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset
|
|
* (including a hardware reset by software), or a channel reset, this
|
|
* bit is set to 1". The Sun PROM checks this bit early on startup and
|
|
* gets stuck in an infinite loop if it is not set.
|
|
*/
|
|
cs->rregs[R_STATUS] |= STATUS_TXEMPTY;
|
|
|
|
escc_reset_chn(cs);
|
|
}
|
|
}
|
|
|
|
static inline void set_rxint(ESCCChannelState *s)
|
|
{
|
|
s->rxint = 1;
|
|
/*
|
|
* XXX: missing daisy chaining: escc_chn_b rx should have a lower priority
|
|
* than chn_a rx/tx/special_condition service
|
|
*/
|
|
s->rxint_under_svc = 1;
|
|
if (s->chn == escc_chn_a) {
|
|
s->rregs[R_INTR] |= INTR_RXINTA;
|
|
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
|
|
} else {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
|
|
}
|
|
} else {
|
|
s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
|
|
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
|
|
s->rregs[R_IVEC] = IVEC_HIRXINTB;
|
|
} else {
|
|
s->rregs[R_IVEC] = IVEC_LORXINTB;
|
|
}
|
|
}
|
|
escc_update_irq(s);
|
|
}
|
|
|
|
static inline void set_txint(ESCCChannelState *s)
|
|
{
|
|
s->txint = 1;
|
|
if (!s->rxint_under_svc) {
|
|
s->txint_under_svc = 1;
|
|
if (s->chn == escc_chn_a) {
|
|
if (s->wregs[W_INTR] & INTR_TXINT) {
|
|
s->rregs[R_INTR] |= INTR_TXINTA;
|
|
}
|
|
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
|
|
} else {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
|
|
}
|
|
} else {
|
|
s->rregs[R_IVEC] = IVEC_TXINTB;
|
|
if (s->wregs[W_INTR] & INTR_TXINT) {
|
|
s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
|
|
}
|
|
}
|
|
escc_update_irq(s);
|
|
}
|
|
}
|
|
|
|
static inline void clr_rxint(ESCCChannelState *s)
|
|
{
|
|
s->rxint = 0;
|
|
s->rxint_under_svc = 0;
|
|
if (s->chn == escc_chn_a) {
|
|
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
|
|
} else {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
|
|
}
|
|
s->rregs[R_INTR] &= ~INTR_RXINTA;
|
|
} else {
|
|
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
|
|
s->rregs[R_IVEC] = IVEC_HINOINT;
|
|
} else {
|
|
s->rregs[R_IVEC] = IVEC_LONOINT;
|
|
}
|
|
s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
|
|
}
|
|
if (s->txint) {
|
|
set_txint(s);
|
|
}
|
|
escc_update_irq(s);
|
|
}
|
|
|
|
static inline void clr_txint(ESCCChannelState *s)
|
|
{
|
|
s->txint = 0;
|
|
s->txint_under_svc = 0;
|
|
if (s->chn == escc_chn_a) {
|
|
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
|
|
} else {
|
|
s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
|
|
}
|
|
s->rregs[R_INTR] &= ~INTR_TXINTA;
|
|
} else {
|
|
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
|
|
if (s->wregs[W_MINTR] & MINTR_STATUSHI) {
|
|
s->rregs[R_IVEC] = IVEC_HINOINT;
|
|
} else {
|
|
s->rregs[R_IVEC] = IVEC_LONOINT;
|
|
}
|
|
s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
|
|
}
|
|
if (s->rxint) {
|
|
set_rxint(s);
|
|
}
|
|
escc_update_irq(s);
|
|
}
|
|
|
|
static void escc_update_parameters(ESCCChannelState *s)
|
|
{
|
|
int speed, parity, data_bits, stop_bits;
|
|
QEMUSerialSetParams ssp;
|
|
|
|
if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) {
|
|
return;
|
|
}
|
|
|
|
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
|
|
if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) {
|
|
parity = 'E';
|
|
} else {
|
|
parity = 'O';
|
|
}
|
|
} else {
|
|
parity = 'N';
|
|
}
|
|
if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) {
|
|
stop_bits = 2;
|
|
} else {
|
|
stop_bits = 1;
|
|
}
|
|
switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
|
|
case TXCTRL2_5BITS:
|
|
data_bits = 5;
|
|
break;
|
|
case TXCTRL2_7BITS:
|
|
data_bits = 7;
|
|
break;
|
|
case TXCTRL2_6BITS:
|
|
data_bits = 6;
|
|
break;
|
|
default:
|
|
case TXCTRL2_8BITS:
|
|
data_bits = 8;
|
|
break;
|
|
}
|
|
speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
|
|
switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
|
|
case TXCTRL1_CLK1X:
|
|
break;
|
|
case TXCTRL1_CLK16X:
|
|
speed /= 16;
|
|
break;
|
|
case TXCTRL1_CLK32X:
|
|
speed /= 32;
|
|
break;
|
|
default:
|
|
case TXCTRL1_CLK64X:
|
|
speed /= 64;
|
|
break;
|
|
}
|
|
ssp.speed = speed;
|
|
ssp.parity = parity;
|
|
ssp.data_bits = data_bits;
|
|
ssp.stop_bits = stop_bits;
|
|
trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
|
|
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
|
|
}
|
|
|
|
static void escc_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
ESCCState *serial = opaque;
|
|
ESCCChannelState *s;
|
|
uint32_t saddr;
|
|
int newreg, channel;
|
|
|
|
val &= 0xff;
|
|
saddr = (addr >> reg_shift(serial)) & 1;
|
|
channel = (addr >> chn_shift(serial)) & 1;
|
|
s = &serial->chn[channel];
|
|
switch (saddr) {
|
|
case SERIAL_CTRL:
|
|
trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
|
|
newreg = 0;
|
|
switch (s->reg) {
|
|
case W_CMD:
|
|
newreg = val & CMD_PTR_MASK;
|
|
val &= CMD_CMD_MASK;
|
|
switch (val) {
|
|
case CMD_HI:
|
|
newreg |= CMD_HI;
|
|
break;
|
|
case CMD_CLR_TXINT:
|
|
clr_txint(s);
|
|
break;
|
|
case CMD_CLR_IUS:
|
|
if (s->rxint_under_svc) {
|
|
s->rxint_under_svc = 0;
|
|
if (s->txint) {
|
|
set_txint(s);
|
|
}
|
|
} else if (s->txint_under_svc) {
|
|
s->txint_under_svc = 0;
|
|
}
|
|
escc_update_irq(s);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case W_RXCTRL:
|
|
s->wregs[s->reg] = val;
|
|
if (val & RXCTRL_HUNT) {
|
|
s->rregs[R_STATUS] |= STATUS_SYNC;
|
|
}
|
|
break;
|
|
case W_INTR ... W_IVEC:
|
|
case W_SYNC1 ... W_TXBUF:
|
|
case W_MISC1 ... W_CLOCK:
|
|
case W_MISC2 ... W_EXTINT:
|
|
s->wregs[s->reg] = val;
|
|
break;
|
|
case W_TXCTRL1:
|
|
s->wregs[s->reg] = val;
|
|
/*
|
|
* The ESCC datasheet states that SPEC_ALLSENT is always set in
|
|
* sync mode, and set in async mode when all characters have
|
|
* cleared the transmitter. Since writes to SERIAL_DATA use the
|
|
* blocking qemu_chr_fe_write_all() function to write each
|
|
* character, the guest can never see the state when async data
|
|
* is in the process of being transmitted so we can set this bit
|
|
* unconditionally regardless of the state of the W_TXCTRL1 mode
|
|
* bits.
|
|
*/
|
|
s->rregs[R_SPEC] |= SPEC_ALLSENT;
|
|
escc_update_parameters(s);
|
|
break;
|
|
case W_TXCTRL2:
|
|
s->wregs[s->reg] = val;
|
|
escc_update_parameters(s);
|
|
break;
|
|
case W_BRGLO:
|
|
case W_BRGHI:
|
|
s->wregs[s->reg] = val;
|
|
s->rregs[s->reg] = val;
|
|
escc_update_parameters(s);
|
|
break;
|
|
case W_MINTR:
|
|
switch (val & MINTR_RST_MASK) {
|
|
case 0:
|
|
default:
|
|
break;
|
|
case MINTR_RST_B:
|
|
trace_escc_soft_reset_chn(CHN_C(&serial->chn[0]));
|
|
escc_soft_reset_chn(&serial->chn[0]);
|
|
return;
|
|
case MINTR_RST_A:
|
|
trace_escc_soft_reset_chn(CHN_C(&serial->chn[1]));
|
|
escc_soft_reset_chn(&serial->chn[1]);
|
|
return;
|
|
case MINTR_RST_ALL:
|
|
trace_escc_hard_reset();
|
|
escc_hard_reset_chn(&serial->chn[0]);
|
|
escc_hard_reset_chn(&serial->chn[1]);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (s->reg == 0) {
|
|
s->reg = newreg;
|
|
} else {
|
|
s->reg = 0;
|
|
}
|
|
break;
|
|
case SERIAL_DATA:
|
|
trace_escc_mem_writeb_data(CHN_C(s), val);
|
|
/*
|
|
* Lower the irq when data is written to the Tx buffer and no other
|
|
* interrupts are currently pending. The irq will be raised again once
|
|
* the Tx buffer becomes empty below.
|
|
*/
|
|
s->txint = 0;
|
|
escc_update_irq(s);
|
|
s->tx = val;
|
|
if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */
|
|
if (qemu_chr_fe_backend_connected(&s->chr)) {
|
|
/*
|
|
* XXX this blocks entire thread. Rewrite to use
|
|
* qemu_chr_fe_write and background I/O callbacks
|
|
*/
|
|
qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
|
|
} else if (s->type == escc_kbd && !s->disabled) {
|
|
handle_kbd_command(s, val);
|
|
}
|
|
}
|
|
s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */
|
|
s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */
|
|
set_txint(s);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint64_t escc_mem_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
ESCCState *serial = opaque;
|
|
ESCCChannelState *s;
|
|
uint32_t saddr;
|
|
uint32_t ret;
|
|
int channel;
|
|
|
|
saddr = (addr >> reg_shift(serial)) & 1;
|
|
channel = (addr >> chn_shift(serial)) & 1;
|
|
s = &serial->chn[channel];
|
|
switch (saddr) {
|
|
case SERIAL_CTRL:
|
|
trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
|
|
ret = s->rregs[s->reg];
|
|
s->reg = 0;
|
|
return ret;
|
|
case SERIAL_DATA:
|
|
s->rregs[R_STATUS] &= ~STATUS_RXAV;
|
|
clr_rxint(s);
|
|
if (s->type == escc_kbd || s->type == escc_mouse) {
|
|
ret = get_queue(s);
|
|
} else {
|
|
ret = s->rx;
|
|
}
|
|
trace_escc_mem_readb_data(CHN_C(s), ret);
|
|
qemu_chr_fe_accept_input(&s->chr);
|
|
return ret;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const MemoryRegionOps escc_mem_ops = {
|
|
.read = escc_mem_read,
|
|
.write = escc_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 1,
|
|
},
|
|
};
|
|
|
|
static int serial_can_receive(void *opaque)
|
|
{
|
|
ESCCChannelState *s = opaque;
|
|
int ret;
|
|
|
|
if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */
|
|
|| ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) {
|
|
/* char already available */
|
|
ret = 0;
|
|
} else {
|
|
ret = 1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void serial_receive_byte(ESCCChannelState *s, int ch)
|
|
{
|
|
trace_escc_serial_receive_byte(CHN_C(s), ch);
|
|
s->rregs[R_STATUS] |= STATUS_RXAV;
|
|
s->rx = ch;
|
|
set_rxint(s);
|
|
}
|
|
|
|
static void serial_receive_break(ESCCChannelState *s)
|
|
{
|
|
s->rregs[R_STATUS] |= STATUS_BRK;
|
|
escc_update_irq(s);
|
|
}
|
|
|
|
static void serial_receive1(void *opaque, const uint8_t *buf, int size)
|
|
{
|
|
ESCCChannelState *s = opaque;
|
|
serial_receive_byte(s, buf[0]);
|
|
}
|
|
|
|
static void serial_event(void *opaque, QEMUChrEvent event)
|
|
{
|
|
ESCCChannelState *s = opaque;
|
|
if (event == CHR_EVENT_BREAK) {
|
|
serial_receive_break(s);
|
|
}
|
|
}
|
|
|
|
static const VMStateDescription vmstate_escc_chn = {
|
|
.name = "escc_chn",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
|
|
VMSTATE_UINT32(reg, ESCCChannelState),
|
|
VMSTATE_UINT32(rxint, ESCCChannelState),
|
|
VMSTATE_UINT32(txint, ESCCChannelState),
|
|
VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
|
|
VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
|
|
VMSTATE_UINT8(rx, ESCCChannelState),
|
|
VMSTATE_UINT8(tx, ESCCChannelState),
|
|
VMSTATE_BUFFER(wregs, ESCCChannelState),
|
|
VMSTATE_BUFFER(rregs, ESCCChannelState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_escc = {
|
|
.name = "escc",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
|
|
ESCCChannelState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
|
|
InputEvent *evt)
|
|
{
|
|
ESCCChannelState *s = (ESCCChannelState *)dev;
|
|
int qcode, keycode;
|
|
InputKeyEvent *key;
|
|
|
|
assert(evt->type == INPUT_EVENT_KIND_KEY);
|
|
key = evt->u.key.data;
|
|
qcode = qemu_input_key_value_to_qcode(key->key);
|
|
trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
|
|
key->down);
|
|
|
|
if (qcode == Q_KEY_CODE_CAPS_LOCK) {
|
|
if (key->down) {
|
|
s->caps_lock_mode ^= 1;
|
|
if (s->caps_lock_mode == 2) {
|
|
return; /* Drop second press */
|
|
}
|
|
} else {
|
|
s->caps_lock_mode ^= 2;
|
|
if (s->caps_lock_mode == 3) {
|
|
return; /* Drop first release */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (qcode == Q_KEY_CODE_NUM_LOCK) {
|
|
if (key->down) {
|
|
s->num_lock_mode ^= 1;
|
|
if (s->num_lock_mode == 2) {
|
|
return; /* Drop second press */
|
|
}
|
|
} else {
|
|
s->num_lock_mode ^= 2;
|
|
if (s->num_lock_mode == 3) {
|
|
return; /* Drop first release */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (qcode > qemu_input_map_qcode_to_sun_len) {
|
|
return;
|
|
}
|
|
|
|
keycode = qemu_input_map_qcode_to_sun[qcode];
|
|
if (!key->down) {
|
|
keycode |= 0x80;
|
|
}
|
|
trace_escc_sunkbd_event_out(keycode);
|
|
put_queue(s, keycode);
|
|
}
|
|
|
|
static QemuInputHandler sunkbd_handler = {
|
|
.name = "sun keyboard",
|
|
.mask = INPUT_EVENT_MASK_KEY,
|
|
.event = sunkbd_handle_event,
|
|
};
|
|
|
|
static void handle_kbd_command(ESCCChannelState *s, int val)
|
|
{
|
|
trace_escc_kbd_command(val);
|
|
if (s->led_mode) { /* Ignore led byte */
|
|
s->led_mode = 0;
|
|
return;
|
|
}
|
|
switch (val) {
|
|
case 1: /* Reset, return type code */
|
|
clear_queue(s);
|
|
put_queue(s, 0xff);
|
|
put_queue(s, 4); /* Type 4 */
|
|
put_queue(s, 0x7f);
|
|
break;
|
|
case 0xe: /* Set leds */
|
|
s->led_mode = 1;
|
|
break;
|
|
case 7: /* Query layout */
|
|
case 0xf:
|
|
clear_queue(s);
|
|
put_queue(s, 0xfe);
|
|
put_queue(s, 0x21); /* en-us layout */
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sunmouse_event(void *opaque,
|
|
int dx, int dy, int dz, int buttons_state)
|
|
{
|
|
ESCCChannelState *s = opaque;
|
|
int ch;
|
|
|
|
trace_escc_sunmouse_event(dx, dy, buttons_state);
|
|
ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
|
|
|
|
if (buttons_state & MOUSE_EVENT_LBUTTON) {
|
|
ch ^= 0x4;
|
|
}
|
|
if (buttons_state & MOUSE_EVENT_MBUTTON) {
|
|
ch ^= 0x2;
|
|
}
|
|
if (buttons_state & MOUSE_EVENT_RBUTTON) {
|
|
ch ^= 0x1;
|
|
}
|
|
|
|
put_queue(s, ch);
|
|
|
|
ch = dx;
|
|
|
|
if (ch > 127) {
|
|
ch = 127;
|
|
} else if (ch < -127) {
|
|
ch = -127;
|
|
}
|
|
|
|
put_queue(s, ch & 0xff);
|
|
|
|
ch = -dy;
|
|
|
|
if (ch > 127) {
|
|
ch = 127;
|
|
} else if (ch < -127) {
|
|
ch = -127;
|
|
}
|
|
|
|
put_queue(s, ch & 0xff);
|
|
|
|
/* MSC protocol specifies two extra motion bytes */
|
|
|
|
put_queue(s, 0);
|
|
put_queue(s, 0);
|
|
}
|
|
|
|
static void escc_init1(Object *obj)
|
|
{
|
|
ESCCState *s = ESCC(obj);
|
|
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
sysbus_init_irq(dev, &s->chn[i].irq);
|
|
s->chn[i].chn = 1 - i;
|
|
}
|
|
s->chn[0].otherchn = &s->chn[1];
|
|
s->chn[1].otherchn = &s->chn[0];
|
|
|
|
sysbus_init_mmio(dev, &s->mmio);
|
|
}
|
|
|
|
static void escc_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
ESCCState *s = ESCC(dev);
|
|
unsigned int i;
|
|
|
|
s->chn[0].disabled = s->disabled;
|
|
s->chn[1].disabled = s->disabled;
|
|
|
|
memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
|
|
ESCC_SIZE << s->it_shift);
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
|
|
s->chn[i].clock = s->frequency / 2;
|
|
qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
|
|
serial_receive1, serial_event, NULL,
|
|
&s->chn[i], NULL, true);
|
|
}
|
|
}
|
|
|
|
if (s->chn[0].type == escc_mouse) {
|
|
qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
|
|
"QEMU Sun Mouse");
|
|
}
|
|
if (s->chn[1].type == escc_kbd) {
|
|
s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
|
|
&sunkbd_handler);
|
|
}
|
|
}
|
|
|
|
static Property escc_properties[] = {
|
|
DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
|
|
DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
|
|
DEFINE_PROP_BOOL("bit_swap", ESCCState, bit_swap, false),
|
|
DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
|
|
DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
|
|
DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
|
|
DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
|
|
DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void escc_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->reset = escc_reset;
|
|
dc->realize = escc_realize;
|
|
dc->vmsd = &vmstate_escc;
|
|
device_class_set_props(dc, escc_properties);
|
|
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
|
|
}
|
|
|
|
static const TypeInfo escc_info = {
|
|
.name = TYPE_ESCC,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(ESCCState),
|
|
.instance_init = escc_init1,
|
|
.class_init = escc_class_init,
|
|
};
|
|
|
|
static void escc_register_types(void)
|
|
{
|
|
type_register_static(&escc_info);
|
|
}
|
|
|
|
type_init(escc_register_types)
|