qemu/hw/char/mcf_uart.c

367 lines
8.5 KiB
C

/*
* ColdFire UART emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licensed under the GPL
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "hw/m68k/mcf.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "chardev/char-fe.h"
#include "qom/object.h"
struct mcf_uart_state {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint8_t mr[2];
uint8_t sr;
uint8_t isr;
uint8_t imr;
uint8_t bg1;
uint8_t bg2;
uint8_t fifo[4];
uint8_t tb;
int current_mr;
int fifo_len;
int tx_enabled;
int rx_enabled;
qemu_irq irq;
CharBackend chr;
};
#define TYPE_MCF_UART "mcf-uart"
OBJECT_DECLARE_SIMPLE_TYPE(mcf_uart_state, MCF_UART)
/* UART Status Register bits. */
#define MCF_UART_RxRDY 0x01
#define MCF_UART_FFULL 0x02
#define MCF_UART_TxRDY 0x04
#define MCF_UART_TxEMP 0x08
#define MCF_UART_OE 0x10
#define MCF_UART_PE 0x20
#define MCF_UART_FE 0x40
#define MCF_UART_RB 0x80
/* Interrupt flags. */
#define MCF_UART_TxINT 0x01
#define MCF_UART_RxINT 0x02
#define MCF_UART_DBINT 0x04
#define MCF_UART_COSINT 0x80
/* UMR1 flags. */
#define MCF_UART_BC0 0x01
#define MCF_UART_BC1 0x02
#define MCF_UART_PT 0x04
#define MCF_UART_PM0 0x08
#define MCF_UART_PM1 0x10
#define MCF_UART_ERR 0x20
#define MCF_UART_RxIRQ 0x40
#define MCF_UART_RxRTS 0x80
static void mcf_uart_update(mcf_uart_state *s)
{
s->isr &= ~(MCF_UART_TxINT | MCF_UART_RxINT);
if (s->sr & MCF_UART_TxRDY)
s->isr |= MCF_UART_TxINT;
if ((s->sr & ((s->mr[0] & MCF_UART_RxIRQ)
? MCF_UART_FFULL : MCF_UART_RxRDY)) != 0)
s->isr |= MCF_UART_RxINT;
qemu_set_irq(s->irq, (s->isr & s->imr) != 0);
}
uint64_t mcf_uart_read(void *opaque, hwaddr addr,
unsigned size)
{
mcf_uart_state *s = (mcf_uart_state *)opaque;
switch (addr & 0x3f) {
case 0x00:
return s->mr[s->current_mr];
case 0x04:
return s->sr;
case 0x0c:
{
uint8_t val;
int i;
if (s->fifo_len == 0)
return 0;
val = s->fifo[0];
s->fifo_len--;
for (i = 0; i < s->fifo_len; i++)
s->fifo[i] = s->fifo[i + 1];
s->sr &= ~MCF_UART_FFULL;
if (s->fifo_len == 0)
s->sr &= ~MCF_UART_RxRDY;
mcf_uart_update(s);
qemu_chr_fe_accept_input(&s->chr);
return val;
}
case 0x10:
/* TODO: Implement IPCR. */
return 0;
case 0x14:
return s->isr;
case 0x18:
return s->bg1;
case 0x1c:
return s->bg2;
default:
return 0;
}
}
/* Update TxRDY flag and set data if present and enabled. */
static void mcf_uart_do_tx(mcf_uart_state *s)
{
if (s->tx_enabled && (s->sr & MCF_UART_TxEMP) == 0) {
/* XXX this blocks entire thread. Rewrite to use
* qemu_chr_fe_write and background I/O callbacks */
qemu_chr_fe_write_all(&s->chr, (unsigned char *)&s->tb, 1);
s->sr |= MCF_UART_TxEMP;
}
if (s->tx_enabled) {
s->sr |= MCF_UART_TxRDY;
} else {
s->sr &= ~MCF_UART_TxRDY;
}
}
static void mcf_do_command(mcf_uart_state *s, uint8_t cmd)
{
/* Misc command. */
switch ((cmd >> 4) & 7) {
case 0: /* No-op. */
break;
case 1: /* Reset mode register pointer. */
s->current_mr = 0;
break;
case 2: /* Reset receiver. */
s->rx_enabled = 0;
s->fifo_len = 0;
s->sr &= ~(MCF_UART_RxRDY | MCF_UART_FFULL);
break;
case 3: /* Reset transmitter. */
s->tx_enabled = 0;
s->sr |= MCF_UART_TxEMP;
s->sr &= ~MCF_UART_TxRDY;
break;
case 4: /* Reset error status. */
break;
case 5: /* Reset break-change interrupt. */
s->isr &= ~MCF_UART_DBINT;
break;
case 6: /* Start break. */
case 7: /* Stop break. */
break;
}
/* Transmitter command. */
switch ((cmd >> 2) & 3) {
case 0: /* No-op. */
break;
case 1: /* Enable. */
s->tx_enabled = 1;
mcf_uart_do_tx(s);
break;
case 2: /* Disable. */
s->tx_enabled = 0;
mcf_uart_do_tx(s);
break;
case 3: /* Reserved. */
fprintf(stderr, "mcf_uart: Bad TX command\n");
break;
}
/* Receiver command. */
switch (cmd & 3) {
case 0: /* No-op. */
break;
case 1: /* Enable. */
s->rx_enabled = 1;
break;
case 2:
s->rx_enabled = 0;
break;
case 3: /* Reserved. */
fprintf(stderr, "mcf_uart: Bad RX command\n");
break;
}
}
void mcf_uart_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
mcf_uart_state *s = (mcf_uart_state *)opaque;
switch (addr & 0x3f) {
case 0x00:
s->mr[s->current_mr] = val;
s->current_mr = 1;
break;
case 0x04:
/* CSR is ignored. */
break;
case 0x08: /* Command Register. */
mcf_do_command(s, val);
break;
case 0x0c: /* Transmit Buffer. */
s->sr &= ~MCF_UART_TxEMP;
s->tb = val;
mcf_uart_do_tx(s);
break;
case 0x10:
/* ACR is ignored. */
break;
case 0x14:
s->imr = val;
break;
default:
break;
}
mcf_uart_update(s);
}
static void mcf_uart_reset(DeviceState *dev)
{
mcf_uart_state *s = MCF_UART(dev);
s->fifo_len = 0;
s->mr[0] = 0;
s->mr[1] = 0;
s->sr = MCF_UART_TxEMP;
s->tx_enabled = 0;
s->rx_enabled = 0;
s->isr = 0;
s->imr = 0;
}
static void mcf_uart_push_byte(mcf_uart_state *s, uint8_t data)
{
/* Break events overwrite the last byte if the fifo is full. */
if (s->fifo_len == 4)
s->fifo_len--;
s->fifo[s->fifo_len] = data;
s->fifo_len++;
s->sr |= MCF_UART_RxRDY;
if (s->fifo_len == 4)
s->sr |= MCF_UART_FFULL;
mcf_uart_update(s);
}
static void mcf_uart_event(void *opaque, QEMUChrEvent event)
{
mcf_uart_state *s = (mcf_uart_state *)opaque;
switch (event) {
case CHR_EVENT_BREAK:
s->isr |= MCF_UART_DBINT;
mcf_uart_push_byte(s, 0);
break;
default:
break;
}
}
static int mcf_uart_can_receive(void *opaque)
{
mcf_uart_state *s = (mcf_uart_state *)opaque;
return s->rx_enabled && (s->sr & MCF_UART_FFULL) == 0;
}
static void mcf_uart_receive(void *opaque, const uint8_t *buf, int size)
{
mcf_uart_state *s = (mcf_uart_state *)opaque;
mcf_uart_push_byte(s, buf[0]);
}
static const MemoryRegionOps mcf_uart_ops = {
.read = mcf_uart_read,
.write = mcf_uart_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void mcf_uart_instance_init(Object *obj)
{
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
mcf_uart_state *s = MCF_UART(dev);
memory_region_init_io(&s->iomem, obj, &mcf_uart_ops, s, "uart", 0x40);
sysbus_init_mmio(dev, &s->iomem);
sysbus_init_irq(dev, &s->irq);
}
static void mcf_uart_realize(DeviceState *dev, Error **errp)
{
mcf_uart_state *s = MCF_UART(dev);
qemu_chr_fe_set_handlers(&s->chr, mcf_uart_can_receive, mcf_uart_receive,
mcf_uart_event, NULL, s, NULL, true);
}
static Property mcf_uart_properties[] = {
DEFINE_PROP_CHR("chardev", mcf_uart_state, chr),
DEFINE_PROP_END_OF_LIST(),
};
static void mcf_uart_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = mcf_uart_realize;
dc->reset = mcf_uart_reset;
device_class_set_props(dc, mcf_uart_properties);
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
}
static const TypeInfo mcf_uart_info = {
.name = TYPE_MCF_UART,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(mcf_uart_state),
.instance_init = mcf_uart_instance_init,
.class_init = mcf_uart_class_init,
};
static void mcf_uart_register(void)
{
type_register_static(&mcf_uart_info);
}
type_init(mcf_uart_register)
void *mcf_uart_init(qemu_irq irq, Chardev *chrdrv)
{
DeviceState *dev;
dev = qdev_new(TYPE_MCF_UART);
if (chrdrv) {
qdev_prop_set_chr(dev, "chardev", chrdrv);
}
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq);
return dev;
}
void mcf_uart_mm_init(hwaddr base, qemu_irq irq, Chardev *chrdrv)
{
DeviceState *dev;
dev = mcf_uart_init(irq, chrdrv);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
}