mirror of https://gitee.com/openkylin/qemu.git
9889 lines
288 KiB
C
9889 lines
288 KiB
C
/*
|
|
* ARM translation
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
* Copyright (c) 2005-2007 CodeSourcery
|
|
* Copyright (c) 2007 OpenedHand, Ltd.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "disas/disas.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg/tcg-op.h"
|
|
#include "tcg/tcg-op-gvec.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/bitops.h"
|
|
#include "arm_ldst.h"
|
|
#include "semihosting/semihost.h"
|
|
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/helper-gen.h"
|
|
|
|
#include "trace-tcg.h"
|
|
#include "exec/log.h"
|
|
|
|
|
|
#define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T)
|
|
#define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5)
|
|
/* currently all emulated v5 cores are also v5TE, so don't bother */
|
|
#define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5)
|
|
#define ENABLE_ARCH_5J dc_isar_feature(aa32_jazelle, s)
|
|
#define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6)
|
|
#define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K)
|
|
#define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2)
|
|
#define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7)
|
|
#define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8)
|
|
|
|
#include "translate.h"
|
|
#include "translate-a32.h"
|
|
|
|
/* These are TCG temporaries used only by the legacy iwMMXt decoder */
|
|
static TCGv_i64 cpu_V0, cpu_V1, cpu_M0;
|
|
/* These are TCG globals which alias CPUARMState fields */
|
|
static TCGv_i32 cpu_R[16];
|
|
TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF;
|
|
TCGv_i64 cpu_exclusive_addr;
|
|
TCGv_i64 cpu_exclusive_val;
|
|
|
|
#include "exec/gen-icount.h"
|
|
|
|
static const char * const regnames[] =
|
|
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" };
|
|
|
|
|
|
/* initialize TCG globals. */
|
|
void arm_translate_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
cpu_R[i] = tcg_global_mem_new_i32(cpu_env,
|
|
offsetof(CPUARMState, regs[i]),
|
|
regnames[i]);
|
|
}
|
|
cpu_CF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, CF), "CF");
|
|
cpu_NF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, NF), "NF");
|
|
cpu_VF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, VF), "VF");
|
|
cpu_ZF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, ZF), "ZF");
|
|
|
|
cpu_exclusive_addr = tcg_global_mem_new_i64(cpu_env,
|
|
offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
|
|
cpu_exclusive_val = tcg_global_mem_new_i64(cpu_env,
|
|
offsetof(CPUARMState, exclusive_val), "exclusive_val");
|
|
|
|
a64_translate_init();
|
|
}
|
|
|
|
uint64_t asimd_imm_const(uint32_t imm, int cmode, int op)
|
|
{
|
|
/* Expand the encoded constant as per AdvSIMDExpandImm pseudocode */
|
|
switch (cmode) {
|
|
case 0: case 1:
|
|
/* no-op */
|
|
break;
|
|
case 2: case 3:
|
|
imm <<= 8;
|
|
break;
|
|
case 4: case 5:
|
|
imm <<= 16;
|
|
break;
|
|
case 6: case 7:
|
|
imm <<= 24;
|
|
break;
|
|
case 8: case 9:
|
|
imm |= imm << 16;
|
|
break;
|
|
case 10: case 11:
|
|
imm = (imm << 8) | (imm << 24);
|
|
break;
|
|
case 12:
|
|
imm = (imm << 8) | 0xff;
|
|
break;
|
|
case 13:
|
|
imm = (imm << 16) | 0xffff;
|
|
break;
|
|
case 14:
|
|
if (op) {
|
|
/*
|
|
* This and cmode == 15 op == 1 are the only cases where
|
|
* the top and bottom 32 bits of the encoded constant differ.
|
|
*/
|
|
uint64_t imm64 = 0;
|
|
int n;
|
|
|
|
for (n = 0; n < 8; n++) {
|
|
if (imm & (1 << n)) {
|
|
imm64 |= (0xffULL << (n * 8));
|
|
}
|
|
}
|
|
return imm64;
|
|
}
|
|
imm |= (imm << 8) | (imm << 16) | (imm << 24);
|
|
break;
|
|
case 15:
|
|
if (op) {
|
|
/* Reserved encoding for AArch32; valid for AArch64 */
|
|
uint64_t imm64 = (uint64_t)(imm & 0x3f) << 48;
|
|
if (imm & 0x80) {
|
|
imm64 |= 0x8000000000000000ULL;
|
|
}
|
|
if (imm & 0x40) {
|
|
imm64 |= 0x3fc0000000000000ULL;
|
|
} else {
|
|
imm64 |= 0x4000000000000000ULL;
|
|
}
|
|
return imm64;
|
|
}
|
|
imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19)
|
|
| ((imm & 0x40) ? (0x1f << 25) : (1 << 30));
|
|
break;
|
|
}
|
|
if (op) {
|
|
imm = ~imm;
|
|
}
|
|
return dup_const(MO_32, imm);
|
|
}
|
|
|
|
/* Generate a label used for skipping this instruction */
|
|
void arm_gen_condlabel(DisasContext *s)
|
|
{
|
|
if (!s->condjmp) {
|
|
s->condlabel = gen_new_label();
|
|
s->condjmp = 1;
|
|
}
|
|
}
|
|
|
|
/* Flags for the disas_set_da_iss info argument:
|
|
* lower bits hold the Rt register number, higher bits are flags.
|
|
*/
|
|
typedef enum ISSInfo {
|
|
ISSNone = 0,
|
|
ISSRegMask = 0x1f,
|
|
ISSInvalid = (1 << 5),
|
|
ISSIsAcqRel = (1 << 6),
|
|
ISSIsWrite = (1 << 7),
|
|
ISSIs16Bit = (1 << 8),
|
|
} ISSInfo;
|
|
|
|
/* Save the syndrome information for a Data Abort */
|
|
static void disas_set_da_iss(DisasContext *s, MemOp memop, ISSInfo issinfo)
|
|
{
|
|
uint32_t syn;
|
|
int sas = memop & MO_SIZE;
|
|
bool sse = memop & MO_SIGN;
|
|
bool is_acqrel = issinfo & ISSIsAcqRel;
|
|
bool is_write = issinfo & ISSIsWrite;
|
|
bool is_16bit = issinfo & ISSIs16Bit;
|
|
int srt = issinfo & ISSRegMask;
|
|
|
|
if (issinfo & ISSInvalid) {
|
|
/* Some callsites want to conditionally provide ISS info,
|
|
* eg "only if this was not a writeback"
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (srt == 15) {
|
|
/* For AArch32, insns where the src/dest is R15 never generate
|
|
* ISS information. Catching that here saves checking at all
|
|
* the call sites.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel,
|
|
0, 0, 0, is_write, 0, is_16bit);
|
|
disas_set_insn_syndrome(s, syn);
|
|
}
|
|
|
|
static inline int get_a32_user_mem_index(DisasContext *s)
|
|
{
|
|
/* Return the core mmu_idx to use for A32/T32 "unprivileged load/store"
|
|
* insns:
|
|
* if PL2, UNPREDICTABLE (we choose to implement as if PL0)
|
|
* otherwise, access as if at PL0.
|
|
*/
|
|
switch (s->mmu_idx) {
|
|
case ARMMMUIdx_E2: /* this one is UNPREDICTABLE */
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_E10_0);
|
|
case ARMMMUIdx_SE3:
|
|
case ARMMMUIdx_SE10_0:
|
|
case ARMMMUIdx_SE10_1:
|
|
case ARMMMUIdx_SE10_1_PAN:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_SE10_0);
|
|
case ARMMMUIdx_MUser:
|
|
case ARMMMUIdx_MPriv:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MUser);
|
|
case ARMMMUIdx_MUserNegPri:
|
|
case ARMMMUIdx_MPrivNegPri:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri);
|
|
case ARMMMUIdx_MSUser:
|
|
case ARMMMUIdx_MSPriv:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MSUser);
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
case ARMMMUIdx_MSPrivNegPri:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* The architectural value of PC. */
|
|
static uint32_t read_pc(DisasContext *s)
|
|
{
|
|
return s->pc_curr + (s->thumb ? 4 : 8);
|
|
}
|
|
|
|
/* Set a variable to the value of a CPU register. */
|
|
void load_reg_var(DisasContext *s, TCGv_i32 var, int reg)
|
|
{
|
|
if (reg == 15) {
|
|
tcg_gen_movi_i32(var, read_pc(s));
|
|
} else {
|
|
tcg_gen_mov_i32(var, cpu_R[reg]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a new temp, REG + OFS, except PC is ALIGN(PC, 4).
|
|
* This is used for load/store for which use of PC implies (literal),
|
|
* or ADD that implies ADR.
|
|
*/
|
|
TCGv_i32 add_reg_for_lit(DisasContext *s, int reg, int ofs)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
if (reg == 15) {
|
|
tcg_gen_movi_i32(tmp, (read_pc(s) & ~3) + ofs);
|
|
} else {
|
|
tcg_gen_addi_i32(tmp, cpu_R[reg], ofs);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
/* Set a CPU register. The source must be a temporary and will be
|
|
marked as dead. */
|
|
void store_reg(DisasContext *s, int reg, TCGv_i32 var)
|
|
{
|
|
if (reg == 15) {
|
|
/* In Thumb mode, we must ignore bit 0.
|
|
* In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0]
|
|
* are not 0b00, but for ARMv6 and above, we must ignore bits [1:0].
|
|
* We choose to ignore [1:0] in ARM mode for all architecture versions.
|
|
*/
|
|
tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
}
|
|
tcg_gen_mov_i32(cpu_R[reg], var);
|
|
tcg_temp_free_i32(var);
|
|
}
|
|
|
|
/*
|
|
* Variant of store_reg which applies v8M stack-limit checks before updating
|
|
* SP. If the check fails this will result in an exception being taken.
|
|
* We disable the stack checks for CONFIG_USER_ONLY because we have
|
|
* no idea what the stack limits should be in that case.
|
|
* If stack checking is not being done this just acts like store_reg().
|
|
*/
|
|
static void store_sp_checked(DisasContext *s, TCGv_i32 var)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (s->v8m_stackcheck) {
|
|
gen_helper_v8m_stackcheck(cpu_env, var);
|
|
}
|
|
#endif
|
|
store_reg(s, 13, var);
|
|
}
|
|
|
|
/* Value extensions. */
|
|
#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var)
|
|
#define gen_uxth(var) tcg_gen_ext16u_i32(var, var)
|
|
#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var)
|
|
#define gen_sxth(var) tcg_gen_ext16s_i32(var, var)
|
|
|
|
#define gen_sxtb16(var) gen_helper_sxtb16(var, var)
|
|
#define gen_uxtb16(var) gen_helper_uxtb16(var, var)
|
|
|
|
void gen_set_cpsr(TCGv_i32 var, uint32_t mask)
|
|
{
|
|
TCGv_i32 tmp_mask = tcg_const_i32(mask);
|
|
gen_helper_cpsr_write(cpu_env, var, tmp_mask);
|
|
tcg_temp_free_i32(tmp_mask);
|
|
}
|
|
|
|
static void gen_exception_internal(int excp)
|
|
{
|
|
TCGv_i32 tcg_excp = tcg_const_i32(excp);
|
|
|
|
assert(excp_is_internal(excp));
|
|
gen_helper_exception_internal(cpu_env, tcg_excp);
|
|
tcg_temp_free_i32(tcg_excp);
|
|
}
|
|
|
|
static void gen_step_complete_exception(DisasContext *s)
|
|
{
|
|
/* We just completed step of an insn. Move from Active-not-pending
|
|
* to Active-pending, and then also take the swstep exception.
|
|
* This corresponds to making the (IMPDEF) choice to prioritize
|
|
* swstep exceptions over asynchronous exceptions taken to an exception
|
|
* level where debug is disabled. This choice has the advantage that
|
|
* we do not need to maintain internal state corresponding to the
|
|
* ISV/EX syndrome bits between completion of the step and generation
|
|
* of the exception, and our syndrome information is always correct.
|
|
*/
|
|
gen_ss_advance(s);
|
|
gen_swstep_exception(s, 1, s->is_ldex);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_singlestep_exception(DisasContext *s)
|
|
{
|
|
/* Generate the right kind of exception for singlestep, which is
|
|
* either the architectural singlestep or EXCP_DEBUG for QEMU's
|
|
* gdb singlestepping.
|
|
*/
|
|
if (s->ss_active) {
|
|
gen_step_complete_exception(s);
|
|
} else {
|
|
gen_exception_internal(EXCP_DEBUG);
|
|
}
|
|
}
|
|
|
|
static inline bool is_singlestepping(DisasContext *s)
|
|
{
|
|
/* Return true if we are singlestepping either because of
|
|
* architectural singlestep or QEMU gdbstub singlestep. This does
|
|
* not include the command line '-singlestep' mode which is rather
|
|
* misnamed as it only means "one instruction per TB" and doesn't
|
|
* affect the code we generate.
|
|
*/
|
|
return s->base.singlestep_enabled || s->ss_active;
|
|
}
|
|
|
|
void clear_eci_state(DisasContext *s)
|
|
{
|
|
/*
|
|
* Clear any ECI/ICI state: used when a load multiple/store
|
|
* multiple insn executes.
|
|
*/
|
|
if (s->eci) {
|
|
TCGv_i32 tmp = tcg_const_i32(0);
|
|
store_cpu_field(tmp, condexec_bits);
|
|
s->eci = 0;
|
|
}
|
|
}
|
|
|
|
static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 tmp1 = tcg_temp_new_i32();
|
|
TCGv_i32 tmp2 = tcg_temp_new_i32();
|
|
tcg_gen_ext16s_i32(tmp1, a);
|
|
tcg_gen_ext16s_i32(tmp2, b);
|
|
tcg_gen_mul_i32(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_gen_sari_i32(a, a, 16);
|
|
tcg_gen_sari_i32(b, b, 16);
|
|
tcg_gen_mul_i32(b, b, a);
|
|
tcg_gen_mov_i32(a, tmp1);
|
|
tcg_temp_free_i32(tmp1);
|
|
}
|
|
|
|
/* Byteswap each halfword. */
|
|
void gen_rev16(TCGv_i32 dest, TCGv_i32 var)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
TCGv_i32 mask = tcg_const_i32(0x00ff00ff);
|
|
tcg_gen_shri_i32(tmp, var, 8);
|
|
tcg_gen_and_i32(tmp, tmp, mask);
|
|
tcg_gen_and_i32(var, var, mask);
|
|
tcg_gen_shli_i32(var, var, 8);
|
|
tcg_gen_or_i32(dest, var, tmp);
|
|
tcg_temp_free_i32(mask);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
/* Byteswap low halfword and sign extend. */
|
|
static void gen_revsh(TCGv_i32 dest, TCGv_i32 var)
|
|
{
|
|
tcg_gen_bswap16_i32(var, var, TCG_BSWAP_OS);
|
|
}
|
|
|
|
/* Dual 16-bit add. Result placed in t0 and t1 is marked as dead.
|
|
tmp = (t0 ^ t1) & 0x8000;
|
|
t0 &= ~0x8000;
|
|
t1 &= ~0x8000;
|
|
t0 = (t0 + t1) ^ tmp;
|
|
*/
|
|
|
|
static void gen_add16(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_andi_i32(tmp, tmp, 0x8000);
|
|
tcg_gen_andi_i32(t0, t0, ~0x8000);
|
|
tcg_gen_andi_i32(t1, t1, ~0x8000);
|
|
tcg_gen_add_i32(t0, t0, t1);
|
|
tcg_gen_xor_i32(dest, t0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
/* Set N and Z flags from var. */
|
|
static inline void gen_logic_CC(TCGv_i32 var)
|
|
{
|
|
tcg_gen_mov_i32(cpu_NF, var);
|
|
tcg_gen_mov_i32(cpu_ZF, var);
|
|
}
|
|
|
|
/* dest = T0 + T1 + CF. */
|
|
static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
tcg_gen_add_i32(dest, t0, t1);
|
|
tcg_gen_add_i32(dest, dest, cpu_CF);
|
|
}
|
|
|
|
/* dest = T0 - T1 + CF - 1. */
|
|
static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
tcg_gen_sub_i32(dest, t0, t1);
|
|
tcg_gen_add_i32(dest, dest, cpu_CF);
|
|
tcg_gen_subi_i32(dest, dest, 1);
|
|
}
|
|
|
|
/* dest = T0 + T1. Compute C, N, V and Z flags */
|
|
static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp);
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_gen_mov_i32(dest, cpu_NF);
|
|
}
|
|
|
|
/* dest = T0 + T1 + CF. Compute C, N, V and Z flags */
|
|
static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
if (TCG_TARGET_HAS_add2_i32) {
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp);
|
|
} else {
|
|
TCGv_i64 q0 = tcg_temp_new_i64();
|
|
TCGv_i64 q1 = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(q0, t0);
|
|
tcg_gen_extu_i32_i64(q1, t1);
|
|
tcg_gen_add_i64(q0, q0, q1);
|
|
tcg_gen_extu_i32_i64(q1, cpu_CF);
|
|
tcg_gen_add_i64(q0, q0, q1);
|
|
tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0);
|
|
tcg_temp_free_i64(q0);
|
|
tcg_temp_free_i64(q1);
|
|
}
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_gen_mov_i32(dest, cpu_NF);
|
|
}
|
|
|
|
/* dest = T0 - T1. Compute C, N, V and Z flags */
|
|
static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tcg_gen_sub_i32(cpu_NF, t0, t1);
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_gen_mov_i32(dest, cpu_NF);
|
|
}
|
|
|
|
/* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */
|
|
static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_not_i32(tmp, t1);
|
|
gen_adc_CC(dest, t0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
#define GEN_SHIFT(name) \
|
|
static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \
|
|
{ \
|
|
TCGv_i32 tmp1, tmp2, tmp3; \
|
|
tmp1 = tcg_temp_new_i32(); \
|
|
tcg_gen_andi_i32(tmp1, t1, 0xff); \
|
|
tmp2 = tcg_const_i32(0); \
|
|
tmp3 = tcg_const_i32(0x1f); \
|
|
tcg_gen_movcond_i32(TCG_COND_GTU, tmp2, tmp1, tmp3, tmp2, t0); \
|
|
tcg_temp_free_i32(tmp3); \
|
|
tcg_gen_andi_i32(tmp1, tmp1, 0x1f); \
|
|
tcg_gen_##name##_i32(dest, tmp2, tmp1); \
|
|
tcg_temp_free_i32(tmp2); \
|
|
tcg_temp_free_i32(tmp1); \
|
|
}
|
|
GEN_SHIFT(shl)
|
|
GEN_SHIFT(shr)
|
|
#undef GEN_SHIFT
|
|
|
|
static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
tmp1 = tcg_temp_new_i32();
|
|
tcg_gen_andi_i32(tmp1, t1, 0xff);
|
|
tmp2 = tcg_const_i32(0x1f);
|
|
tcg_gen_movcond_i32(TCG_COND_GTU, tmp1, tmp1, tmp2, tmp2, tmp1);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_gen_sar_i32(dest, t0, tmp1);
|
|
tcg_temp_free_i32(tmp1);
|
|
}
|
|
|
|
static void shifter_out_im(TCGv_i32 var, int shift)
|
|
{
|
|
tcg_gen_extract_i32(cpu_CF, var, shift, 1);
|
|
}
|
|
|
|
/* Shift by immediate. Includes special handling for shift == 0. */
|
|
static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop,
|
|
int shift, int flags)
|
|
{
|
|
switch (shiftop) {
|
|
case 0: /* LSL */
|
|
if (shift != 0) {
|
|
if (flags)
|
|
shifter_out_im(var, 32 - shift);
|
|
tcg_gen_shli_i32(var, var, shift);
|
|
}
|
|
break;
|
|
case 1: /* LSR */
|
|
if (shift == 0) {
|
|
if (flags) {
|
|
tcg_gen_shri_i32(cpu_CF, var, 31);
|
|
}
|
|
tcg_gen_movi_i32(var, 0);
|
|
} else {
|
|
if (flags)
|
|
shifter_out_im(var, shift - 1);
|
|
tcg_gen_shri_i32(var, var, shift);
|
|
}
|
|
break;
|
|
case 2: /* ASR */
|
|
if (shift == 0)
|
|
shift = 32;
|
|
if (flags)
|
|
shifter_out_im(var, shift - 1);
|
|
if (shift == 32)
|
|
shift = 31;
|
|
tcg_gen_sari_i32(var, var, shift);
|
|
break;
|
|
case 3: /* ROR/RRX */
|
|
if (shift != 0) {
|
|
if (flags)
|
|
shifter_out_im(var, shift - 1);
|
|
tcg_gen_rotri_i32(var, var, shift); break;
|
|
} else {
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_shli_i32(tmp, cpu_CF, 31);
|
|
if (flags)
|
|
shifter_out_im(var, 0);
|
|
tcg_gen_shri_i32(var, var, 1);
|
|
tcg_gen_or_i32(var, var, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
}
|
|
};
|
|
|
|
static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop,
|
|
TCGv_i32 shift, int flags)
|
|
{
|
|
if (flags) {
|
|
switch (shiftop) {
|
|
case 0: gen_helper_shl_cc(var, cpu_env, var, shift); break;
|
|
case 1: gen_helper_shr_cc(var, cpu_env, var, shift); break;
|
|
case 2: gen_helper_sar_cc(var, cpu_env, var, shift); break;
|
|
case 3: gen_helper_ror_cc(var, cpu_env, var, shift); break;
|
|
}
|
|
} else {
|
|
switch (shiftop) {
|
|
case 0:
|
|
gen_shl(var, var, shift);
|
|
break;
|
|
case 1:
|
|
gen_shr(var, var, shift);
|
|
break;
|
|
case 2:
|
|
gen_sar(var, var, shift);
|
|
break;
|
|
case 3: tcg_gen_andi_i32(shift, shift, 0x1f);
|
|
tcg_gen_rotr_i32(var, var, shift); break;
|
|
}
|
|
}
|
|
tcg_temp_free_i32(shift);
|
|
}
|
|
|
|
/*
|
|
* Generate a conditional based on ARM condition code cc.
|
|
* This is common between ARM and Aarch64 targets.
|
|
*/
|
|
void arm_test_cc(DisasCompare *cmp, int cc)
|
|
{
|
|
TCGv_i32 value;
|
|
TCGCond cond;
|
|
bool global = true;
|
|
|
|
switch (cc) {
|
|
case 0: /* eq: Z */
|
|
case 1: /* ne: !Z */
|
|
cond = TCG_COND_EQ;
|
|
value = cpu_ZF;
|
|
break;
|
|
|
|
case 2: /* cs: C */
|
|
case 3: /* cc: !C */
|
|
cond = TCG_COND_NE;
|
|
value = cpu_CF;
|
|
break;
|
|
|
|
case 4: /* mi: N */
|
|
case 5: /* pl: !N */
|
|
cond = TCG_COND_LT;
|
|
value = cpu_NF;
|
|
break;
|
|
|
|
case 6: /* vs: V */
|
|
case 7: /* vc: !V */
|
|
cond = TCG_COND_LT;
|
|
value = cpu_VF;
|
|
break;
|
|
|
|
case 8: /* hi: C && !Z */
|
|
case 9: /* ls: !C || Z -> !(C && !Z) */
|
|
cond = TCG_COND_NE;
|
|
value = tcg_temp_new_i32();
|
|
global = false;
|
|
/* CF is 1 for C, so -CF is an all-bits-set mask for C;
|
|
ZF is non-zero for !Z; so AND the two subexpressions. */
|
|
tcg_gen_neg_i32(value, cpu_CF);
|
|
tcg_gen_and_i32(value, value, cpu_ZF);
|
|
break;
|
|
|
|
case 10: /* ge: N == V -> N ^ V == 0 */
|
|
case 11: /* lt: N != V -> N ^ V != 0 */
|
|
/* Since we're only interested in the sign bit, == 0 is >= 0. */
|
|
cond = TCG_COND_GE;
|
|
value = tcg_temp_new_i32();
|
|
global = false;
|
|
tcg_gen_xor_i32(value, cpu_VF, cpu_NF);
|
|
break;
|
|
|
|
case 12: /* gt: !Z && N == V */
|
|
case 13: /* le: Z || N != V */
|
|
cond = TCG_COND_NE;
|
|
value = tcg_temp_new_i32();
|
|
global = false;
|
|
/* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate
|
|
* the sign bit then AND with ZF to yield the result. */
|
|
tcg_gen_xor_i32(value, cpu_VF, cpu_NF);
|
|
tcg_gen_sari_i32(value, value, 31);
|
|
tcg_gen_andc_i32(value, cpu_ZF, value);
|
|
break;
|
|
|
|
case 14: /* always */
|
|
case 15: /* always */
|
|
/* Use the ALWAYS condition, which will fold early.
|
|
* It doesn't matter what we use for the value. */
|
|
cond = TCG_COND_ALWAYS;
|
|
value = cpu_ZF;
|
|
goto no_invert;
|
|
|
|
default:
|
|
fprintf(stderr, "Bad condition code 0x%x\n", cc);
|
|
abort();
|
|
}
|
|
|
|
if (cc & 1) {
|
|
cond = tcg_invert_cond(cond);
|
|
}
|
|
|
|
no_invert:
|
|
cmp->cond = cond;
|
|
cmp->value = value;
|
|
cmp->value_global = global;
|
|
}
|
|
|
|
void arm_free_cc(DisasCompare *cmp)
|
|
{
|
|
if (!cmp->value_global) {
|
|
tcg_temp_free_i32(cmp->value);
|
|
}
|
|
}
|
|
|
|
void arm_jump_cc(DisasCompare *cmp, TCGLabel *label)
|
|
{
|
|
tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label);
|
|
}
|
|
|
|
void arm_gen_test_cc(int cc, TCGLabel *label)
|
|
{
|
|
DisasCompare cmp;
|
|
arm_test_cc(&cmp, cc);
|
|
arm_jump_cc(&cmp, label);
|
|
arm_free_cc(&cmp);
|
|
}
|
|
|
|
void gen_set_condexec(DisasContext *s)
|
|
{
|
|
if (s->condexec_mask) {
|
|
uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1);
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, val);
|
|
store_cpu_field(tmp, condexec_bits);
|
|
}
|
|
}
|
|
|
|
void gen_set_pc_im(DisasContext *s, target_ulong val)
|
|
{
|
|
tcg_gen_movi_i32(cpu_R[15], val);
|
|
}
|
|
|
|
/* Set PC and Thumb state from var. var is marked as dead. */
|
|
static inline void gen_bx(DisasContext *s, TCGv_i32 var)
|
|
{
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
tcg_gen_andi_i32(cpu_R[15], var, ~1);
|
|
tcg_gen_andi_i32(var, var, 1);
|
|
store_cpu_field(var, thumb);
|
|
}
|
|
|
|
/*
|
|
* Set PC and Thumb state from var. var is marked as dead.
|
|
* For M-profile CPUs, include logic to detect exception-return
|
|
* branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC,
|
|
* and BX reg, and no others, and happens only for code in Handler mode.
|
|
* The Security Extension also requires us to check for the FNC_RETURN
|
|
* which signals a function return from non-secure state; this can happen
|
|
* in both Handler and Thread mode.
|
|
* To avoid having to do multiple comparisons in inline generated code,
|
|
* we make the check we do here loose, so it will match for EXC_RETURN
|
|
* in Thread mode. For system emulation do_v7m_exception_exit() checks
|
|
* for these spurious cases and returns without doing anything (giving
|
|
* the same behaviour as for a branch to a non-magic address).
|
|
*
|
|
* In linux-user mode it is unclear what the right behaviour for an
|
|
* attempted FNC_RETURN should be, because in real hardware this will go
|
|
* directly to Secure code (ie not the Linux kernel) which will then treat
|
|
* the error in any way it chooses. For QEMU we opt to make the FNC_RETURN
|
|
* attempt behave the way it would on a CPU without the security extension,
|
|
* which is to say "like a normal branch". That means we can simply treat
|
|
* all branches as normal with no magic address behaviour.
|
|
*/
|
|
static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var)
|
|
{
|
|
/* Generate the same code here as for a simple bx, but flag via
|
|
* s->base.is_jmp that we need to do the rest of the work later.
|
|
*/
|
|
gen_bx(s, var);
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY) ||
|
|
(s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M))) {
|
|
s->base.is_jmp = DISAS_BX_EXCRET;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void gen_bx_excret_final_code(DisasContext *s)
|
|
{
|
|
/* Generate the code to finish possible exception return and end the TB */
|
|
TCGLabel *excret_label = gen_new_label();
|
|
uint32_t min_magic;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY)) {
|
|
/* Covers FNC_RETURN and EXC_RETURN magic */
|
|
min_magic = FNC_RETURN_MIN_MAGIC;
|
|
} else {
|
|
/* EXC_RETURN magic only */
|
|
min_magic = EXC_RETURN_MIN_MAGIC;
|
|
}
|
|
|
|
/* Is the new PC value in the magic range indicating exception return? */
|
|
tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], min_magic, excret_label);
|
|
/* No: end the TB as we would for a DISAS_JMP */
|
|
if (is_singlestepping(s)) {
|
|
gen_singlestep_exception(s);
|
|
} else {
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
}
|
|
gen_set_label(excret_label);
|
|
/* Yes: this is an exception return.
|
|
* At this point in runtime env->regs[15] and env->thumb will hold
|
|
* the exception-return magic number, which do_v7m_exception_exit()
|
|
* will read. Nothing else will be able to see those values because
|
|
* the cpu-exec main loop guarantees that we will always go straight
|
|
* from raising the exception to the exception-handling code.
|
|
*
|
|
* gen_ss_advance(s) does nothing on M profile currently but
|
|
* calling it is conceptually the right thing as we have executed
|
|
* this instruction (compare SWI, HVC, SMC handling).
|
|
*/
|
|
gen_ss_advance(s);
|
|
gen_exception_internal(EXCP_EXCEPTION_EXIT);
|
|
}
|
|
|
|
static inline void gen_bxns(DisasContext *s, int rm)
|
|
{
|
|
TCGv_i32 var = load_reg(s, rm);
|
|
|
|
/* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory
|
|
* we need to sync state before calling it, but:
|
|
* - we don't need to do gen_set_pc_im() because the bxns helper will
|
|
* always set the PC itself
|
|
* - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE
|
|
* unless it's outside an IT block or the last insn in an IT block,
|
|
* so we know that condexec == 0 (already set at the top of the TB)
|
|
* is correct in the non-UNPREDICTABLE cases, and we can choose
|
|
* "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise.
|
|
*/
|
|
gen_helper_v7m_bxns(cpu_env, var);
|
|
tcg_temp_free_i32(var);
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
static inline void gen_blxns(DisasContext *s, int rm)
|
|
{
|
|
TCGv_i32 var = load_reg(s, rm);
|
|
|
|
/* We don't need to sync condexec state, for the same reason as bxns.
|
|
* We do however need to set the PC, because the blxns helper reads it.
|
|
* The blxns helper may throw an exception.
|
|
*/
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
gen_helper_v7m_blxns(cpu_env, var);
|
|
tcg_temp_free_i32(var);
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
/* Variant of store_reg which uses branch&exchange logic when storing
|
|
to r15 in ARM architecture v7 and above. The source must be a temporary
|
|
and will be marked as dead. */
|
|
static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var)
|
|
{
|
|
if (reg == 15 && ENABLE_ARCH_7) {
|
|
gen_bx(s, var);
|
|
} else {
|
|
store_reg(s, reg, var);
|
|
}
|
|
}
|
|
|
|
/* Variant of store_reg which uses branch&exchange logic when storing
|
|
* to r15 in ARM architecture v5T and above. This is used for storing
|
|
* the results of a LDR/LDM/POP into r15, and corresponds to the cases
|
|
* in the ARM ARM which use the LoadWritePC() pseudocode function. */
|
|
static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var)
|
|
{
|
|
if (reg == 15 && ENABLE_ARCH_5) {
|
|
gen_bx_excret(s, var);
|
|
} else {
|
|
store_reg(s, reg, var);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
#define IS_USER_ONLY 1
|
|
#else
|
|
#define IS_USER_ONLY 0
|
|
#endif
|
|
|
|
MemOp pow2_align(unsigned i)
|
|
{
|
|
static const MemOp mop_align[] = {
|
|
0, MO_ALIGN_2, MO_ALIGN_4, MO_ALIGN_8, MO_ALIGN_16,
|
|
/*
|
|
* FIXME: TARGET_PAGE_BITS_MIN affects TLB_FLAGS_MASK such
|
|
* that 256-bit alignment (MO_ALIGN_32) cannot be supported:
|
|
* see get_alignment_bits(). Enforce only 128-bit alignment for now.
|
|
*/
|
|
MO_ALIGN_16
|
|
};
|
|
g_assert(i < ARRAY_SIZE(mop_align));
|
|
return mop_align[i];
|
|
}
|
|
|
|
/*
|
|
* Abstractions of "generate code to do a guest load/store for
|
|
* AArch32", where a vaddr is always 32 bits (and is zero
|
|
* extended if we're a 64 bit core) and data is also
|
|
* 32 bits unless specifically doing a 64 bit access.
|
|
* These functions work like tcg_gen_qemu_{ld,st}* except
|
|
* that the address argument is TCGv_i32 rather than TCGv.
|
|
*/
|
|
|
|
static TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, MemOp op)
|
|
{
|
|
TCGv addr = tcg_temp_new();
|
|
tcg_gen_extu_i32_tl(addr, a32);
|
|
|
|
/* Not needed for user-mode BE32, where we use MO_BE instead. */
|
|
if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) {
|
|
tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE)));
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Internal routines are used for NEON cases where the endianness
|
|
* and/or alignment has already been taken into account and manipulated.
|
|
*/
|
|
void gen_aa32_ld_internal_i32(DisasContext *s, TCGv_i32 val,
|
|
TCGv_i32 a32, int index, MemOp opc)
|
|
{
|
|
TCGv addr = gen_aa32_addr(s, a32, opc);
|
|
tcg_gen_qemu_ld_i32(val, addr, index, opc);
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
void gen_aa32_st_internal_i32(DisasContext *s, TCGv_i32 val,
|
|
TCGv_i32 a32, int index, MemOp opc)
|
|
{
|
|
TCGv addr = gen_aa32_addr(s, a32, opc);
|
|
tcg_gen_qemu_st_i32(val, addr, index, opc);
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
void gen_aa32_ld_internal_i64(DisasContext *s, TCGv_i64 val,
|
|
TCGv_i32 a32, int index, MemOp opc)
|
|
{
|
|
TCGv addr = gen_aa32_addr(s, a32, opc);
|
|
|
|
tcg_gen_qemu_ld_i64(val, addr, index, opc);
|
|
|
|
/* Not needed for user-mode BE32, where we use MO_BE instead. */
|
|
if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) {
|
|
tcg_gen_rotri_i64(val, val, 32);
|
|
}
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
void gen_aa32_st_internal_i64(DisasContext *s, TCGv_i64 val,
|
|
TCGv_i32 a32, int index, MemOp opc)
|
|
{
|
|
TCGv addr = gen_aa32_addr(s, a32, opc);
|
|
|
|
/* Not needed for user-mode BE32, where we use MO_BE instead. */
|
|
if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) {
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_rotri_i64(tmp, val, 32);
|
|
tcg_gen_qemu_st_i64(tmp, addr, index, opc);
|
|
tcg_temp_free_i64(tmp);
|
|
} else {
|
|
tcg_gen_qemu_st_i64(val, addr, index, opc);
|
|
}
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
gen_aa32_ld_internal_i32(s, val, a32, index, finalize_memop(s, opc));
|
|
}
|
|
|
|
void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
gen_aa32_st_internal_i32(s, val, a32, index, finalize_memop(s, opc));
|
|
}
|
|
|
|
void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
gen_aa32_ld_internal_i64(s, val, a32, index, finalize_memop(s, opc));
|
|
}
|
|
|
|
void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
gen_aa32_st_internal_i64(s, val, a32, index, finalize_memop(s, opc));
|
|
}
|
|
|
|
#define DO_GEN_LD(SUFF, OPC) \
|
|
static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \
|
|
TCGv_i32 a32, int index) \
|
|
{ \
|
|
gen_aa32_ld_i32(s, val, a32, index, OPC); \
|
|
}
|
|
|
|
#define DO_GEN_ST(SUFF, OPC) \
|
|
static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \
|
|
TCGv_i32 a32, int index) \
|
|
{ \
|
|
gen_aa32_st_i32(s, val, a32, index, OPC); \
|
|
}
|
|
|
|
static inline void gen_hvc(DisasContext *s, int imm16)
|
|
{
|
|
/* The pre HVC helper handles cases when HVC gets trapped
|
|
* as an undefined insn by runtime configuration (ie before
|
|
* the insn really executes).
|
|
*/
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
gen_helper_pre_hvc(cpu_env);
|
|
/* Otherwise we will treat this as a real exception which
|
|
* happens after execution of the insn. (The distinction matters
|
|
* for the PC value reported to the exception handler and also
|
|
* for single stepping.)
|
|
*/
|
|
s->svc_imm = imm16;
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_HVC;
|
|
}
|
|
|
|
static inline void gen_smc(DisasContext *s)
|
|
{
|
|
/* As with HVC, we may take an exception either before or after
|
|
* the insn executes.
|
|
*/
|
|
TCGv_i32 tmp;
|
|
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tmp = tcg_const_i32(syn_aa32_smc());
|
|
gen_helper_pre_smc(cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_SMC;
|
|
}
|
|
|
|
static void gen_exception_internal_insn(DisasContext *s, uint32_t pc, int excp)
|
|
{
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, pc);
|
|
gen_exception_internal(excp);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
void gen_exception_insn(DisasContext *s, uint64_t pc, int excp,
|
|
uint32_t syn, uint32_t target_el)
|
|
{
|
|
if (s->aarch64) {
|
|
gen_a64_set_pc_im(pc);
|
|
} else {
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, pc);
|
|
}
|
|
gen_exception(excp, syn, target_el);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syn)
|
|
{
|
|
TCGv_i32 tcg_syn;
|
|
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tcg_syn = tcg_const_i32(syn);
|
|
gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
|
|
tcg_temp_free_i32(tcg_syn);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
void unallocated_encoding(DisasContext *s)
|
|
{
|
|
/* Unallocated and reserved encodings are uncategorized */
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
|
|
default_exception_el(s));
|
|
}
|
|
|
|
static void gen_exception_el(DisasContext *s, int excp, uint32_t syn,
|
|
TCGv_i32 tcg_el)
|
|
{
|
|
TCGv_i32 tcg_excp;
|
|
TCGv_i32 tcg_syn;
|
|
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tcg_excp = tcg_const_i32(excp);
|
|
tcg_syn = tcg_const_i32(syn);
|
|
gen_helper_exception_with_syndrome(cpu_env, tcg_excp, tcg_syn, tcg_el);
|
|
tcg_temp_free_i32(tcg_syn);
|
|
tcg_temp_free_i32(tcg_excp);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
/* Force a TB lookup after an instruction that changes the CPU state. */
|
|
void gen_lookup_tb(DisasContext *s)
|
|
{
|
|
tcg_gen_movi_i32(cpu_R[15], s->base.pc_next);
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
static inline void gen_hlt(DisasContext *s, int imm)
|
|
{
|
|
/* HLT. This has two purposes.
|
|
* Architecturally, it is an external halting debug instruction.
|
|
* Since QEMU doesn't implement external debug, we treat this as
|
|
* it is required for halting debug disabled: it will UNDEF.
|
|
* Secondly, "HLT 0x3C" is a T32 semihosting trap instruction,
|
|
* and "HLT 0xF000" is an A32 semihosting syscall. These traps
|
|
* must trigger semihosting even for ARMv7 and earlier, where
|
|
* HLT was an undefined encoding.
|
|
* In system mode, we don't allow userspace access to
|
|
* semihosting, to provide some semblance of security
|
|
* (and for consistency with our 32-bit semihosting).
|
|
*/
|
|
if (semihosting_enabled() &&
|
|
#ifndef CONFIG_USER_ONLY
|
|
s->current_el != 0 &&
|
|
#endif
|
|
(imm == (s->thumb ? 0x3c : 0xf000))) {
|
|
gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
|
|
return;
|
|
}
|
|
|
|
unallocated_encoding(s);
|
|
}
|
|
|
|
/*
|
|
* Return the offset of a "full" NEON Dreg.
|
|
*/
|
|
long neon_full_reg_offset(unsigned reg)
|
|
{
|
|
return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]);
|
|
}
|
|
|
|
/*
|
|
* Return the offset of a 2**SIZE piece of a NEON register, at index ELE,
|
|
* where 0 is the least significant end of the register.
|
|
*/
|
|
long neon_element_offset(int reg, int element, MemOp memop)
|
|
{
|
|
int element_size = 1 << (memop & MO_SIZE);
|
|
int ofs = element * element_size;
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
/*
|
|
* Calculate the offset assuming fully little-endian,
|
|
* then XOR to account for the order of the 8-byte units.
|
|
*/
|
|
if (element_size < 8) {
|
|
ofs ^= 8 - element_size;
|
|
}
|
|
#endif
|
|
return neon_full_reg_offset(reg) + ofs;
|
|
}
|
|
|
|
/* Return the offset of a VFP Dreg (dp = true) or VFP Sreg (dp = false). */
|
|
long vfp_reg_offset(bool dp, unsigned reg)
|
|
{
|
|
if (dp) {
|
|
return neon_element_offset(reg, 0, MO_64);
|
|
} else {
|
|
return neon_element_offset(reg >> 1, reg & 1, MO_32);
|
|
}
|
|
}
|
|
|
|
void read_neon_element32(TCGv_i32 dest, int reg, int ele, MemOp memop)
|
|
{
|
|
long off = neon_element_offset(reg, ele, memop);
|
|
|
|
switch (memop) {
|
|
case MO_SB:
|
|
tcg_gen_ld8s_i32(dest, cpu_env, off);
|
|
break;
|
|
case MO_UB:
|
|
tcg_gen_ld8u_i32(dest, cpu_env, off);
|
|
break;
|
|
case MO_SW:
|
|
tcg_gen_ld16s_i32(dest, cpu_env, off);
|
|
break;
|
|
case MO_UW:
|
|
tcg_gen_ld16u_i32(dest, cpu_env, off);
|
|
break;
|
|
case MO_UL:
|
|
case MO_SL:
|
|
tcg_gen_ld_i32(dest, cpu_env, off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void read_neon_element64(TCGv_i64 dest, int reg, int ele, MemOp memop)
|
|
{
|
|
long off = neon_element_offset(reg, ele, memop);
|
|
|
|
switch (memop) {
|
|
case MO_SL:
|
|
tcg_gen_ld32s_i64(dest, cpu_env, off);
|
|
break;
|
|
case MO_UL:
|
|
tcg_gen_ld32u_i64(dest, cpu_env, off);
|
|
break;
|
|
case MO_Q:
|
|
tcg_gen_ld_i64(dest, cpu_env, off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void write_neon_element32(TCGv_i32 src, int reg, int ele, MemOp memop)
|
|
{
|
|
long off = neon_element_offset(reg, ele, memop);
|
|
|
|
switch (memop) {
|
|
case MO_8:
|
|
tcg_gen_st8_i32(src, cpu_env, off);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_st16_i32(src, cpu_env, off);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_st_i32(src, cpu_env, off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void write_neon_element64(TCGv_i64 src, int reg, int ele, MemOp memop)
|
|
{
|
|
long off = neon_element_offset(reg, ele, memop);
|
|
|
|
switch (memop) {
|
|
case MO_32:
|
|
tcg_gen_st32_i64(src, cpu_env, off);
|
|
break;
|
|
case MO_64:
|
|
tcg_gen_st_i64(src, cpu_env, off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
#define ARM_CP_RW_BIT (1 << 20)
|
|
|
|
static inline void iwmmxt_load_reg(TCGv_i64 var, int reg)
|
|
{
|
|
tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
|
|
}
|
|
|
|
static inline void iwmmxt_store_reg(TCGv_i64 var, int reg)
|
|
{
|
|
tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
|
|
}
|
|
|
|
static inline TCGv_i32 iwmmxt_load_creg(int reg)
|
|
{
|
|
TCGv_i32 var = tcg_temp_new_i32();
|
|
tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
|
|
return var;
|
|
}
|
|
|
|
static inline void iwmmxt_store_creg(int reg, TCGv_i32 var)
|
|
{
|
|
tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
|
|
tcg_temp_free_i32(var);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_movq_wRn_M0(int rn)
|
|
{
|
|
iwmmxt_store_reg(cpu_M0, rn);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_movq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_M0, rn);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_orq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_andq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
#define IWMMXT_OP(name) \
|
|
static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
|
|
{ \
|
|
iwmmxt_load_reg(cpu_V1, rn); \
|
|
gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \
|
|
}
|
|
|
|
#define IWMMXT_OP_ENV(name) \
|
|
static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
|
|
{ \
|
|
iwmmxt_load_reg(cpu_V1, rn); \
|
|
gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \
|
|
}
|
|
|
|
#define IWMMXT_OP_ENV_SIZE(name) \
|
|
IWMMXT_OP_ENV(name##b) \
|
|
IWMMXT_OP_ENV(name##w) \
|
|
IWMMXT_OP_ENV(name##l)
|
|
|
|
#define IWMMXT_OP_ENV1(name) \
|
|
static inline void gen_op_iwmmxt_##name##_M0(void) \
|
|
{ \
|
|
gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \
|
|
}
|
|
|
|
IWMMXT_OP(maddsq)
|
|
IWMMXT_OP(madduq)
|
|
IWMMXT_OP(sadb)
|
|
IWMMXT_OP(sadw)
|
|
IWMMXT_OP(mulslw)
|
|
IWMMXT_OP(mulshw)
|
|
IWMMXT_OP(mululw)
|
|
IWMMXT_OP(muluhw)
|
|
IWMMXT_OP(macsw)
|
|
IWMMXT_OP(macuw)
|
|
|
|
IWMMXT_OP_ENV_SIZE(unpackl)
|
|
IWMMXT_OP_ENV_SIZE(unpackh)
|
|
|
|
IWMMXT_OP_ENV1(unpacklub)
|
|
IWMMXT_OP_ENV1(unpackluw)
|
|
IWMMXT_OP_ENV1(unpacklul)
|
|
IWMMXT_OP_ENV1(unpackhub)
|
|
IWMMXT_OP_ENV1(unpackhuw)
|
|
IWMMXT_OP_ENV1(unpackhul)
|
|
IWMMXT_OP_ENV1(unpacklsb)
|
|
IWMMXT_OP_ENV1(unpacklsw)
|
|
IWMMXT_OP_ENV1(unpacklsl)
|
|
IWMMXT_OP_ENV1(unpackhsb)
|
|
IWMMXT_OP_ENV1(unpackhsw)
|
|
IWMMXT_OP_ENV1(unpackhsl)
|
|
|
|
IWMMXT_OP_ENV_SIZE(cmpeq)
|
|
IWMMXT_OP_ENV_SIZE(cmpgtu)
|
|
IWMMXT_OP_ENV_SIZE(cmpgts)
|
|
|
|
IWMMXT_OP_ENV_SIZE(mins)
|
|
IWMMXT_OP_ENV_SIZE(minu)
|
|
IWMMXT_OP_ENV_SIZE(maxs)
|
|
IWMMXT_OP_ENV_SIZE(maxu)
|
|
|
|
IWMMXT_OP_ENV_SIZE(subn)
|
|
IWMMXT_OP_ENV_SIZE(addn)
|
|
IWMMXT_OP_ENV_SIZE(subu)
|
|
IWMMXT_OP_ENV_SIZE(addu)
|
|
IWMMXT_OP_ENV_SIZE(subs)
|
|
IWMMXT_OP_ENV_SIZE(adds)
|
|
|
|
IWMMXT_OP_ENV(avgb0)
|
|
IWMMXT_OP_ENV(avgb1)
|
|
IWMMXT_OP_ENV(avgw0)
|
|
IWMMXT_OP_ENV(avgw1)
|
|
|
|
IWMMXT_OP_ENV(packuw)
|
|
IWMMXT_OP_ENV(packul)
|
|
IWMMXT_OP_ENV(packuq)
|
|
IWMMXT_OP_ENV(packsw)
|
|
IWMMXT_OP_ENV(packsl)
|
|
IWMMXT_OP_ENV(packsq)
|
|
|
|
static void gen_op_iwmmxt_set_mup(void)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
tcg_gen_ori_i32(tmp, tmp, 2);
|
|
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
}
|
|
|
|
static void gen_op_iwmmxt_set_cup(void)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
tcg_gen_ori_i32(tmp, tmp, 1);
|
|
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
}
|
|
|
|
static void gen_op_iwmmxt_setpsr_nz(void)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0);
|
|
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_addl_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_ext32u_i64(cpu_V1, cpu_V1);
|
|
tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn,
|
|
TCGv_i32 dest)
|
|
{
|
|
int rd;
|
|
uint32_t offset;
|
|
TCGv_i32 tmp;
|
|
|
|
rd = (insn >> 16) & 0xf;
|
|
tmp = load_reg(s, rd);
|
|
|
|
offset = (insn & 0xff) << ((insn >> 7) & 2);
|
|
if (insn & (1 << 24)) {
|
|
/* Pre indexed */
|
|
if (insn & (1 << 23))
|
|
tcg_gen_addi_i32(tmp, tmp, offset);
|
|
else
|
|
tcg_gen_addi_i32(tmp, tmp, -offset);
|
|
tcg_gen_mov_i32(dest, tmp);
|
|
if (insn & (1 << 21))
|
|
store_reg(s, rd, tmp);
|
|
else
|
|
tcg_temp_free_i32(tmp);
|
|
} else if (insn & (1 << 21)) {
|
|
/* Post indexed */
|
|
tcg_gen_mov_i32(dest, tmp);
|
|
if (insn & (1 << 23))
|
|
tcg_gen_addi_i32(tmp, tmp, offset);
|
|
else
|
|
tcg_gen_addi_i32(tmp, tmp, -offset);
|
|
store_reg(s, rd, tmp);
|
|
} else if (!(insn & (1 << 23)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest)
|
|
{
|
|
int rd = (insn >> 0) & 0xf;
|
|
TCGv_i32 tmp;
|
|
|
|
if (insn & (1 << 8)) {
|
|
if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) {
|
|
return 1;
|
|
} else {
|
|
tmp = iwmmxt_load_creg(rd);
|
|
}
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
iwmmxt_load_reg(cpu_V0, rd);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_V0);
|
|
}
|
|
tcg_gen_andi_i32(tmp, tmp, mask);
|
|
tcg_gen_mov_i32(dest, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
return 0;
|
|
}
|
|
|
|
/* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred
|
|
(ie. an undefined instruction). */
|
|
static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd, wrd;
|
|
int rdhi, rdlo, rd0, rd1, i;
|
|
TCGv_i32 addr;
|
|
TCGv_i32 tmp, tmp2, tmp3;
|
|
|
|
if ((insn & 0x0e000e00) == 0x0c000000) {
|
|
if ((insn & 0x0fe00ff0) == 0x0c400000) {
|
|
wrd = insn & 0xf;
|
|
rdlo = (insn >> 12) & 0xf;
|
|
rdhi = (insn >> 16) & 0xf;
|
|
if (insn & ARM_CP_RW_BIT) { /* TMRRC */
|
|
iwmmxt_load_reg(cpu_V0, wrd);
|
|
tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0);
|
|
tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0);
|
|
} else { /* TMCRR */
|
|
tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
|
|
iwmmxt_store_reg(cpu_V0, wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
wrd = (insn >> 12) & 0xf;
|
|
addr = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_address(s, insn, addr)) {
|
|
tcg_temp_free_i32(addr);
|
|
return 1;
|
|
}
|
|
if (insn & ARM_CP_RW_BIT) {
|
|
if ((insn >> 28) == 0xf) { /* WLDRW wCx */
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
|
|
iwmmxt_store_creg(wrd, tmp);
|
|
} else {
|
|
i = 1;
|
|
if (insn & (1 << 8)) {
|
|
if (insn & (1 << 22)) { /* WLDRD */
|
|
gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s));
|
|
i = 0;
|
|
} else { /* WLDRW wRd */
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
if (insn & (1 << 22)) { /* WLDRH */
|
|
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
|
|
} else { /* WLDRB */
|
|
gen_aa32_ld8u(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
}
|
|
if (i) {
|
|
tcg_gen_extu_i32_i64(cpu_M0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
}
|
|
} else {
|
|
if ((insn >> 28) == 0xf) { /* WSTRW wCx */
|
|
tmp = iwmmxt_load_creg(wrd);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
} else {
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
tmp = tcg_temp_new_i32();
|
|
if (insn & (1 << 8)) {
|
|
if (insn & (1 << 22)) { /* WSTRD */
|
|
gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s));
|
|
} else { /* WSTRW wRd */
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
} else {
|
|
if (insn & (1 << 22)) { /* WSTRH */
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
gen_aa32_st16(s, tmp, addr, get_mem_index(s));
|
|
} else { /* WSTRB */
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
gen_aa32_st8(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
}
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
tcg_temp_free_i32(addr);
|
|
return 0;
|
|
}
|
|
|
|
if ((insn & 0x0f000000) != 0x0e000000)
|
|
return 1;
|
|
|
|
switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) {
|
|
case 0x000: /* WOR */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
gen_op_iwmmxt_orq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x011: /* TMCR */
|
|
if (insn & 0xf)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
switch (wrd) {
|
|
case ARM_IWMMXT_wCID:
|
|
case ARM_IWMMXT_wCASF:
|
|
break;
|
|
case ARM_IWMMXT_wCon:
|
|
gen_op_iwmmxt_set_cup();
|
|
/* Fall through. */
|
|
case ARM_IWMMXT_wCSSF:
|
|
tmp = iwmmxt_load_creg(wrd);
|
|
tmp2 = load_reg(s, rd);
|
|
tcg_gen_andc_i32(tmp, tmp, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
iwmmxt_store_creg(wrd, tmp);
|
|
break;
|
|
case ARM_IWMMXT_wCGR0:
|
|
case ARM_IWMMXT_wCGR1:
|
|
case ARM_IWMMXT_wCGR2:
|
|
case ARM_IWMMXT_wCGR3:
|
|
gen_op_iwmmxt_set_cup();
|
|
tmp = load_reg(s, rd);
|
|
iwmmxt_store_creg(wrd, tmp);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
break;
|
|
case 0x100: /* WXOR */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
gen_op_iwmmxt_xorq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x111: /* TMRC */
|
|
if (insn & 0xf)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
tmp = iwmmxt_load_creg(wrd);
|
|
store_reg(s, rd, tmp);
|
|
break;
|
|
case 0x300: /* WANDN */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tcg_gen_neg_i64(cpu_M0, cpu_M0);
|
|
gen_op_iwmmxt_andq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x200: /* WAND */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
gen_op_iwmmxt_andq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x810: case 0xa10: /* WMADD */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maddsq_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_madduq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_op_iwmmxt_unpacklb_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
gen_op_iwmmxt_unpacklw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
gen_op_iwmmxt_unpackll_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_op_iwmmxt_unpackhb_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
gen_op_iwmmxt_unpackhw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
gen_op_iwmmxt_unpackhl_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 22))
|
|
gen_op_iwmmxt_sadw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_sadb_M0_wRn(rd1);
|
|
if (!(insn & (1 << 20)))
|
|
gen_op_iwmmxt_addl_M0_wRn(wrd);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 21)) {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_mulshw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_mulslw_M0_wRn(rd1);
|
|
} else {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_muluhw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_mululw_M0_wRn(rd1);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_macsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_macuw_M0_wRn(rd1);
|
|
if (!(insn & (1 << 20))) {
|
|
iwmmxt_load_reg(cpu_V1, wrd);
|
|
tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_op_iwmmxt_cmpeqb_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
gen_op_iwmmxt_cmpeqw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
gen_op_iwmmxt_cmpeql_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 22)) {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_avgw1_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_avgw0_M0_wRn(rd1);
|
|
} else {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_avgb1_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_avgb0_M0_wRn(rd1);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3));
|
|
tcg_gen_andi_i32(tmp, tmp, 7);
|
|
iwmmxt_load_reg(cpu_V1, rd1);
|
|
gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */
|
|
if (((insn >> 6) & 3) == 3)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
tmp = load_reg(s, rd);
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
switch ((insn >> 6) & 3) {
|
|
case 0:
|
|
tmp2 = tcg_const_i32(0xff);
|
|
tmp3 = tcg_const_i32((insn & 7) << 3);
|
|
break;
|
|
case 1:
|
|
tmp2 = tcg_const_i32(0xffff);
|
|
tmp3 = tcg_const_i32((insn & 3) << 4);
|
|
break;
|
|
case 2:
|
|
tmp2 = tcg_const_i32(0xffffffff);
|
|
tmp3 = tcg_const_i32((insn & 1) << 5);
|
|
break;
|
|
default:
|
|
tmp2 = NULL;
|
|
tmp3 = NULL;
|
|
}
|
|
gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3);
|
|
tcg_temp_free_i32(tmp3);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
if (rd == 15 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
tmp = tcg_temp_new_i32();
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
if (insn & 8) {
|
|
tcg_gen_ext8s_i32(tmp, tmp);
|
|
} else {
|
|
tcg_gen_andi_i32(tmp, tmp, 0xff);
|
|
}
|
|
break;
|
|
case 1:
|
|
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
if (insn & 8) {
|
|
tcg_gen_ext16s_i32(tmp, tmp);
|
|
} else {
|
|
tcg_gen_andi_i32(tmp, tmp, 0xffff);
|
|
}
|
|
break;
|
|
case 2:
|
|
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
break;
|
|
}
|
|
store_reg(s, rd, tmp);
|
|
break;
|
|
case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */
|
|
if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0);
|
|
break;
|
|
case 1:
|
|
tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4);
|
|
break;
|
|
case 2:
|
|
tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12);
|
|
break;
|
|
}
|
|
tcg_gen_shli_i32(tmp, tmp, 28);
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */
|
|
if (((insn >> 6) & 3) == 3)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
tmp = load_reg(s, rd);
|
|
switch ((insn >> 6) & 3) {
|
|
case 0:
|
|
gen_helper_iwmmxt_bcstb(cpu_M0, tmp);
|
|
break;
|
|
case 1:
|
|
gen_helper_iwmmxt_bcstw(cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_bcstl(cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */
|
|
if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
|
|
tmp2 = tcg_temp_new_i32();
|
|
tcg_gen_mov_i32(tmp2, tmp);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
for (i = 0; i < 7; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 4);
|
|
tcg_gen_and_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 1:
|
|
for (i = 0; i < 3; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 8);
|
|
tcg_gen_and_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 2:
|
|
tcg_gen_shli_i32(tmp2, tmp2, 16);
|
|
tcg_gen_and_i32(tmp, tmp, tmp2);
|
|
break;
|
|
}
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0);
|
|
break;
|
|
case 1:
|
|
gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */
|
|
if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
|
|
tmp2 = tcg_temp_new_i32();
|
|
tcg_gen_mov_i32(tmp2, tmp);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
for (i = 0; i < 7; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 4);
|
|
tcg_gen_or_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 1:
|
|
for (i = 0; i < 3; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 8);
|
|
tcg_gen_or_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 2:
|
|
tcg_gen_shli_i32(tmp2, tmp2, 16);
|
|
tcg_gen_or_i32(tmp, tmp, tmp2);
|
|
break;
|
|
}
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */
|
|
rd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_helper_iwmmxt_msbb(tmp, cpu_M0);
|
|
break;
|
|
case 1:
|
|
gen_helper_iwmmxt_msbw(tmp, cpu_M0);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_msbl(tmp, cpu_M0);
|
|
break;
|
|
}
|
|
store_reg(s, rd, tmp);
|
|
break;
|
|
case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */
|
|
case 0x906: case 0xb06: case 0xd06: case 0xf06:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_cmpgtub_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_cmpgtul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */
|
|
case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpacklsb_M0();
|
|
else
|
|
gen_op_iwmmxt_unpacklub_M0();
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpacklsw_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackluw_M0();
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpacklsl_M0();
|
|
else
|
|
gen_op_iwmmxt_unpacklul_M0();
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */
|
|
case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpackhsb_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackhub_M0();
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpackhsw_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackhuw_M0();
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpackhsl_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackhul_M0();
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */
|
|
case 0x214: case 0x614: case 0xa14: case 0xe14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */
|
|
case 0x014: case 0x414: case 0x814: case 0xc14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */
|
|
case 0x114: case 0x514: case 0x914: case 0xd14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */
|
|
case 0x314: case 0x714: case 0xb14: case 0xf14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
if (gen_iwmmxt_shift(insn, 0xf, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
if (gen_iwmmxt_shift(insn, 0x1f, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
if (gen_iwmmxt_shift(insn, 0x3f, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */
|
|
case 0x916: case 0xb16: case 0xd16: case 0xf16:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_minsb_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_minub_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_minsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_minuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_minsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_minul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */
|
|
case 0x816: case 0xa16: case 0xc16: case 0xe16:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maxsb_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_maxub_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maxsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_maxuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maxsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_maxul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */
|
|
case 0x402: case 0x502: case 0x602: case 0x702:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_const_i32((insn >> 20) & 3);
|
|
iwmmxt_load_reg(cpu_V1, rd1);
|
|
gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */
|
|
case 0x41a: case 0x51a: case 0x61a: case 0x71a:
|
|
case 0x81a: case 0x91a: case 0xa1a: case 0xb1a:
|
|
case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 20) & 0xf) {
|
|
case 0x0:
|
|
gen_op_iwmmxt_subnb_M0_wRn(rd1);
|
|
break;
|
|
case 0x1:
|
|
gen_op_iwmmxt_subub_M0_wRn(rd1);
|
|
break;
|
|
case 0x3:
|
|
gen_op_iwmmxt_subsb_M0_wRn(rd1);
|
|
break;
|
|
case 0x4:
|
|
gen_op_iwmmxt_subnw_M0_wRn(rd1);
|
|
break;
|
|
case 0x5:
|
|
gen_op_iwmmxt_subuw_M0_wRn(rd1);
|
|
break;
|
|
case 0x7:
|
|
gen_op_iwmmxt_subsw_M0_wRn(rd1);
|
|
break;
|
|
case 0x8:
|
|
gen_op_iwmmxt_subnl_M0_wRn(rd1);
|
|
break;
|
|
case 0x9:
|
|
gen_op_iwmmxt_subul_M0_wRn(rd1);
|
|
break;
|
|
case 0xb:
|
|
gen_op_iwmmxt_subsl_M0_wRn(rd1);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */
|
|
case 0x41e: case 0x51e: case 0x61e: case 0x71e:
|
|
case 0x81e: case 0x91e: case 0xa1e: case 0xb1e:
|
|
case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_const_i32(((insn >> 16) & 0xf0) | (insn & 0x0f));
|
|
gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */
|
|
case 0x418: case 0x518: case 0x618: case 0x718:
|
|
case 0x818: case 0x918: case 0xa18: case 0xb18:
|
|
case 0xc18: case 0xd18: case 0xe18: case 0xf18:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 20) & 0xf) {
|
|
case 0x0:
|
|
gen_op_iwmmxt_addnb_M0_wRn(rd1);
|
|
break;
|
|
case 0x1:
|
|
gen_op_iwmmxt_addub_M0_wRn(rd1);
|
|
break;
|
|
case 0x3:
|
|
gen_op_iwmmxt_addsb_M0_wRn(rd1);
|
|
break;
|
|
case 0x4:
|
|
gen_op_iwmmxt_addnw_M0_wRn(rd1);
|
|
break;
|
|
case 0x5:
|
|
gen_op_iwmmxt_adduw_M0_wRn(rd1);
|
|
break;
|
|
case 0x7:
|
|
gen_op_iwmmxt_addsw_M0_wRn(rd1);
|
|
break;
|
|
case 0x8:
|
|
gen_op_iwmmxt_addnl_M0_wRn(rd1);
|
|
break;
|
|
case 0x9:
|
|
gen_op_iwmmxt_addul_M0_wRn(rd1);
|
|
break;
|
|
case 0xb:
|
|
gen_op_iwmmxt_addsl_M0_wRn(rd1);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */
|
|
case 0x408: case 0x508: case 0x608: case 0x708:
|
|
case 0x808: case 0x908: case 0xa08: case 0xb08:
|
|
case 0xc08: case 0xd08: case 0xe08: case 0xf08:
|
|
if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_packsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_packuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_packsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_packul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_packsq_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_packuq_M0_wRn(rd1);
|
|
break;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x201: case 0x203: case 0x205: case 0x207:
|
|
case 0x209: case 0x20b: case 0x20d: case 0x20f:
|
|
case 0x211: case 0x213: case 0x215: case 0x217:
|
|
case 0x219: case 0x21b: case 0x21d: case 0x21f:
|
|
wrd = (insn >> 5) & 0xf;
|
|
rd0 = (insn >> 12) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
if (rd0 == 0xf || rd1 == 0xf)
|
|
return 1;
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
tmp = load_reg(s, rd0);
|
|
tmp2 = load_reg(s, rd1);
|
|
switch ((insn >> 16) & 0xf) {
|
|
case 0x0: /* TMIA */
|
|
gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0x8: /* TMIAPH */
|
|
gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */
|
|
if (insn & (1 << 16))
|
|
tcg_gen_shri_i32(tmp, tmp, 16);
|
|
if (insn & (1 << 17))
|
|
tcg_gen_shri_i32(tmp2, tmp2, 16);
|
|
gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
default:
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred
|
|
(ie. an undefined instruction). */
|
|
static int disas_dsp_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int acc, rd0, rd1, rdhi, rdlo;
|
|
TCGv_i32 tmp, tmp2;
|
|
|
|
if ((insn & 0x0ff00f10) == 0x0e200010) {
|
|
/* Multiply with Internal Accumulate Format */
|
|
rd0 = (insn >> 12) & 0xf;
|
|
rd1 = insn & 0xf;
|
|
acc = (insn >> 5) & 7;
|
|
|
|
if (acc != 0)
|
|
return 1;
|
|
|
|
tmp = load_reg(s, rd0);
|
|
tmp2 = load_reg(s, rd1);
|
|
switch ((insn >> 16) & 0xf) {
|
|
case 0x0: /* MIA */
|
|
gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0x8: /* MIAPH */
|
|
gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0xc: /* MIABB */
|
|
case 0xd: /* MIABT */
|
|
case 0xe: /* MIATB */
|
|
case 0xf: /* MIATT */
|
|
if (insn & (1 << 16))
|
|
tcg_gen_shri_i32(tmp, tmp, 16);
|
|
if (insn & (1 << 17))
|
|
tcg_gen_shri_i32(tmp2, tmp2, 16);
|
|
gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
gen_op_iwmmxt_movq_wRn_M0(acc);
|
|
return 0;
|
|
}
|
|
|
|
if ((insn & 0x0fe00ff8) == 0x0c400000) {
|
|
/* Internal Accumulator Access Format */
|
|
rdhi = (insn >> 16) & 0xf;
|
|
rdlo = (insn >> 12) & 0xf;
|
|
acc = insn & 7;
|
|
|
|
if (acc != 0)
|
|
return 1;
|
|
|
|
if (insn & ARM_CP_RW_BIT) { /* MRA */
|
|
iwmmxt_load_reg(cpu_V0, acc);
|
|
tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0);
|
|
tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0);
|
|
tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1);
|
|
} else { /* MAR */
|
|
tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
|
|
iwmmxt_store_reg(cpu_V0, acc);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline bool use_goto_tb(DisasContext *s, target_ulong dest)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
return (s->base.tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) ||
|
|
((s->base.pc_next - 1) & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK);
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static void gen_goto_ptr(void)
|
|
{
|
|
tcg_gen_lookup_and_goto_ptr();
|
|
}
|
|
|
|
/* This will end the TB but doesn't guarantee we'll return to
|
|
* cpu_loop_exec. Any live exit_requests will be processed as we
|
|
* enter the next TB.
|
|
*/
|
|
static void gen_goto_tb(DisasContext *s, int n, target_ulong dest)
|
|
{
|
|
if (use_goto_tb(s, dest)) {
|
|
tcg_gen_goto_tb(n);
|
|
gen_set_pc_im(s, dest);
|
|
tcg_gen_exit_tb(s->base.tb, n);
|
|
} else {
|
|
gen_set_pc_im(s, dest);
|
|
gen_goto_ptr();
|
|
}
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
/* Jump, specifying which TB number to use if we gen_goto_tb() */
|
|
static inline void gen_jmp_tb(DisasContext *s, uint32_t dest, int tbno)
|
|
{
|
|
if (unlikely(is_singlestepping(s))) {
|
|
/* An indirect jump so that we still trigger the debug exception. */
|
|
gen_set_pc_im(s, dest);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
} else {
|
|
gen_goto_tb(s, tbno, dest);
|
|
}
|
|
}
|
|
|
|
static inline void gen_jmp(DisasContext *s, uint32_t dest)
|
|
{
|
|
gen_jmp_tb(s, dest, 0);
|
|
}
|
|
|
|
static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y)
|
|
{
|
|
if (x)
|
|
tcg_gen_sari_i32(t0, t0, 16);
|
|
else
|
|
gen_sxth(t0);
|
|
if (y)
|
|
tcg_gen_sari_i32(t1, t1, 16);
|
|
else
|
|
gen_sxth(t1);
|
|
tcg_gen_mul_i32(t0, t0, t1);
|
|
}
|
|
|
|
/* Return the mask of PSR bits set by a MSR instruction. */
|
|
static uint32_t msr_mask(DisasContext *s, int flags, int spsr)
|
|
{
|
|
uint32_t mask = 0;
|
|
|
|
if (flags & (1 << 0)) {
|
|
mask |= 0xff;
|
|
}
|
|
if (flags & (1 << 1)) {
|
|
mask |= 0xff00;
|
|
}
|
|
if (flags & (1 << 2)) {
|
|
mask |= 0xff0000;
|
|
}
|
|
if (flags & (1 << 3)) {
|
|
mask |= 0xff000000;
|
|
}
|
|
|
|
/* Mask out undefined and reserved bits. */
|
|
mask &= aarch32_cpsr_valid_mask(s->features, s->isar);
|
|
|
|
/* Mask out execution state. */
|
|
if (!spsr) {
|
|
mask &= ~CPSR_EXEC;
|
|
}
|
|
|
|
/* Mask out privileged bits. */
|
|
if (IS_USER(s)) {
|
|
mask &= CPSR_USER;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
|
|
static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0)
|
|
{
|
|
TCGv_i32 tmp;
|
|
if (spsr) {
|
|
/* ??? This is also undefined in system mode. */
|
|
if (IS_USER(s))
|
|
return 1;
|
|
|
|
tmp = load_cpu_field(spsr);
|
|
tcg_gen_andi_i32(tmp, tmp, ~mask);
|
|
tcg_gen_andi_i32(t0, t0, mask);
|
|
tcg_gen_or_i32(tmp, tmp, t0);
|
|
store_cpu_field(tmp, spsr);
|
|
} else {
|
|
gen_set_cpsr(t0, mask);
|
|
}
|
|
tcg_temp_free_i32(t0);
|
|
gen_lookup_tb(s);
|
|
return 0;
|
|
}
|
|
|
|
/* Returns nonzero if access to the PSR is not permitted. */
|
|
static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, val);
|
|
return gen_set_psr(s, mask, spsr, tmp);
|
|
}
|
|
|
|
static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn,
|
|
int *tgtmode, int *regno)
|
|
{
|
|
/* Decode the r and sysm fields of MSR/MRS banked accesses into
|
|
* the target mode and register number, and identify the various
|
|
* unpredictable cases.
|
|
* MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if:
|
|
* + executed in user mode
|
|
* + using R15 as the src/dest register
|
|
* + accessing an unimplemented register
|
|
* + accessing a register that's inaccessible at current PL/security state*
|
|
* + accessing a register that you could access with a different insn
|
|
* We choose to UNDEF in all these cases.
|
|
* Since we don't know which of the various AArch32 modes we are in
|
|
* we have to defer some checks to runtime.
|
|
* Accesses to Monitor mode registers from Secure EL1 (which implies
|
|
* that EL3 is AArch64) must trap to EL3.
|
|
*
|
|
* If the access checks fail this function will emit code to take
|
|
* an exception and return false. Otherwise it will return true,
|
|
* and set *tgtmode and *regno appropriately.
|
|
*/
|
|
int exc_target = default_exception_el(s);
|
|
|
|
/* These instructions are present only in ARMv8, or in ARMv7 with the
|
|
* Virtualization Extensions.
|
|
*/
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_EL2)) {
|
|
goto undef;
|
|
}
|
|
|
|
if (IS_USER(s) || rn == 15) {
|
|
goto undef;
|
|
}
|
|
|
|
/* The table in the v8 ARM ARM section F5.2.3 describes the encoding
|
|
* of registers into (r, sysm).
|
|
*/
|
|
if (r) {
|
|
/* SPSRs for other modes */
|
|
switch (sysm) {
|
|
case 0xe: /* SPSR_fiq */
|
|
*tgtmode = ARM_CPU_MODE_FIQ;
|
|
break;
|
|
case 0x10: /* SPSR_irq */
|
|
*tgtmode = ARM_CPU_MODE_IRQ;
|
|
break;
|
|
case 0x12: /* SPSR_svc */
|
|
*tgtmode = ARM_CPU_MODE_SVC;
|
|
break;
|
|
case 0x14: /* SPSR_abt */
|
|
*tgtmode = ARM_CPU_MODE_ABT;
|
|
break;
|
|
case 0x16: /* SPSR_und */
|
|
*tgtmode = ARM_CPU_MODE_UND;
|
|
break;
|
|
case 0x1c: /* SPSR_mon */
|
|
*tgtmode = ARM_CPU_MODE_MON;
|
|
break;
|
|
case 0x1e: /* SPSR_hyp */
|
|
*tgtmode = ARM_CPU_MODE_HYP;
|
|
break;
|
|
default: /* unallocated */
|
|
goto undef;
|
|
}
|
|
/* We arbitrarily assign SPSR a register number of 16. */
|
|
*regno = 16;
|
|
} else {
|
|
/* general purpose registers for other modes */
|
|
switch (sysm) {
|
|
case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */
|
|
*tgtmode = ARM_CPU_MODE_USR;
|
|
*regno = sysm + 8;
|
|
break;
|
|
case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */
|
|
*tgtmode = ARM_CPU_MODE_FIQ;
|
|
*regno = sysm;
|
|
break;
|
|
case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */
|
|
*tgtmode = ARM_CPU_MODE_IRQ;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */
|
|
*tgtmode = ARM_CPU_MODE_SVC;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */
|
|
*tgtmode = ARM_CPU_MODE_ABT;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */
|
|
*tgtmode = ARM_CPU_MODE_UND;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */
|
|
*tgtmode = ARM_CPU_MODE_MON;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */
|
|
*tgtmode = ARM_CPU_MODE_HYP;
|
|
/* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */
|
|
*regno = sysm & 1 ? 13 : 17;
|
|
break;
|
|
default: /* unallocated */
|
|
goto undef;
|
|
}
|
|
}
|
|
|
|
/* Catch the 'accessing inaccessible register' cases we can detect
|
|
* at translate time.
|
|
*/
|
|
switch (*tgtmode) {
|
|
case ARM_CPU_MODE_MON:
|
|
if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) {
|
|
goto undef;
|
|
}
|
|
if (s->current_el == 1) {
|
|
/* If we're in Secure EL1 (which implies that EL3 is AArch64)
|
|
* then accesses to Mon registers trap to Secure EL2, if it exists,
|
|
* otherwise EL3.
|
|
*/
|
|
TCGv_i32 tcg_el;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_AARCH64) &&
|
|
dc_isar_feature(aa64_sel2, s)) {
|
|
/* Target EL is EL<3 minus SCR_EL3.EEL2> */
|
|
tcg_el = load_cpu_field(cp15.scr_el3);
|
|
tcg_gen_sextract_i32(tcg_el, tcg_el, ctz32(SCR_EEL2), 1);
|
|
tcg_gen_addi_i32(tcg_el, tcg_el, 3);
|
|
} else {
|
|
tcg_el = tcg_const_i32(3);
|
|
}
|
|
|
|
gen_exception_el(s, EXCP_UDEF, syn_uncategorized(), tcg_el);
|
|
tcg_temp_free_i32(tcg_el);
|
|
return false;
|
|
}
|
|
break;
|
|
case ARM_CPU_MODE_HYP:
|
|
/*
|
|
* SPSR_hyp and r13_hyp can only be accessed from Monitor mode
|
|
* (and so we can forbid accesses from EL2 or below). elr_hyp
|
|
* can be accessed also from Hyp mode, so forbid accesses from
|
|
* EL0 or EL1.
|
|
*/
|
|
if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 2 ||
|
|
(s->current_el < 3 && *regno != 17)) {
|
|
goto undef;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
|
|
undef:
|
|
/* If we get here then some access check did not pass */
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
|
|
syn_uncategorized(), exc_target);
|
|
return false;
|
|
}
|
|
|
|
static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn)
|
|
{
|
|
TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno;
|
|
int tgtmode = 0, regno = 0;
|
|
|
|
if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) {
|
|
return;
|
|
}
|
|
|
|
/* Sync state because msr_banked() can raise exceptions */
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tcg_reg = load_reg(s, rn);
|
|
tcg_tgtmode = tcg_const_i32(tgtmode);
|
|
tcg_regno = tcg_const_i32(regno);
|
|
gen_helper_msr_banked(cpu_env, tcg_reg, tcg_tgtmode, tcg_regno);
|
|
tcg_temp_free_i32(tcg_tgtmode);
|
|
tcg_temp_free_i32(tcg_regno);
|
|
tcg_temp_free_i32(tcg_reg);
|
|
s->base.is_jmp = DISAS_UPDATE_EXIT;
|
|
}
|
|
|
|
static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn)
|
|
{
|
|
TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno;
|
|
int tgtmode = 0, regno = 0;
|
|
|
|
if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) {
|
|
return;
|
|
}
|
|
|
|
/* Sync state because mrs_banked() can raise exceptions */
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tcg_reg = tcg_temp_new_i32();
|
|
tcg_tgtmode = tcg_const_i32(tgtmode);
|
|
tcg_regno = tcg_const_i32(regno);
|
|
gen_helper_mrs_banked(tcg_reg, cpu_env, tcg_tgtmode, tcg_regno);
|
|
tcg_temp_free_i32(tcg_tgtmode);
|
|
tcg_temp_free_i32(tcg_regno);
|
|
store_reg(s, rn, tcg_reg);
|
|
s->base.is_jmp = DISAS_UPDATE_EXIT;
|
|
}
|
|
|
|
/* Store value to PC as for an exception return (ie don't
|
|
* mask bits). The subsequent call to gen_helper_cpsr_write_eret()
|
|
* will do the masking based on the new value of the Thumb bit.
|
|
*/
|
|
static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc)
|
|
{
|
|
tcg_gen_mov_i32(cpu_R[15], pc);
|
|
tcg_temp_free_i32(pc);
|
|
}
|
|
|
|
/* Generate a v6 exception return. Marks both values as dead. */
|
|
static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr)
|
|
{
|
|
store_pc_exc_ret(s, pc);
|
|
/* The cpsr_write_eret helper will mask the low bits of PC
|
|
* appropriately depending on the new Thumb bit, so it must
|
|
* be called after storing the new PC.
|
|
*/
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
gen_io_start();
|
|
}
|
|
gen_helper_cpsr_write_eret(cpu_env, cpsr);
|
|
tcg_temp_free_i32(cpsr);
|
|
/* Must exit loop to check un-masked IRQs */
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
/* Generate an old-style exception return. Marks pc as dead. */
|
|
static void gen_exception_return(DisasContext *s, TCGv_i32 pc)
|
|
{
|
|
gen_rfe(s, pc, load_cpu_field(spsr));
|
|
}
|
|
|
|
static void gen_gvec_fn3_qc(uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs,
|
|
uint32_t opr_sz, uint32_t max_sz,
|
|
gen_helper_gvec_3_ptr *fn)
|
|
{
|
|
TCGv_ptr qc_ptr = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
|
|
tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, qc_ptr,
|
|
opr_sz, max_sz, 0, fn);
|
|
tcg_temp_free_ptr(qc_ptr);
|
|
}
|
|
|
|
void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static gen_helper_gvec_3_ptr * const fns[2] = {
|
|
gen_helper_gvec_qrdmlah_s16, gen_helper_gvec_qrdmlah_s32
|
|
};
|
|
tcg_debug_assert(vece >= 1 && vece <= 2);
|
|
gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]);
|
|
}
|
|
|
|
void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static gen_helper_gvec_3_ptr * const fns[2] = {
|
|
gen_helper_gvec_qrdmlsh_s16, gen_helper_gvec_qrdmlsh_s32
|
|
};
|
|
tcg_debug_assert(vece >= 1 && vece <= 2);
|
|
gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]);
|
|
}
|
|
|
|
#define GEN_CMP0(NAME, COND) \
|
|
static void gen_##NAME##0_i32(TCGv_i32 d, TCGv_i32 a) \
|
|
{ \
|
|
tcg_gen_setcondi_i32(COND, d, a, 0); \
|
|
tcg_gen_neg_i32(d, d); \
|
|
} \
|
|
static void gen_##NAME##0_i64(TCGv_i64 d, TCGv_i64 a) \
|
|
{ \
|
|
tcg_gen_setcondi_i64(COND, d, a, 0); \
|
|
tcg_gen_neg_i64(d, d); \
|
|
} \
|
|
static void gen_##NAME##0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) \
|
|
{ \
|
|
TCGv_vec zero = tcg_const_zeros_vec_matching(d); \
|
|
tcg_gen_cmp_vec(COND, vece, d, a, zero); \
|
|
tcg_temp_free_vec(zero); \
|
|
} \
|
|
void gen_gvec_##NAME##0(unsigned vece, uint32_t d, uint32_t m, \
|
|
uint32_t opr_sz, uint32_t max_sz) \
|
|
{ \
|
|
const GVecGen2 op[4] = { \
|
|
{ .fno = gen_helper_gvec_##NAME##0_b, \
|
|
.fniv = gen_##NAME##0_vec, \
|
|
.opt_opc = vecop_list_cmp, \
|
|
.vece = MO_8 }, \
|
|
{ .fno = gen_helper_gvec_##NAME##0_h, \
|
|
.fniv = gen_##NAME##0_vec, \
|
|
.opt_opc = vecop_list_cmp, \
|
|
.vece = MO_16 }, \
|
|
{ .fni4 = gen_##NAME##0_i32, \
|
|
.fniv = gen_##NAME##0_vec, \
|
|
.opt_opc = vecop_list_cmp, \
|
|
.vece = MO_32 }, \
|
|
{ .fni8 = gen_##NAME##0_i64, \
|
|
.fniv = gen_##NAME##0_vec, \
|
|
.opt_opc = vecop_list_cmp, \
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64, \
|
|
.vece = MO_64 }, \
|
|
}; \
|
|
tcg_gen_gvec_2(d, m, opr_sz, max_sz, &op[vece]); \
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_cmp[] = {
|
|
INDEX_op_cmp_vec, 0
|
|
};
|
|
|
|
GEN_CMP0(ceq, TCG_COND_EQ)
|
|
GEN_CMP0(cle, TCG_COND_LE)
|
|
GEN_CMP0(cge, TCG_COND_GE)
|
|
GEN_CMP0(clt, TCG_COND_LT)
|
|
GEN_CMP0(cgt, TCG_COND_GT)
|
|
|
|
#undef GEN_CMP0
|
|
|
|
static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_sar8i_i64(a, a, shift);
|
|
tcg_gen_vec_add8_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_sar16i_i64(a, a, shift);
|
|
tcg_gen_vec_add16_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_sari_i32(a, a, shift);
|
|
tcg_gen_add_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_sari_i64(a, a, shift);
|
|
tcg_gen_add_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
tcg_gen_sari_vec(vece, a, a, sh);
|
|
tcg_gen_add_vec(vece, d, d, a);
|
|
}
|
|
|
|
void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_sari_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_ssra8_i64,
|
|
.fniv = gen_ssra_vec,
|
|
.fno = gen_helper_gvec_ssra_b,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_ssra16_i64,
|
|
.fniv = gen_ssra_vec,
|
|
.fno = gen_helper_gvec_ssra_h,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_ssra32_i32,
|
|
.fniv = gen_ssra_vec,
|
|
.fno = gen_helper_gvec_ssra_s,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_ssra64_i64,
|
|
.fniv = gen_ssra_vec,
|
|
.fno = gen_helper_gvec_ssra_b,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [1..esize]. */
|
|
tcg_debug_assert(shift > 0);
|
|
tcg_debug_assert(shift <= (8 << vece));
|
|
|
|
/*
|
|
* Shifts larger than the element size are architecturally valid.
|
|
* Signed results in all sign bits.
|
|
*/
|
|
shift = MIN(shift, (8 << vece) - 1);
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
}
|
|
|
|
static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_shr8i_i64(a, a, shift);
|
|
tcg_gen_vec_add8_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_shr16i_i64(a, a, shift);
|
|
tcg_gen_vec_add16_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_shri_i32(a, a, shift);
|
|
tcg_gen_add_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_shri_i64(a, a, shift);
|
|
tcg_gen_add_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
tcg_gen_shri_vec(vece, a, a, sh);
|
|
tcg_gen_add_vec(vece, d, d, a);
|
|
}
|
|
|
|
void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_shri_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_usra8_i64,
|
|
.fniv = gen_usra_vec,
|
|
.fno = gen_helper_gvec_usra_b,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8, },
|
|
{ .fni8 = gen_usra16_i64,
|
|
.fniv = gen_usra_vec,
|
|
.fno = gen_helper_gvec_usra_h,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16, },
|
|
{ .fni4 = gen_usra32_i32,
|
|
.fniv = gen_usra_vec,
|
|
.fno = gen_helper_gvec_usra_s,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32, },
|
|
{ .fni8 = gen_usra64_i64,
|
|
.fniv = gen_usra_vec,
|
|
.fno = gen_helper_gvec_usra_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64, },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [1..esize]. */
|
|
tcg_debug_assert(shift > 0);
|
|
tcg_debug_assert(shift <= (8 << vece));
|
|
|
|
/*
|
|
* Shifts larger than the element size are architecturally valid.
|
|
* Unsigned results in all zeros as input to accumulate: nop.
|
|
*/
|
|
if (shift < (8 << vece)) {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
} else {
|
|
/* Nop, but we do need to clear the tail. */
|
|
tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shift one less than the requested amount, and the low bit is
|
|
* the rounding bit. For the 8 and 16-bit operations, because we
|
|
* mask the low bit, we can perform a normal integer shift instead
|
|
* of a vector shift.
|
|
*/
|
|
static void gen_srshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, sh - 1);
|
|
tcg_gen_andi_i64(t, t, dup_const(MO_8, 1));
|
|
tcg_gen_vec_sar8i_i64(d, a, sh);
|
|
tcg_gen_vec_add8_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_srshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, sh - 1);
|
|
tcg_gen_andi_i64(t, t, dup_const(MO_16, 1));
|
|
tcg_gen_vec_sar16i_i64(d, a, sh);
|
|
tcg_gen_vec_add16_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
|
|
{
|
|
TCGv_i32 t;
|
|
|
|
/* Handle shift by the input size for the benefit of trans_SRSHR_ri */
|
|
if (sh == 32) {
|
|
tcg_gen_movi_i32(d, 0);
|
|
return;
|
|
}
|
|
t = tcg_temp_new_i32();
|
|
tcg_gen_extract_i32(t, a, sh - 1, 1);
|
|
tcg_gen_sari_i32(d, a, sh);
|
|
tcg_gen_add_i32(d, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_extract_i64(t, a, sh - 1, 1);
|
|
tcg_gen_sari_i64(d, a, sh);
|
|
tcg_gen_add_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_srshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec ones = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_shri_vec(vece, t, a, sh - 1);
|
|
tcg_gen_dupi_vec(vece, ones, 1);
|
|
tcg_gen_and_vec(vece, t, t, ones);
|
|
tcg_gen_sari_vec(vece, d, a, sh);
|
|
tcg_gen_add_vec(vece, d, d, t);
|
|
|
|
tcg_temp_free_vec(t);
|
|
tcg_temp_free_vec(ones);
|
|
}
|
|
|
|
void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_srshr8_i64,
|
|
.fniv = gen_srshr_vec,
|
|
.fno = gen_helper_gvec_srshr_b,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_srshr16_i64,
|
|
.fniv = gen_srshr_vec,
|
|
.fno = gen_helper_gvec_srshr_h,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_srshr32_i32,
|
|
.fniv = gen_srshr_vec,
|
|
.fno = gen_helper_gvec_srshr_s,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_srshr64_i64,
|
|
.fniv = gen_srshr_vec,
|
|
.fno = gen_helper_gvec_srshr_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [1..esize] */
|
|
tcg_debug_assert(shift > 0);
|
|
tcg_debug_assert(shift <= (8 << vece));
|
|
|
|
if (shift == (8 << vece)) {
|
|
/*
|
|
* Shifts larger than the element size are architecturally valid.
|
|
* Signed results in all sign bits. With rounding, this produces
|
|
* (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0.
|
|
* I.e. always zero.
|
|
*/
|
|
tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0);
|
|
} else {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
}
|
|
}
|
|
|
|
static void gen_srsra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
gen_srshr8_i64(t, a, sh);
|
|
tcg_gen_vec_add8_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_srsra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
gen_srshr16_i64(t, a, sh);
|
|
tcg_gen_vec_add16_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_srsra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
gen_srshr32_i32(t, a, sh);
|
|
tcg_gen_add_i32(d, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_srsra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
gen_srshr64_i64(t, a, sh);
|
|
tcg_gen_add_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_srsra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
|
|
gen_srshr_vec(vece, t, a, sh);
|
|
tcg_gen_add_vec(vece, d, d, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_srsra8_i64,
|
|
.fniv = gen_srsra_vec,
|
|
.fno = gen_helper_gvec_srsra_b,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_srsra16_i64,
|
|
.fniv = gen_srsra_vec,
|
|
.fno = gen_helper_gvec_srsra_h,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_srsra32_i32,
|
|
.fniv = gen_srsra_vec,
|
|
.fno = gen_helper_gvec_srsra_s,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_srsra64_i64,
|
|
.fniv = gen_srsra_vec,
|
|
.fno = gen_helper_gvec_srsra_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [1..esize] */
|
|
tcg_debug_assert(shift > 0);
|
|
tcg_debug_assert(shift <= (8 << vece));
|
|
|
|
/*
|
|
* Shifts larger than the element size are architecturally valid.
|
|
* Signed results in all sign bits. With rounding, this produces
|
|
* (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0.
|
|
* I.e. always zero. With accumulation, this leaves D unchanged.
|
|
*/
|
|
if (shift == (8 << vece)) {
|
|
/* Nop, but we do need to clear the tail. */
|
|
tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz);
|
|
} else {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
}
|
|
}
|
|
|
|
static void gen_urshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, sh - 1);
|
|
tcg_gen_andi_i64(t, t, dup_const(MO_8, 1));
|
|
tcg_gen_vec_shr8i_i64(d, a, sh);
|
|
tcg_gen_vec_add8_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_urshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, sh - 1);
|
|
tcg_gen_andi_i64(t, t, dup_const(MO_16, 1));
|
|
tcg_gen_vec_shr16i_i64(d, a, sh);
|
|
tcg_gen_vec_add16_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
|
|
{
|
|
TCGv_i32 t;
|
|
|
|
/* Handle shift by the input size for the benefit of trans_URSHR_ri */
|
|
if (sh == 32) {
|
|
tcg_gen_extract_i32(d, a, sh - 1, 1);
|
|
return;
|
|
}
|
|
t = tcg_temp_new_i32();
|
|
tcg_gen_extract_i32(t, a, sh - 1, 1);
|
|
tcg_gen_shri_i32(d, a, sh);
|
|
tcg_gen_add_i32(d, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_extract_i64(t, a, sh - 1, 1);
|
|
tcg_gen_shri_i64(d, a, sh);
|
|
tcg_gen_add_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_urshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t shift)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec ones = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_shri_vec(vece, t, a, shift - 1);
|
|
tcg_gen_dupi_vec(vece, ones, 1);
|
|
tcg_gen_and_vec(vece, t, t, ones);
|
|
tcg_gen_shri_vec(vece, d, a, shift);
|
|
tcg_gen_add_vec(vece, d, d, t);
|
|
|
|
tcg_temp_free_vec(t);
|
|
tcg_temp_free_vec(ones);
|
|
}
|
|
|
|
void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_shri_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_urshr8_i64,
|
|
.fniv = gen_urshr_vec,
|
|
.fno = gen_helper_gvec_urshr_b,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_urshr16_i64,
|
|
.fniv = gen_urshr_vec,
|
|
.fno = gen_helper_gvec_urshr_h,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_urshr32_i32,
|
|
.fniv = gen_urshr_vec,
|
|
.fno = gen_helper_gvec_urshr_s,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_urshr64_i64,
|
|
.fniv = gen_urshr_vec,
|
|
.fno = gen_helper_gvec_urshr_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [1..esize] */
|
|
tcg_debug_assert(shift > 0);
|
|
tcg_debug_assert(shift <= (8 << vece));
|
|
|
|
if (shift == (8 << vece)) {
|
|
/*
|
|
* Shifts larger than the element size are architecturally valid.
|
|
* Unsigned results in zero. With rounding, this produces a
|
|
* copy of the most significant bit.
|
|
*/
|
|
tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift - 1, opr_sz, max_sz);
|
|
} else {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
}
|
|
}
|
|
|
|
static void gen_ursra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
if (sh == 8) {
|
|
tcg_gen_vec_shr8i_i64(t, a, 7);
|
|
} else {
|
|
gen_urshr8_i64(t, a, sh);
|
|
}
|
|
tcg_gen_vec_add8_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_ursra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
if (sh == 16) {
|
|
tcg_gen_vec_shr16i_i64(t, a, 15);
|
|
} else {
|
|
gen_urshr16_i64(t, a, sh);
|
|
}
|
|
tcg_gen_vec_add16_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_ursra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
if (sh == 32) {
|
|
tcg_gen_shri_i32(t, a, 31);
|
|
} else {
|
|
gen_urshr32_i32(t, a, sh);
|
|
}
|
|
tcg_gen_add_i32(d, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_ursra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
if (sh == 64) {
|
|
tcg_gen_shri_i64(t, a, 63);
|
|
} else {
|
|
gen_urshr64_i64(t, a, sh);
|
|
}
|
|
tcg_gen_add_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_ursra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
|
|
if (sh == (8 << vece)) {
|
|
tcg_gen_shri_vec(vece, t, a, sh - 1);
|
|
} else {
|
|
gen_urshr_vec(vece, t, a, sh);
|
|
}
|
|
tcg_gen_add_vec(vece, d, d, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_shri_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_ursra8_i64,
|
|
.fniv = gen_ursra_vec,
|
|
.fno = gen_helper_gvec_ursra_b,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_ursra16_i64,
|
|
.fniv = gen_ursra_vec,
|
|
.fno = gen_helper_gvec_ursra_h,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_ursra32_i32,
|
|
.fniv = gen_ursra_vec,
|
|
.fno = gen_helper_gvec_ursra_s,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_ursra64_i64,
|
|
.fniv = gen_ursra_vec,
|
|
.fno = gen_helper_gvec_ursra_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [1..esize] */
|
|
tcg_debug_assert(shift > 0);
|
|
tcg_debug_assert(shift <= (8 << vece));
|
|
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
}
|
|
|
|
static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_8, 0xff >> shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_16, 0xffff >> shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_shri_i32(a, a, shift);
|
|
tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
|
|
}
|
|
|
|
static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_shri_i64(a, a, shift);
|
|
tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
|
|
}
|
|
|
|
static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh));
|
|
tcg_gen_shri_vec(vece, t, a, sh);
|
|
tcg_gen_and_vec(vece, d, d, m);
|
|
tcg_gen_or_vec(vece, d, d, t);
|
|
|
|
tcg_temp_free_vec(t);
|
|
tcg_temp_free_vec(m);
|
|
}
|
|
|
|
void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
|
|
const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_shr8_ins_i64,
|
|
.fniv = gen_shr_ins_vec,
|
|
.fno = gen_helper_gvec_sri_b,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_shr16_ins_i64,
|
|
.fniv = gen_shr_ins_vec,
|
|
.fno = gen_helper_gvec_sri_h,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_shr32_ins_i32,
|
|
.fniv = gen_shr_ins_vec,
|
|
.fno = gen_helper_gvec_sri_s,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_shr64_ins_i64,
|
|
.fniv = gen_shr_ins_vec,
|
|
.fno = gen_helper_gvec_sri_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [1..esize]. */
|
|
tcg_debug_assert(shift > 0);
|
|
tcg_debug_assert(shift <= (8 << vece));
|
|
|
|
/* Shift of esize leaves destination unchanged. */
|
|
if (shift < (8 << vece)) {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
} else {
|
|
/* Nop, but we do need to clear the tail. */
|
|
tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz);
|
|
}
|
|
}
|
|
|
|
static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_8, 0xff << shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shli_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_16, 0xffff << shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shli_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
|
|
}
|
|
|
|
static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
|
|
}
|
|
|
|
static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_shli_vec(vece, t, a, sh);
|
|
tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh));
|
|
tcg_gen_and_vec(vece, d, d, m);
|
|
tcg_gen_or_vec(vece, d, d, t);
|
|
|
|
tcg_temp_free_vec(t);
|
|
tcg_temp_free_vec(m);
|
|
}
|
|
|
|
void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs,
|
|
int64_t shift, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
|
|
const GVecGen2i ops[4] = {
|
|
{ .fni8 = gen_shl8_ins_i64,
|
|
.fniv = gen_shl_ins_vec,
|
|
.fno = gen_helper_gvec_sli_b,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_shl16_ins_i64,
|
|
.fniv = gen_shl_ins_vec,
|
|
.fno = gen_helper_gvec_sli_h,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_shl32_ins_i32,
|
|
.fniv = gen_shl_ins_vec,
|
|
.fno = gen_helper_gvec_sli_s,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_shl64_ins_i64,
|
|
.fniv = gen_shl_ins_vec,
|
|
.fno = gen_helper_gvec_sli_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* tszimm encoding produces immediates in the range [0..esize-1]. */
|
|
tcg_debug_assert(shift >= 0);
|
|
tcg_debug_assert(shift < (8 << vece));
|
|
|
|
if (shift == 0) {
|
|
tcg_gen_gvec_mov(vece, rd_ofs, rm_ofs, opr_sz, max_sz);
|
|
} else {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]);
|
|
}
|
|
}
|
|
|
|
static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u8(a, a, b);
|
|
gen_helper_neon_add_u8(d, d, a);
|
|
}
|
|
|
|
static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u8(a, a, b);
|
|
gen_helper_neon_sub_u8(d, d, a);
|
|
}
|
|
|
|
static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u16(a, a, b);
|
|
gen_helper_neon_add_u16(d, d, a);
|
|
}
|
|
|
|
static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u16(a, a, b);
|
|
gen_helper_neon_sub_u16(d, d, a);
|
|
}
|
|
|
|
static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_mul_i32(a, a, b);
|
|
tcg_gen_add_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_mul_i32(a, a, b);
|
|
tcg_gen_sub_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
tcg_gen_mul_i64(a, a, b);
|
|
tcg_gen_add_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
tcg_gen_mul_i64(a, a, b);
|
|
tcg_gen_sub_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
tcg_gen_mul_vec(vece, a, a, b);
|
|
tcg_gen_add_vec(vece, d, d, a);
|
|
}
|
|
|
|
static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
tcg_gen_mul_vec(vece, a, a, b);
|
|
tcg_gen_sub_vec(vece, d, d, a);
|
|
}
|
|
|
|
/* Note that while NEON does not support VMLA and VMLS as 64-bit ops,
|
|
* these tables are shared with AArch64 which does support them.
|
|
*/
|
|
void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_mul_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fni4 = gen_mla8_i32,
|
|
.fniv = gen_mla_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni4 = gen_mla16_i32,
|
|
.fniv = gen_mla_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_mla32_i32,
|
|
.fniv = gen_mla_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_mla64_i64,
|
|
.fniv = gen_mla_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_mul_vec, INDEX_op_sub_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fni4 = gen_mls8_i32,
|
|
.fniv = gen_mls_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni4 = gen_mls16_i32,
|
|
.fniv = gen_mls_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_mls32_i32,
|
|
.fniv = gen_mls_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_mls64_i64,
|
|
.fniv = gen_mls_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
/* CMTST : test is "if (X & Y != 0)". */
|
|
static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_and_i32(d, a, b);
|
|
tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
|
|
tcg_gen_neg_i32(d, d);
|
|
}
|
|
|
|
void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
tcg_gen_and_i64(d, a, b);
|
|
tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
|
|
tcg_gen_neg_i64(d, d);
|
|
}
|
|
|
|
static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
tcg_gen_and_vec(vece, d, a, b);
|
|
tcg_gen_dupi_vec(vece, a, 0);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
|
|
}
|
|
|
|
void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_cmp_vec, 0 };
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fni4 = gen_helper_neon_tst_u8,
|
|
.fniv = gen_cmtst_vec,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fni4 = gen_helper_neon_tst_u16,
|
|
.fniv = gen_cmtst_vec,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_cmtst_i32,
|
|
.fniv = gen_cmtst_vec,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_cmtst_i64,
|
|
.fniv = gen_cmtst_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift)
|
|
{
|
|
TCGv_i32 lval = tcg_temp_new_i32();
|
|
TCGv_i32 rval = tcg_temp_new_i32();
|
|
TCGv_i32 lsh = tcg_temp_new_i32();
|
|
TCGv_i32 rsh = tcg_temp_new_i32();
|
|
TCGv_i32 zero = tcg_const_i32(0);
|
|
TCGv_i32 max = tcg_const_i32(32);
|
|
|
|
/*
|
|
* Rely on the TCG guarantee that out of range shifts produce
|
|
* unspecified results, not undefined behaviour (i.e. no trap).
|
|
* Discard out-of-range results after the fact.
|
|
*/
|
|
tcg_gen_ext8s_i32(lsh, shift);
|
|
tcg_gen_neg_i32(rsh, lsh);
|
|
tcg_gen_shl_i32(lval, src, lsh);
|
|
tcg_gen_shr_i32(rval, src, rsh);
|
|
tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero);
|
|
tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst);
|
|
|
|
tcg_temp_free_i32(lval);
|
|
tcg_temp_free_i32(rval);
|
|
tcg_temp_free_i32(lsh);
|
|
tcg_temp_free_i32(rsh);
|
|
tcg_temp_free_i32(zero);
|
|
tcg_temp_free_i32(max);
|
|
}
|
|
|
|
void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift)
|
|
{
|
|
TCGv_i64 lval = tcg_temp_new_i64();
|
|
TCGv_i64 rval = tcg_temp_new_i64();
|
|
TCGv_i64 lsh = tcg_temp_new_i64();
|
|
TCGv_i64 rsh = tcg_temp_new_i64();
|
|
TCGv_i64 zero = tcg_const_i64(0);
|
|
TCGv_i64 max = tcg_const_i64(64);
|
|
|
|
/*
|
|
* Rely on the TCG guarantee that out of range shifts produce
|
|
* unspecified results, not undefined behaviour (i.e. no trap).
|
|
* Discard out-of-range results after the fact.
|
|
*/
|
|
tcg_gen_ext8s_i64(lsh, shift);
|
|
tcg_gen_neg_i64(rsh, lsh);
|
|
tcg_gen_shl_i64(lval, src, lsh);
|
|
tcg_gen_shr_i64(rval, src, rsh);
|
|
tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero);
|
|
tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst);
|
|
|
|
tcg_temp_free_i64(lval);
|
|
tcg_temp_free_i64(rval);
|
|
tcg_temp_free_i64(lsh);
|
|
tcg_temp_free_i64(rsh);
|
|
tcg_temp_free_i64(zero);
|
|
tcg_temp_free_i64(max);
|
|
}
|
|
|
|
static void gen_ushl_vec(unsigned vece, TCGv_vec dst,
|
|
TCGv_vec src, TCGv_vec shift)
|
|
{
|
|
TCGv_vec lval = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec rval = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec lsh = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec rsh = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec msk, max;
|
|
|
|
tcg_gen_neg_vec(vece, rsh, shift);
|
|
if (vece == MO_8) {
|
|
tcg_gen_mov_vec(lsh, shift);
|
|
} else {
|
|
msk = tcg_temp_new_vec_matching(dst);
|
|
tcg_gen_dupi_vec(vece, msk, 0xff);
|
|
tcg_gen_and_vec(vece, lsh, shift, msk);
|
|
tcg_gen_and_vec(vece, rsh, rsh, msk);
|
|
tcg_temp_free_vec(msk);
|
|
}
|
|
|
|
/*
|
|
* Rely on the TCG guarantee that out of range shifts produce
|
|
* unspecified results, not undefined behaviour (i.e. no trap).
|
|
* Discard out-of-range results after the fact.
|
|
*/
|
|
tcg_gen_shlv_vec(vece, lval, src, lsh);
|
|
tcg_gen_shrv_vec(vece, rval, src, rsh);
|
|
|
|
max = tcg_temp_new_vec_matching(dst);
|
|
tcg_gen_dupi_vec(vece, max, 8 << vece);
|
|
|
|
/*
|
|
* The choice of LT (signed) and GEU (unsigned) are biased toward
|
|
* the instructions of the x86_64 host. For MO_8, the whole byte
|
|
* is significant so we must use an unsigned compare; otherwise we
|
|
* have already masked to a byte and so a signed compare works.
|
|
* Other tcg hosts have a full set of comparisons and do not care.
|
|
*/
|
|
if (vece == MO_8) {
|
|
tcg_gen_cmp_vec(TCG_COND_GEU, vece, lsh, lsh, max);
|
|
tcg_gen_cmp_vec(TCG_COND_GEU, vece, rsh, rsh, max);
|
|
tcg_gen_andc_vec(vece, lval, lval, lsh);
|
|
tcg_gen_andc_vec(vece, rval, rval, rsh);
|
|
} else {
|
|
tcg_gen_cmp_vec(TCG_COND_LT, vece, lsh, lsh, max);
|
|
tcg_gen_cmp_vec(TCG_COND_LT, vece, rsh, rsh, max);
|
|
tcg_gen_and_vec(vece, lval, lval, lsh);
|
|
tcg_gen_and_vec(vece, rval, rval, rsh);
|
|
}
|
|
tcg_gen_or_vec(vece, dst, lval, rval);
|
|
|
|
tcg_temp_free_vec(max);
|
|
tcg_temp_free_vec(lval);
|
|
tcg_temp_free_vec(rval);
|
|
tcg_temp_free_vec(lsh);
|
|
tcg_temp_free_vec(rsh);
|
|
}
|
|
|
|
void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_neg_vec, INDEX_op_shlv_vec,
|
|
INDEX_op_shrv_vec, INDEX_op_cmp_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fniv = gen_ushl_vec,
|
|
.fno = gen_helper_gvec_ushl_b,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_ushl_vec,
|
|
.fno = gen_helper_gvec_ushl_h,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_ushl_i32,
|
|
.fniv = gen_ushl_vec,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_ushl_i64,
|
|
.fniv = gen_ushl_vec,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift)
|
|
{
|
|
TCGv_i32 lval = tcg_temp_new_i32();
|
|
TCGv_i32 rval = tcg_temp_new_i32();
|
|
TCGv_i32 lsh = tcg_temp_new_i32();
|
|
TCGv_i32 rsh = tcg_temp_new_i32();
|
|
TCGv_i32 zero = tcg_const_i32(0);
|
|
TCGv_i32 max = tcg_const_i32(31);
|
|
|
|
/*
|
|
* Rely on the TCG guarantee that out of range shifts produce
|
|
* unspecified results, not undefined behaviour (i.e. no trap).
|
|
* Discard out-of-range results after the fact.
|
|
*/
|
|
tcg_gen_ext8s_i32(lsh, shift);
|
|
tcg_gen_neg_i32(rsh, lsh);
|
|
tcg_gen_shl_i32(lval, src, lsh);
|
|
tcg_gen_umin_i32(rsh, rsh, max);
|
|
tcg_gen_sar_i32(rval, src, rsh);
|
|
tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero);
|
|
tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval);
|
|
|
|
tcg_temp_free_i32(lval);
|
|
tcg_temp_free_i32(rval);
|
|
tcg_temp_free_i32(lsh);
|
|
tcg_temp_free_i32(rsh);
|
|
tcg_temp_free_i32(zero);
|
|
tcg_temp_free_i32(max);
|
|
}
|
|
|
|
void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift)
|
|
{
|
|
TCGv_i64 lval = tcg_temp_new_i64();
|
|
TCGv_i64 rval = tcg_temp_new_i64();
|
|
TCGv_i64 lsh = tcg_temp_new_i64();
|
|
TCGv_i64 rsh = tcg_temp_new_i64();
|
|
TCGv_i64 zero = tcg_const_i64(0);
|
|
TCGv_i64 max = tcg_const_i64(63);
|
|
|
|
/*
|
|
* Rely on the TCG guarantee that out of range shifts produce
|
|
* unspecified results, not undefined behaviour (i.e. no trap).
|
|
* Discard out-of-range results after the fact.
|
|
*/
|
|
tcg_gen_ext8s_i64(lsh, shift);
|
|
tcg_gen_neg_i64(rsh, lsh);
|
|
tcg_gen_shl_i64(lval, src, lsh);
|
|
tcg_gen_umin_i64(rsh, rsh, max);
|
|
tcg_gen_sar_i64(rval, src, rsh);
|
|
tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero);
|
|
tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval);
|
|
|
|
tcg_temp_free_i64(lval);
|
|
tcg_temp_free_i64(rval);
|
|
tcg_temp_free_i64(lsh);
|
|
tcg_temp_free_i64(rsh);
|
|
tcg_temp_free_i64(zero);
|
|
tcg_temp_free_i64(max);
|
|
}
|
|
|
|
static void gen_sshl_vec(unsigned vece, TCGv_vec dst,
|
|
TCGv_vec src, TCGv_vec shift)
|
|
{
|
|
TCGv_vec lval = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec rval = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec lsh = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec rsh = tcg_temp_new_vec_matching(dst);
|
|
TCGv_vec tmp = tcg_temp_new_vec_matching(dst);
|
|
|
|
/*
|
|
* Rely on the TCG guarantee that out of range shifts produce
|
|
* unspecified results, not undefined behaviour (i.e. no trap).
|
|
* Discard out-of-range results after the fact.
|
|
*/
|
|
tcg_gen_neg_vec(vece, rsh, shift);
|
|
if (vece == MO_8) {
|
|
tcg_gen_mov_vec(lsh, shift);
|
|
} else {
|
|
tcg_gen_dupi_vec(vece, tmp, 0xff);
|
|
tcg_gen_and_vec(vece, lsh, shift, tmp);
|
|
tcg_gen_and_vec(vece, rsh, rsh, tmp);
|
|
}
|
|
|
|
/* Bound rsh so out of bound right shift gets -1. */
|
|
tcg_gen_dupi_vec(vece, tmp, (8 << vece) - 1);
|
|
tcg_gen_umin_vec(vece, rsh, rsh, tmp);
|
|
tcg_gen_cmp_vec(TCG_COND_GT, vece, tmp, lsh, tmp);
|
|
|
|
tcg_gen_shlv_vec(vece, lval, src, lsh);
|
|
tcg_gen_sarv_vec(vece, rval, src, rsh);
|
|
|
|
/* Select in-bound left shift. */
|
|
tcg_gen_andc_vec(vece, lval, lval, tmp);
|
|
|
|
/* Select between left and right shift. */
|
|
if (vece == MO_8) {
|
|
tcg_gen_dupi_vec(vece, tmp, 0);
|
|
tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, rval, lval);
|
|
} else {
|
|
tcg_gen_dupi_vec(vece, tmp, 0x80);
|
|
tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, lval, rval);
|
|
}
|
|
|
|
tcg_temp_free_vec(lval);
|
|
tcg_temp_free_vec(rval);
|
|
tcg_temp_free_vec(lsh);
|
|
tcg_temp_free_vec(rsh);
|
|
tcg_temp_free_vec(tmp);
|
|
}
|
|
|
|
void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec,
|
|
INDEX_op_sarv_vec, INDEX_op_cmp_vec, INDEX_op_cmpsel_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fniv = gen_sshl_vec,
|
|
.fno = gen_helper_gvec_sshl_b,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_sshl_vec,
|
|
.fno = gen_helper_gvec_sshl_h,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_sshl_i32,
|
|
.fniv = gen_sshl_vec,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_sshl_i64,
|
|
.fniv = gen_sshl_vec,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_add_vec(vece, x, a, b);
|
|
tcg_gen_usadd_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_usadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen4 ops[4] = {
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_b,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_h,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_s,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_d,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
|
|
rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_add_vec(vece, x, a, b);
|
|
tcg_gen_ssadd_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_ssadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0
|
|
};
|
|
static const GVecGen4 ops[4] = {
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_b,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_h,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_s,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_d,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
|
|
rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_sub_vec(vece, x, a, b);
|
|
tcg_gen_ussub_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_ussub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0
|
|
};
|
|
static const GVecGen4 ops[4] = {
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_b,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_h,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_s,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_d,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
|
|
rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_sub_vec(vece, x, a, b);
|
|
tcg_gen_sssub_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_sssub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0
|
|
};
|
|
static const GVecGen4 ops[4] = {
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_b,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_h,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_s,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_d,
|
|
.opt_opc = vecop_list,
|
|
.write_aofs = true,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
|
|
rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_sabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
tcg_gen_sub_i32(t, a, b);
|
|
tcg_gen_sub_i32(d, b, a);
|
|
tcg_gen_movcond_i32(TCG_COND_LT, d, a, b, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_sub_i64(t, a, b);
|
|
tcg_gen_sub_i64(d, b, a);
|
|
tcg_gen_movcond_i64(TCG_COND_LT, d, a, b, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_sabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_smin_vec(vece, t, a, b);
|
|
tcg_gen_smax_vec(vece, d, a, b);
|
|
tcg_gen_sub_vec(vece, d, d, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_sub_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fniv = gen_sabd_vec,
|
|
.fno = gen_helper_gvec_sabd_b,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_sabd_vec,
|
|
.fno = gen_helper_gvec_sabd_h,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_sabd_i32,
|
|
.fniv = gen_sabd_vec,
|
|
.fno = gen_helper_gvec_sabd_s,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_sabd_i64,
|
|
.fniv = gen_sabd_vec,
|
|
.fno = gen_helper_gvec_sabd_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_uabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
|
|
tcg_gen_sub_i32(t, a, b);
|
|
tcg_gen_sub_i32(d, b, a);
|
|
tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_sub_i64(t, a, b);
|
|
tcg_gen_sub_i64(d, b, a);
|
|
tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_uabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_umin_vec(vece, t, a, b);
|
|
tcg_gen_umax_vec(vece, d, a, b);
|
|
tcg_gen_sub_vec(vece, d, d, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_sub_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fniv = gen_uabd_vec,
|
|
.fno = gen_helper_gvec_uabd_b,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_uabd_vec,
|
|
.fno = gen_helper_gvec_uabd_h,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_uabd_i32,
|
|
.fniv = gen_uabd_vec,
|
|
.fno = gen_helper_gvec_uabd_s,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_uabd_i64,
|
|
.fniv = gen_uabd_vec,
|
|
.fno = gen_helper_gvec_uabd_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_saba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
gen_sabd_i32(t, a, b);
|
|
tcg_gen_add_i32(d, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_saba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
gen_sabd_i64(t, a, b);
|
|
tcg_gen_add_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_saba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
gen_sabd_vec(vece, t, a, b);
|
|
tcg_gen_add_vec(vece, d, d, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_sub_vec, INDEX_op_add_vec,
|
|
INDEX_op_smin_vec, INDEX_op_smax_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fniv = gen_saba_vec,
|
|
.fno = gen_helper_gvec_saba_b,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_saba_vec,
|
|
.fno = gen_helper_gvec_saba_h,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_saba_i32,
|
|
.fniv = gen_saba_vec,
|
|
.fno = gen_helper_gvec_saba_s,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_saba_i64,
|
|
.fniv = gen_saba_vec,
|
|
.fno = gen_helper_gvec_saba_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void gen_uaba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 t = tcg_temp_new_i32();
|
|
gen_uabd_i32(t, a, b);
|
|
tcg_gen_add_i32(d, d, t);
|
|
tcg_temp_free_i32(t);
|
|
}
|
|
|
|
static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
gen_uabd_i64(t, a, b);
|
|
tcg_gen_add_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_uaba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
gen_uabd_vec(vece, t, a, b);
|
|
tcg_gen_add_vec(vece, d, d, t);
|
|
tcg_temp_free_vec(t);
|
|
}
|
|
|
|
void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = {
|
|
INDEX_op_sub_vec, INDEX_op_add_vec,
|
|
INDEX_op_umin_vec, INDEX_op_umax_vec, 0
|
|
};
|
|
static const GVecGen3 ops[4] = {
|
|
{ .fniv = gen_uaba_vec,
|
|
.fno = gen_helper_gvec_uaba_b,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_uaba_vec,
|
|
.fno = gen_helper_gvec_uaba_h,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_uaba_i32,
|
|
.fniv = gen_uaba_vec,
|
|
.fno = gen_helper_gvec_uaba_s,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_uaba_i64,
|
|
.fniv = gen_uaba_vec,
|
|
.fno = gen_helper_gvec_uaba_d,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list,
|
|
.load_dest = true,
|
|
.vece = MO_64 },
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
|
|
}
|
|
|
|
static void do_coproc_insn(DisasContext *s, int cpnum, int is64,
|
|
int opc1, int crn, int crm, int opc2,
|
|
bool isread, int rt, int rt2)
|
|
{
|
|
const ARMCPRegInfo *ri;
|
|
|
|
ri = get_arm_cp_reginfo(s->cp_regs,
|
|
ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2));
|
|
if (ri) {
|
|
bool need_exit_tb;
|
|
|
|
/* Check access permissions */
|
|
if (!cp_access_ok(s->current_el, ri, isread)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (s->hstr_active || ri->accessfn ||
|
|
(arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) {
|
|
/* Emit code to perform further access permissions checks at
|
|
* runtime; this may result in an exception.
|
|
* Note that on XScale all cp0..c13 registers do an access check
|
|
* call in order to handle c15_cpar.
|
|
*/
|
|
TCGv_ptr tmpptr;
|
|
TCGv_i32 tcg_syn, tcg_isread;
|
|
uint32_t syndrome;
|
|
|
|
/* Note that since we are an implementation which takes an
|
|
* exception on a trapped conditional instruction only if the
|
|
* instruction passes its condition code check, we can take
|
|
* advantage of the clause in the ARM ARM that allows us to set
|
|
* the COND field in the instruction to 0xE in all cases.
|
|
* We could fish the actual condition out of the insn (ARM)
|
|
* or the condexec bits (Thumb) but it isn't necessary.
|
|
*/
|
|
switch (cpnum) {
|
|
case 14:
|
|
if (is64) {
|
|
syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2,
|
|
isread, false);
|
|
} else {
|
|
syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm,
|
|
rt, isread, false);
|
|
}
|
|
break;
|
|
case 15:
|
|
if (is64) {
|
|
syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2,
|
|
isread, false);
|
|
} else {
|
|
syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm,
|
|
rt, isread, false);
|
|
}
|
|
break;
|
|
default:
|
|
/* ARMv8 defines that only coprocessors 14 and 15 exist,
|
|
* so this can only happen if this is an ARMv7 or earlier CPU,
|
|
* in which case the syndrome information won't actually be
|
|
* guest visible.
|
|
*/
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_V8));
|
|
syndrome = syn_uncategorized();
|
|
break;
|
|
}
|
|
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tmpptr = tcg_const_ptr(ri);
|
|
tcg_syn = tcg_const_i32(syndrome);
|
|
tcg_isread = tcg_const_i32(isread);
|
|
gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn,
|
|
tcg_isread);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
tcg_temp_free_i32(tcg_syn);
|
|
tcg_temp_free_i32(tcg_isread);
|
|
} else if (ri->type & ARM_CP_RAISES_EXC) {
|
|
/*
|
|
* The readfn or writefn might raise an exception;
|
|
* synchronize the CPU state in case it does.
|
|
*/
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
}
|
|
|
|
/* Handle special cases first */
|
|
switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
|
|
case ARM_CP_NOP:
|
|
return;
|
|
case ARM_CP_WFI:
|
|
if (isread) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_WFI;
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
|
|
gen_io_start();
|
|
}
|
|
|
|
if (isread) {
|
|
/* Read */
|
|
if (is64) {
|
|
TCGv_i64 tmp64;
|
|
TCGv_i32 tmp;
|
|
if (ri->type & ARM_CP_CONST) {
|
|
tmp64 = tcg_const_i64(ri->resetvalue);
|
|
} else if (ri->readfn) {
|
|
TCGv_ptr tmpptr;
|
|
tmp64 = tcg_temp_new_i64();
|
|
tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_get_cp_reg64(tmp64, cpu_env, tmpptr);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
} else {
|
|
tmp64 = tcg_temp_new_i64();
|
|
tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset);
|
|
}
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tmp, tmp64);
|
|
store_reg(s, rt, tmp);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrh_i64_i32(tmp, tmp64);
|
|
tcg_temp_free_i64(tmp64);
|
|
store_reg(s, rt2, tmp);
|
|
} else {
|
|
TCGv_i32 tmp;
|
|
if (ri->type & ARM_CP_CONST) {
|
|
tmp = tcg_const_i32(ri->resetvalue);
|
|
} else if (ri->readfn) {
|
|
TCGv_ptr tmpptr;
|
|
tmp = tcg_temp_new_i32();
|
|
tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_get_cp_reg(tmp, cpu_env, tmpptr);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
} else {
|
|
tmp = load_cpu_offset(ri->fieldoffset);
|
|
}
|
|
if (rt == 15) {
|
|
/* Destination register of r15 for 32 bit loads sets
|
|
* the condition codes from the high 4 bits of the value
|
|
*/
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
} else {
|
|
store_reg(s, rt, tmp);
|
|
}
|
|
}
|
|
} else {
|
|
/* Write */
|
|
if (ri->type & ARM_CP_CONST) {
|
|
/* If not forbidden by access permissions, treat as WI */
|
|
return;
|
|
}
|
|
|
|
if (is64) {
|
|
TCGv_i32 tmplo, tmphi;
|
|
TCGv_i64 tmp64 = tcg_temp_new_i64();
|
|
tmplo = load_reg(s, rt);
|
|
tmphi = load_reg(s, rt2);
|
|
tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi);
|
|
tcg_temp_free_i32(tmplo);
|
|
tcg_temp_free_i32(tmphi);
|
|
if (ri->writefn) {
|
|
TCGv_ptr tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_set_cp_reg64(cpu_env, tmpptr, tmp64);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
} else {
|
|
tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset);
|
|
}
|
|
tcg_temp_free_i64(tmp64);
|
|
} else {
|
|
if (ri->writefn) {
|
|
TCGv_i32 tmp;
|
|
TCGv_ptr tmpptr;
|
|
tmp = load_reg(s, rt);
|
|
tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_set_cp_reg(cpu_env, tmpptr, tmp);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
tcg_temp_free_i32(tmp);
|
|
} else {
|
|
TCGv_i32 tmp = load_reg(s, rt);
|
|
store_cpu_offset(tmp, ri->fieldoffset);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* I/O operations must end the TB here (whether read or write) */
|
|
need_exit_tb = ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) &&
|
|
(ri->type & ARM_CP_IO));
|
|
|
|
if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
|
|
/*
|
|
* A write to any coprocessor register that ends a TB
|
|
* must rebuild the hflags for the next TB.
|
|
*/
|
|
TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
gen_helper_rebuild_hflags_m32(cpu_env, tcg_el);
|
|
} else {
|
|
if (ri->type & ARM_CP_NEWEL) {
|
|
gen_helper_rebuild_hflags_a32_newel(cpu_env);
|
|
} else {
|
|
gen_helper_rebuild_hflags_a32(cpu_env, tcg_el);
|
|
}
|
|
}
|
|
tcg_temp_free_i32(tcg_el);
|
|
/*
|
|
* We default to ending the TB on a coprocessor register write,
|
|
* but allow this to be suppressed by the register definition
|
|
* (usually only necessary to work around guest bugs).
|
|
*/
|
|
need_exit_tb = true;
|
|
}
|
|
if (need_exit_tb) {
|
|
gen_lookup_tb(s);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Unknown register; this might be a guest error or a QEMU
|
|
* unimplemented feature.
|
|
*/
|
|
if (is64) {
|
|
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 "
|
|
"64 bit system register cp:%d opc1: %d crm:%d "
|
|
"(%s)\n",
|
|
isread ? "read" : "write", cpnum, opc1, crm,
|
|
s->ns ? "non-secure" : "secure");
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 "
|
|
"system register cp:%d opc1:%d crn:%d crm:%d opc2:%d "
|
|
"(%s)\n",
|
|
isread ? "read" : "write", cpnum, opc1, crn, crm, opc2,
|
|
s->ns ? "non-secure" : "secure");
|
|
}
|
|
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
/* Decode XScale DSP or iWMMXt insn (in the copro space, cp=0 or 1) */
|
|
static void disas_xscale_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int cpnum = (insn >> 8) & 0xf;
|
|
|
|
if (extract32(s->c15_cpar, cpnum, 1) == 0) {
|
|
unallocated_encoding(s);
|
|
} else if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) {
|
|
if (disas_iwmmxt_insn(s, insn)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
} else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) {
|
|
if (disas_dsp_insn(s, insn)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Store a 64-bit value to a register pair. Clobbers val. */
|
|
static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tmp, val);
|
|
store_reg(s, rlow, tmp);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrh_i64_i32(tmp, val);
|
|
store_reg(s, rhigh, tmp);
|
|
}
|
|
|
|
/* load and add a 64-bit value from a register pair. */
|
|
static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh)
|
|
{
|
|
TCGv_i64 tmp;
|
|
TCGv_i32 tmpl;
|
|
TCGv_i32 tmph;
|
|
|
|
/* Load 64-bit value rd:rn. */
|
|
tmpl = load_reg(s, rlow);
|
|
tmph = load_reg(s, rhigh);
|
|
tmp = tcg_temp_new_i64();
|
|
tcg_gen_concat_i32_i64(tmp, tmpl, tmph);
|
|
tcg_temp_free_i32(tmpl);
|
|
tcg_temp_free_i32(tmph);
|
|
tcg_gen_add_i64(val, val, tmp);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
/* Set N and Z flags from hi|lo. */
|
|
static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi)
|
|
{
|
|
tcg_gen_mov_i32(cpu_NF, hi);
|
|
tcg_gen_or_i32(cpu_ZF, lo, hi);
|
|
}
|
|
|
|
/* Load/Store exclusive instructions are implemented by remembering
|
|
the value/address loaded, and seeing if these are the same
|
|
when the store is performed. This should be sufficient to implement
|
|
the architecturally mandated semantics, and avoids having to monitor
|
|
regular stores. The compare vs the remembered value is done during
|
|
the cmpxchg operation, but we must compare the addresses manually. */
|
|
static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
|
|
TCGv_i32 addr, int size)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
MemOp opc = size | MO_ALIGN | s->be_data;
|
|
|
|
s->is_ldex = true;
|
|
|
|
if (size == 3) {
|
|
TCGv_i32 tmp2 = tcg_temp_new_i32();
|
|
TCGv_i64 t64 = tcg_temp_new_i64();
|
|
|
|
/*
|
|
* For AArch32, architecturally the 32-bit word at the lowest
|
|
* address is always Rt and the one at addr+4 is Rt2, even if
|
|
* the CPU is big-endian. That means we don't want to do a
|
|
* gen_aa32_ld_i64(), which checks SCTLR_B as if for an
|
|
* architecturally 64-bit access, but instead do a 64-bit access
|
|
* using MO_BE if appropriate and then split the two halves.
|
|
*/
|
|
TCGv taddr = gen_aa32_addr(s, addr, opc);
|
|
|
|
tcg_gen_qemu_ld_i64(t64, taddr, get_mem_index(s), opc);
|
|
tcg_temp_free(taddr);
|
|
tcg_gen_mov_i64(cpu_exclusive_val, t64);
|
|
if (s->be_data == MO_BE) {
|
|
tcg_gen_extr_i64_i32(tmp2, tmp, t64);
|
|
} else {
|
|
tcg_gen_extr_i64_i32(tmp, tmp2, t64);
|
|
}
|
|
tcg_temp_free_i64(t64);
|
|
|
|
store_reg(s, rt2, tmp2);
|
|
} else {
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc);
|
|
tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp);
|
|
}
|
|
|
|
store_reg(s, rt, tmp);
|
|
tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr);
|
|
}
|
|
|
|
static void gen_clrex(DisasContext *s)
|
|
{
|
|
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
|
|
}
|
|
|
|
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
|
|
TCGv_i32 addr, int size)
|
|
{
|
|
TCGv_i32 t0, t1, t2;
|
|
TCGv_i64 extaddr;
|
|
TCGv taddr;
|
|
TCGLabel *done_label;
|
|
TCGLabel *fail_label;
|
|
MemOp opc = size | MO_ALIGN | s->be_data;
|
|
|
|
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) {
|
|
[addr] = {Rt};
|
|
{Rd} = 0;
|
|
} else {
|
|
{Rd} = 1;
|
|
} */
|
|
fail_label = gen_new_label();
|
|
done_label = gen_new_label();
|
|
extaddr = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(extaddr, addr);
|
|
tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label);
|
|
tcg_temp_free_i64(extaddr);
|
|
|
|
taddr = gen_aa32_addr(s, addr, opc);
|
|
t0 = tcg_temp_new_i32();
|
|
t1 = load_reg(s, rt);
|
|
if (size == 3) {
|
|
TCGv_i64 o64 = tcg_temp_new_i64();
|
|
TCGv_i64 n64 = tcg_temp_new_i64();
|
|
|
|
t2 = load_reg(s, rt2);
|
|
|
|
/*
|
|
* For AArch32, architecturally the 32-bit word at the lowest
|
|
* address is always Rt and the one at addr+4 is Rt2, even if
|
|
* the CPU is big-endian. Since we're going to treat this as a
|
|
* single 64-bit BE store, we need to put the two halves in the
|
|
* opposite order for BE to LE, so that they end up in the right
|
|
* places. We don't want gen_aa32_st_i64, because that checks
|
|
* SCTLR_B as if for an architectural 64-bit access.
|
|
*/
|
|
if (s->be_data == MO_BE) {
|
|
tcg_gen_concat_i32_i64(n64, t2, t1);
|
|
} else {
|
|
tcg_gen_concat_i32_i64(n64, t1, t2);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
|
|
tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64,
|
|
get_mem_index(s), opc);
|
|
tcg_temp_free_i64(n64);
|
|
|
|
tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val);
|
|
tcg_gen_extrl_i64_i32(t0, o64);
|
|
|
|
tcg_temp_free_i64(o64);
|
|
} else {
|
|
t2 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val);
|
|
tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc);
|
|
tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free(taddr);
|
|
tcg_gen_mov_i32(cpu_R[rd], t0);
|
|
tcg_temp_free_i32(t0);
|
|
tcg_gen_br(done_label);
|
|
|
|
gen_set_label(fail_label);
|
|
tcg_gen_movi_i32(cpu_R[rd], 1);
|
|
gen_set_label(done_label);
|
|
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
|
|
}
|
|
|
|
/* gen_srs:
|
|
* @env: CPUARMState
|
|
* @s: DisasContext
|
|
* @mode: mode field from insn (which stack to store to)
|
|
* @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn
|
|
* @writeback: true if writeback bit set
|
|
*
|
|
* Generate code for the SRS (Store Return State) insn.
|
|
*/
|
|
static void gen_srs(DisasContext *s,
|
|
uint32_t mode, uint32_t amode, bool writeback)
|
|
{
|
|
int32_t offset;
|
|
TCGv_i32 addr, tmp;
|
|
bool undef = false;
|
|
|
|
/* SRS is:
|
|
* - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1
|
|
* and specified mode is monitor mode
|
|
* - UNDEFINED in Hyp mode
|
|
* - UNPREDICTABLE in User or System mode
|
|
* - UNPREDICTABLE if the specified mode is:
|
|
* -- not implemented
|
|
* -- not a valid mode number
|
|
* -- a mode that's at a higher exception level
|
|
* -- Monitor, if we are Non-secure
|
|
* For the UNPREDICTABLE cases we choose to UNDEF.
|
|
*/
|
|
if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(), 3);
|
|
return;
|
|
}
|
|
|
|
if (s->current_el == 0 || s->current_el == 2) {
|
|
undef = true;
|
|
}
|
|
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_FIQ:
|
|
case ARM_CPU_MODE_IRQ:
|
|
case ARM_CPU_MODE_SVC:
|
|
case ARM_CPU_MODE_ABT:
|
|
case ARM_CPU_MODE_UND:
|
|
case ARM_CPU_MODE_SYS:
|
|
break;
|
|
case ARM_CPU_MODE_HYP:
|
|
if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) {
|
|
undef = true;
|
|
}
|
|
break;
|
|
case ARM_CPU_MODE_MON:
|
|
/* No need to check specifically for "are we non-secure" because
|
|
* we've already made EL0 UNDEF and handled the trap for S-EL1;
|
|
* so if this isn't EL3 then we must be non-secure.
|
|
*/
|
|
if (s->current_el != 3) {
|
|
undef = true;
|
|
}
|
|
break;
|
|
default:
|
|
undef = true;
|
|
}
|
|
|
|
if (undef) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
addr = tcg_temp_new_i32();
|
|
tmp = tcg_const_i32(mode);
|
|
/* get_r13_banked() will raise an exception if called from System mode */
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
gen_helper_get_r13_banked(addr, cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
switch (amode) {
|
|
case 0: /* DA */
|
|
offset = -4;
|
|
break;
|
|
case 1: /* IA */
|
|
offset = 0;
|
|
break;
|
|
case 2: /* DB */
|
|
offset = -8;
|
|
break;
|
|
case 3: /* IB */
|
|
offset = 4;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
tmp = load_reg(s, 14);
|
|
gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN);
|
|
tcg_temp_free_i32(tmp);
|
|
tmp = load_cpu_field(spsr);
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN);
|
|
tcg_temp_free_i32(tmp);
|
|
if (writeback) {
|
|
switch (amode) {
|
|
case 0:
|
|
offset = -8;
|
|
break;
|
|
case 1:
|
|
offset = 4;
|
|
break;
|
|
case 2:
|
|
offset = -4;
|
|
break;
|
|
case 3:
|
|
offset = 0;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
tmp = tcg_const_i32(mode);
|
|
gen_helper_set_r13_banked(cpu_env, tmp, addr);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
tcg_temp_free_i32(addr);
|
|
s->base.is_jmp = DISAS_UPDATE_EXIT;
|
|
}
|
|
|
|
/* Skip this instruction if the ARM condition is false */
|
|
static void arm_skip_unless(DisasContext *s, uint32_t cond)
|
|
{
|
|
arm_gen_condlabel(s);
|
|
arm_gen_test_cc(cond ^ 1, s->condlabel);
|
|
}
|
|
|
|
|
|
/*
|
|
* Constant expanders used by T16/T32 decode
|
|
*/
|
|
|
|
/* Return only the rotation part of T32ExpandImm. */
|
|
static int t32_expandimm_rot(DisasContext *s, int x)
|
|
{
|
|
return x & 0xc00 ? extract32(x, 7, 5) : 0;
|
|
}
|
|
|
|
/* Return the unrotated immediate from T32ExpandImm. */
|
|
static int t32_expandimm_imm(DisasContext *s, int x)
|
|
{
|
|
int imm = extract32(x, 0, 8);
|
|
|
|
switch (extract32(x, 8, 4)) {
|
|
case 0: /* XY */
|
|
/* Nothing to do. */
|
|
break;
|
|
case 1: /* 00XY00XY */
|
|
imm *= 0x00010001;
|
|
break;
|
|
case 2: /* XY00XY00 */
|
|
imm *= 0x01000100;
|
|
break;
|
|
case 3: /* XYXYXYXY */
|
|
imm *= 0x01010101;
|
|
break;
|
|
default:
|
|
/* Rotated constant. */
|
|
imm |= 0x80;
|
|
break;
|
|
}
|
|
return imm;
|
|
}
|
|
|
|
static int t32_branch24(DisasContext *s, int x)
|
|
{
|
|
/* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */
|
|
x ^= !(x < 0) * (3 << 21);
|
|
/* Append the final zero. */
|
|
return x << 1;
|
|
}
|
|
|
|
static int t16_setflags(DisasContext *s)
|
|
{
|
|
return s->condexec_mask == 0;
|
|
}
|
|
|
|
static int t16_push_list(DisasContext *s, int x)
|
|
{
|
|
return (x & 0xff) | (x & 0x100) << (14 - 8);
|
|
}
|
|
|
|
static int t16_pop_list(DisasContext *s, int x)
|
|
{
|
|
return (x & 0xff) | (x & 0x100) << (15 - 8);
|
|
}
|
|
|
|
/*
|
|
* Include the generated decoders.
|
|
*/
|
|
|
|
#include "decode-a32.c.inc"
|
|
#include "decode-a32-uncond.c.inc"
|
|
#include "decode-t32.c.inc"
|
|
#include "decode-t16.c.inc"
|
|
|
|
static bool valid_cp(DisasContext *s, int cp)
|
|
{
|
|
/*
|
|
* Return true if this coprocessor field indicates something
|
|
* that's really a possible coprocessor.
|
|
* For v7 and earlier, coprocessors 8..15 were reserved for Arm use,
|
|
* and of those only cp14 and cp15 were used for registers.
|
|
* cp10 and cp11 were used for VFP and Neon, whose decode is
|
|
* dealt with elsewhere. With the advent of fp16, cp9 is also
|
|
* now part of VFP.
|
|
* For v8A and later, the encoding has been tightened so that
|
|
* only cp14 and cp15 are valid, and other values aren't considered
|
|
* to be in the coprocessor-instruction space at all. v8M still
|
|
* permits coprocessors 0..7.
|
|
* For XScale, we must not decode the XScale cp0, cp1 space as
|
|
* a standard coprocessor insn, because we want to fall through to
|
|
* the legacy disas_xscale_insn() decoder after decodetree is done.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cp == 0 || cp == 1)) {
|
|
return false;
|
|
}
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return cp >= 14;
|
|
}
|
|
return cp < 8 || cp >= 14;
|
|
}
|
|
|
|
static bool trans_MCR(DisasContext *s, arg_MCR *a)
|
|
{
|
|
if (!valid_cp(s, a->cp)) {
|
|
return false;
|
|
}
|
|
do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2,
|
|
false, a->rt, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MRC(DisasContext *s, arg_MRC *a)
|
|
{
|
|
if (!valid_cp(s, a->cp)) {
|
|
return false;
|
|
}
|
|
do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2,
|
|
true, a->rt, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MCRR(DisasContext *s, arg_MCRR *a)
|
|
{
|
|
if (!valid_cp(s, a->cp)) {
|
|
return false;
|
|
}
|
|
do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0,
|
|
false, a->rt, a->rt2);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MRRC(DisasContext *s, arg_MRRC *a)
|
|
{
|
|
if (!valid_cp(s, a->cp)) {
|
|
return false;
|
|
}
|
|
do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0,
|
|
true, a->rt, a->rt2);
|
|
return true;
|
|
}
|
|
|
|
/* Helpers to swap operands for reverse-subtract. */
|
|
static void gen_rsb(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_sub_i32(dst, b, a);
|
|
}
|
|
|
|
static void gen_rsb_CC(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_sub_CC(dst, b, a);
|
|
}
|
|
|
|
static void gen_rsc(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_sub_carry(dest, b, a);
|
|
}
|
|
|
|
static void gen_rsc_CC(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_sbc_CC(dest, b, a);
|
|
}
|
|
|
|
/*
|
|
* Helpers for the data processing routines.
|
|
*
|
|
* After the computation store the results back.
|
|
* This may be suppressed altogether (STREG_NONE), require a runtime
|
|
* check against the stack limits (STREG_SP_CHECK), or generate an
|
|
* exception return. Oh, or store into a register.
|
|
*
|
|
* Always return true, indicating success for a trans_* function.
|
|
*/
|
|
typedef enum {
|
|
STREG_NONE,
|
|
STREG_NORMAL,
|
|
STREG_SP_CHECK,
|
|
STREG_EXC_RET,
|
|
} StoreRegKind;
|
|
|
|
static bool store_reg_kind(DisasContext *s, int rd,
|
|
TCGv_i32 val, StoreRegKind kind)
|
|
{
|
|
switch (kind) {
|
|
case STREG_NONE:
|
|
tcg_temp_free_i32(val);
|
|
return true;
|
|
case STREG_NORMAL:
|
|
/* See ALUWritePC: Interworking only from a32 mode. */
|
|
if (s->thumb) {
|
|
store_reg(s, rd, val);
|
|
} else {
|
|
store_reg_bx(s, rd, val);
|
|
}
|
|
return true;
|
|
case STREG_SP_CHECK:
|
|
store_sp_checked(s, val);
|
|
return true;
|
|
case STREG_EXC_RET:
|
|
gen_exception_return(s, val);
|
|
return true;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Data Processing (register)
|
|
*
|
|
* Operate, with set flags, one register source,
|
|
* one immediate shifted register source, and a destination.
|
|
*/
|
|
static bool op_s_rrr_shi(DisasContext *s, arg_s_rrr_shi *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
|
|
tmp2 = load_reg(s, a->rm);
|
|
gen_arm_shift_im(tmp2, a->shty, a->shim, logic_cc);
|
|
tmp1 = load_reg(s, a->rn);
|
|
|
|
gen(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp1);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp1, kind);
|
|
}
|
|
|
|
static bool op_s_rxr_shi(DisasContext *s, arg_s_rrr_shi *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
gen_arm_shift_im(tmp, a->shty, a->shim, logic_cc);
|
|
|
|
gen(tmp, tmp);
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp, kind);
|
|
}
|
|
|
|
/*
|
|
* Data-processing (register-shifted register)
|
|
*
|
|
* Operate, with set flags, one register source,
|
|
* one register shifted register source, and a destination.
|
|
*/
|
|
static bool op_s_rrr_shr(DisasContext *s, arg_s_rrr_shr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
|
|
tmp1 = load_reg(s, a->rs);
|
|
tmp2 = load_reg(s, a->rm);
|
|
gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc);
|
|
tmp1 = load_reg(s, a->rn);
|
|
|
|
gen(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp1);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp1, kind);
|
|
}
|
|
|
|
static bool op_s_rxr_shr(DisasContext *s, arg_s_rrr_shr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
|
|
tmp1 = load_reg(s, a->rs);
|
|
tmp2 = load_reg(s, a->rm);
|
|
gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc);
|
|
|
|
gen(tmp2, tmp2);
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp2);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp2, kind);
|
|
}
|
|
|
|
/*
|
|
* Data-processing (immediate)
|
|
*
|
|
* Operate, with set flags, one register source,
|
|
* one rotated immediate, and a destination.
|
|
*
|
|
* Note that logic_cc && a->rot setting CF based on the msb of the
|
|
* immediate is the reason why we must pass in the unrotated form
|
|
* of the immediate.
|
|
*/
|
|
static bool op_s_rri_rot(DisasContext *s, arg_s_rri_rot *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
uint32_t imm;
|
|
|
|
imm = ror32(a->imm, a->rot);
|
|
if (logic_cc && a->rot) {
|
|
tcg_gen_movi_i32(cpu_CF, imm >> 31);
|
|
}
|
|
tmp2 = tcg_const_i32(imm);
|
|
tmp1 = load_reg(s, a->rn);
|
|
|
|
gen(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp1);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp1, kind);
|
|
}
|
|
|
|
static bool op_s_rxi_rot(DisasContext *s, arg_s_rri_rot *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp;
|
|
uint32_t imm;
|
|
|
|
imm = ror32(a->imm, a->rot);
|
|
if (logic_cc && a->rot) {
|
|
tcg_gen_movi_i32(cpu_CF, imm >> 31);
|
|
}
|
|
tmp = tcg_const_i32(imm);
|
|
|
|
gen(tmp, tmp);
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp, kind);
|
|
}
|
|
|
|
#define DO_ANY3(NAME, OP, L, K) \
|
|
static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \
|
|
{ StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \
|
|
{ StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \
|
|
{ StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); }
|
|
|
|
#define DO_ANY2(NAME, OP, L, K) \
|
|
static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \
|
|
{ StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \
|
|
{ StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \
|
|
{ StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); }
|
|
|
|
#define DO_CMP2(NAME, OP, L) \
|
|
static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \
|
|
{ return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \
|
|
static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \
|
|
{ return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \
|
|
static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \
|
|
{ return op_s_rri_rot(s, a, OP, L, STREG_NONE); }
|
|
|
|
DO_ANY3(AND, tcg_gen_and_i32, a->s, STREG_NORMAL)
|
|
DO_ANY3(EOR, tcg_gen_xor_i32, a->s, STREG_NORMAL)
|
|
DO_ANY3(ORR, tcg_gen_or_i32, a->s, STREG_NORMAL)
|
|
DO_ANY3(BIC, tcg_gen_andc_i32, a->s, STREG_NORMAL)
|
|
|
|
DO_ANY3(RSB, a->s ? gen_rsb_CC : gen_rsb, false, STREG_NORMAL)
|
|
DO_ANY3(ADC, a->s ? gen_adc_CC : gen_add_carry, false, STREG_NORMAL)
|
|
DO_ANY3(SBC, a->s ? gen_sbc_CC : gen_sub_carry, false, STREG_NORMAL)
|
|
DO_ANY3(RSC, a->s ? gen_rsc_CC : gen_rsc, false, STREG_NORMAL)
|
|
|
|
DO_CMP2(TST, tcg_gen_and_i32, true)
|
|
DO_CMP2(TEQ, tcg_gen_xor_i32, true)
|
|
DO_CMP2(CMN, gen_add_CC, false)
|
|
DO_CMP2(CMP, gen_sub_CC, false)
|
|
|
|
DO_ANY3(ADD, a->s ? gen_add_CC : tcg_gen_add_i32, false,
|
|
a->rd == 13 && a->rn == 13 ? STREG_SP_CHECK : STREG_NORMAL)
|
|
|
|
/*
|
|
* Note for the computation of StoreRegKind we return out of the
|
|
* middle of the functions that are expanded by DO_ANY3, and that
|
|
* we modify a->s via that parameter before it is used by OP.
|
|
*/
|
|
DO_ANY3(SUB, a->s ? gen_sub_CC : tcg_gen_sub_i32, false,
|
|
({
|
|
StoreRegKind ret = STREG_NORMAL;
|
|
if (a->rd == 15 && a->s) {
|
|
/*
|
|
* See ALUExceptionReturn:
|
|
* In User mode, UNPREDICTABLE; we choose UNDEF.
|
|
* In Hyp mode, UNDEFINED.
|
|
*/
|
|
if (IS_USER(s) || s->current_el == 2) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* There is no writeback of nzcv to PSTATE. */
|
|
a->s = 0;
|
|
ret = STREG_EXC_RET;
|
|
} else if (a->rd == 13 && a->rn == 13) {
|
|
ret = STREG_SP_CHECK;
|
|
}
|
|
ret;
|
|
}))
|
|
|
|
DO_ANY2(MOV, tcg_gen_mov_i32, a->s,
|
|
({
|
|
StoreRegKind ret = STREG_NORMAL;
|
|
if (a->rd == 15 && a->s) {
|
|
/*
|
|
* See ALUExceptionReturn:
|
|
* In User mode, UNPREDICTABLE; we choose UNDEF.
|
|
* In Hyp mode, UNDEFINED.
|
|
*/
|
|
if (IS_USER(s) || s->current_el == 2) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* There is no writeback of nzcv to PSTATE. */
|
|
a->s = 0;
|
|
ret = STREG_EXC_RET;
|
|
} else if (a->rd == 13) {
|
|
ret = STREG_SP_CHECK;
|
|
}
|
|
ret;
|
|
}))
|
|
|
|
DO_ANY2(MVN, tcg_gen_not_i32, a->s, STREG_NORMAL)
|
|
|
|
/*
|
|
* ORN is only available with T32, so there is no register-shifted-register
|
|
* form of the insn. Using the DO_ANY3 macro would create an unused function.
|
|
*/
|
|
static bool trans_ORN_rrri(DisasContext *s, arg_s_rrr_shi *a)
|
|
{
|
|
return op_s_rrr_shi(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL);
|
|
}
|
|
|
|
static bool trans_ORN_rri(DisasContext *s, arg_s_rri_rot *a)
|
|
{
|
|
return op_s_rri_rot(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL);
|
|
}
|
|
|
|
#undef DO_ANY3
|
|
#undef DO_ANY2
|
|
#undef DO_CMP2
|
|
|
|
static bool trans_ADR(DisasContext *s, arg_ri *a)
|
|
{
|
|
store_reg_bx(s, a->rd, add_reg_for_lit(s, 15, a->imm));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MOVW(DisasContext *s, arg_MOVW *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
|
|
tmp = tcg_const_i32(a->imm);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MOVT(DisasContext *s, arg_MOVW *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rd);
|
|
tcg_gen_ext16u_i32(tmp, tmp);
|
|
tcg_gen_ori_i32(tmp, tmp, a->imm << 16);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* v8.1M MVE wide-shifts
|
|
*/
|
|
static bool do_mve_shl_ri(DisasContext *s, arg_mve_shl_ri *a,
|
|
WideShiftImmFn *fn)
|
|
{
|
|
TCGv_i64 rda;
|
|
TCGv_i32 rdalo, rdahi;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
|
|
/* Decode falls through to ORR/MOV UNPREDICTABLE handling */
|
|
return false;
|
|
}
|
|
if (a->rdahi == 15) {
|
|
/* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */
|
|
return false;
|
|
}
|
|
if (!dc_isar_feature(aa32_mve, s) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_M_MAIN) ||
|
|
a->rdahi == 13) {
|
|
/* RdaHi == 13 is UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
if (a->shim == 0) {
|
|
a->shim = 32;
|
|
}
|
|
|
|
rda = tcg_temp_new_i64();
|
|
rdalo = load_reg(s, a->rdalo);
|
|
rdahi = load_reg(s, a->rdahi);
|
|
tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
|
|
|
|
fn(rda, rda, a->shim);
|
|
|
|
tcg_gen_extrl_i64_i32(rdalo, rda);
|
|
tcg_gen_extrh_i64_i32(rdahi, rda);
|
|
store_reg(s, a->rdalo, rdalo);
|
|
store_reg(s, a->rdahi, rdahi);
|
|
tcg_temp_free_i64(rda);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ASRL_ri(DisasContext *s, arg_mve_shl_ri *a)
|
|
{
|
|
return do_mve_shl_ri(s, a, tcg_gen_sari_i64);
|
|
}
|
|
|
|
static bool trans_LSLL_ri(DisasContext *s, arg_mve_shl_ri *a)
|
|
{
|
|
return do_mve_shl_ri(s, a, tcg_gen_shli_i64);
|
|
}
|
|
|
|
static bool trans_LSRL_ri(DisasContext *s, arg_mve_shl_ri *a)
|
|
{
|
|
return do_mve_shl_ri(s, a, tcg_gen_shri_i64);
|
|
}
|
|
|
|
static void gen_mve_sqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift)
|
|
{
|
|
gen_helper_mve_sqshll(r, cpu_env, n, tcg_constant_i32(shift));
|
|
}
|
|
|
|
static bool trans_SQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a)
|
|
{
|
|
return do_mve_shl_ri(s, a, gen_mve_sqshll);
|
|
}
|
|
|
|
static void gen_mve_uqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift)
|
|
{
|
|
gen_helper_mve_uqshll(r, cpu_env, n, tcg_constant_i32(shift));
|
|
}
|
|
|
|
static bool trans_UQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a)
|
|
{
|
|
return do_mve_shl_ri(s, a, gen_mve_uqshll);
|
|
}
|
|
|
|
static bool trans_SRSHRL_ri(DisasContext *s, arg_mve_shl_ri *a)
|
|
{
|
|
return do_mve_shl_ri(s, a, gen_srshr64_i64);
|
|
}
|
|
|
|
static bool trans_URSHRL_ri(DisasContext *s, arg_mve_shl_ri *a)
|
|
{
|
|
return do_mve_shl_ri(s, a, gen_urshr64_i64);
|
|
}
|
|
|
|
static bool do_mve_shl_rr(DisasContext *s, arg_mve_shl_rr *a, WideShiftFn *fn)
|
|
{
|
|
TCGv_i64 rda;
|
|
TCGv_i32 rdalo, rdahi;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
|
|
/* Decode falls through to ORR/MOV UNPREDICTABLE handling */
|
|
return false;
|
|
}
|
|
if (a->rdahi == 15) {
|
|
/* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */
|
|
return false;
|
|
}
|
|
if (!dc_isar_feature(aa32_mve, s) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_M_MAIN) ||
|
|
a->rdahi == 13 || a->rm == 13 || a->rm == 15 ||
|
|
a->rm == a->rdahi || a->rm == a->rdalo) {
|
|
/* These rdahi/rdalo/rm cases are UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
rda = tcg_temp_new_i64();
|
|
rdalo = load_reg(s, a->rdalo);
|
|
rdahi = load_reg(s, a->rdahi);
|
|
tcg_gen_concat_i32_i64(rda, rdalo, rdahi);
|
|
|
|
/* The helper takes care of the sign-extension of the low 8 bits of Rm */
|
|
fn(rda, cpu_env, rda, cpu_R[a->rm]);
|
|
|
|
tcg_gen_extrl_i64_i32(rdalo, rda);
|
|
tcg_gen_extrh_i64_i32(rdahi, rda);
|
|
store_reg(s, a->rdalo, rdalo);
|
|
store_reg(s, a->rdahi, rdahi);
|
|
tcg_temp_free_i64(rda);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LSLL_rr(DisasContext *s, arg_mve_shl_rr *a)
|
|
{
|
|
return do_mve_shl_rr(s, a, gen_helper_mve_ushll);
|
|
}
|
|
|
|
static bool trans_ASRL_rr(DisasContext *s, arg_mve_shl_rr *a)
|
|
{
|
|
return do_mve_shl_rr(s, a, gen_helper_mve_sshrl);
|
|
}
|
|
|
|
static bool trans_UQRSHLL64_rr(DisasContext *s, arg_mve_shl_rr *a)
|
|
{
|
|
return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll);
|
|
}
|
|
|
|
static bool trans_SQRSHRL64_rr(DisasContext *s, arg_mve_shl_rr *a)
|
|
{
|
|
return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl);
|
|
}
|
|
|
|
static bool trans_UQRSHLL48_rr(DisasContext *s, arg_mve_shl_rr *a)
|
|
{
|
|
return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll48);
|
|
}
|
|
|
|
static bool trans_SQRSHRL48_rr(DisasContext *s, arg_mve_shl_rr *a)
|
|
{
|
|
return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl48);
|
|
}
|
|
|
|
static bool do_mve_sh_ri(DisasContext *s, arg_mve_sh_ri *a, ShiftImmFn *fn)
|
|
{
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
|
|
/* Decode falls through to ORR/MOV UNPREDICTABLE handling */
|
|
return false;
|
|
}
|
|
if (!dc_isar_feature(aa32_mve, s) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_M_MAIN) ||
|
|
a->rda == 13 || a->rda == 15) {
|
|
/* These rda cases are UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
if (a->shim == 0) {
|
|
a->shim = 32;
|
|
}
|
|
fn(cpu_R[a->rda], cpu_R[a->rda], a->shim);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_URSHR_ri(DisasContext *s, arg_mve_sh_ri *a)
|
|
{
|
|
return do_mve_sh_ri(s, a, gen_urshr32_i32);
|
|
}
|
|
|
|
static bool trans_SRSHR_ri(DisasContext *s, arg_mve_sh_ri *a)
|
|
{
|
|
return do_mve_sh_ri(s, a, gen_srshr32_i32);
|
|
}
|
|
|
|
static void gen_mve_sqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift)
|
|
{
|
|
gen_helper_mve_sqshl(r, cpu_env, n, tcg_constant_i32(shift));
|
|
}
|
|
|
|
static bool trans_SQSHL_ri(DisasContext *s, arg_mve_sh_ri *a)
|
|
{
|
|
return do_mve_sh_ri(s, a, gen_mve_sqshl);
|
|
}
|
|
|
|
static void gen_mve_uqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift)
|
|
{
|
|
gen_helper_mve_uqshl(r, cpu_env, n, tcg_constant_i32(shift));
|
|
}
|
|
|
|
static bool trans_UQSHL_ri(DisasContext *s, arg_mve_sh_ri *a)
|
|
{
|
|
return do_mve_sh_ri(s, a, gen_mve_uqshl);
|
|
}
|
|
|
|
static bool do_mve_sh_rr(DisasContext *s, arg_mve_sh_rr *a, ShiftFn *fn)
|
|
{
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
|
|
/* Decode falls through to ORR/MOV UNPREDICTABLE handling */
|
|
return false;
|
|
}
|
|
if (!dc_isar_feature(aa32_mve, s) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_M_MAIN) ||
|
|
a->rda == 13 || a->rda == 15 || a->rm == 13 || a->rm == 15 ||
|
|
a->rm == a->rda) {
|
|
/* These rda/rm cases are UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
/* The helper takes care of the sign-extension of the low 8 bits of Rm */
|
|
fn(cpu_R[a->rda], cpu_env, cpu_R[a->rda], cpu_R[a->rm]);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SQRSHR_rr(DisasContext *s, arg_mve_sh_rr *a)
|
|
{
|
|
return do_mve_sh_rr(s, a, gen_helper_mve_sqrshr);
|
|
}
|
|
|
|
static bool trans_UQRSHL_rr(DisasContext *s, arg_mve_sh_rr *a)
|
|
{
|
|
return do_mve_sh_rr(s, a, gen_helper_mve_uqrshl);
|
|
}
|
|
|
|
/*
|
|
* Multiply and multiply accumulate
|
|
*/
|
|
|
|
static bool op_mla(DisasContext *s, arg_s_rrrr *a, bool add)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
tcg_gen_mul_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
if (add) {
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_add_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
if (a->s) {
|
|
gen_logic_CC(t1);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MUL(DisasContext *s, arg_MUL *a)
|
|
{
|
|
return op_mla(s, a, false);
|
|
}
|
|
|
|
static bool trans_MLA(DisasContext *s, arg_MLA *a)
|
|
{
|
|
return op_mla(s, a, true);
|
|
}
|
|
|
|
static bool trans_MLS(DisasContext *s, arg_MLS *a)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
tcg_gen_mul_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_sub_i32(t1, t2, t1);
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool op_mlal(DisasContext *s, arg_s_rrrr *a, bool uns, bool add)
|
|
{
|
|
TCGv_i32 t0, t1, t2, t3;
|
|
|
|
t0 = load_reg(s, a->rm);
|
|
t1 = load_reg(s, a->rn);
|
|
if (uns) {
|
|
tcg_gen_mulu2_i32(t0, t1, t0, t1);
|
|
} else {
|
|
tcg_gen_muls2_i32(t0, t1, t0, t1);
|
|
}
|
|
if (add) {
|
|
t2 = load_reg(s, a->ra);
|
|
t3 = load_reg(s, a->rd);
|
|
tcg_gen_add2_i32(t0, t1, t0, t1, t2, t3);
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t3);
|
|
}
|
|
if (a->s) {
|
|
gen_logicq_cc(t0, t1);
|
|
}
|
|
store_reg(s, a->ra, t0);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_UMULL(DisasContext *s, arg_UMULL *a)
|
|
{
|
|
return op_mlal(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMULL(DisasContext *s, arg_SMULL *a)
|
|
{
|
|
return op_mlal(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_UMLAL(DisasContext *s, arg_UMLAL *a)
|
|
{
|
|
return op_mlal(s, a, true, true);
|
|
}
|
|
|
|
static bool trans_SMLAL(DisasContext *s, arg_SMLAL *a)
|
|
{
|
|
return op_mlal(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_UMAAL(DisasContext *s, arg_UMAAL *a)
|
|
{
|
|
TCGv_i32 t0, t1, t2, zero;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rm);
|
|
t1 = load_reg(s, a->rn);
|
|
tcg_gen_mulu2_i32(t0, t1, t0, t1);
|
|
zero = tcg_const_i32(0);
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero);
|
|
tcg_temp_free_i32(t2);
|
|
t2 = load_reg(s, a->rd);
|
|
tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero);
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(zero);
|
|
store_reg(s, a->ra, t0);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Saturating addition and subtraction
|
|
*/
|
|
|
|
static bool op_qaddsub(DisasContext *s, arg_rrr *a, bool add, bool doub)
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rm);
|
|
t1 = load_reg(s, a->rn);
|
|
if (doub) {
|
|
gen_helper_add_saturate(t1, cpu_env, t1, t1);
|
|
}
|
|
if (add) {
|
|
gen_helper_add_saturate(t0, cpu_env, t0, t1);
|
|
} else {
|
|
gen_helper_sub_saturate(t0, cpu_env, t0, t1);
|
|
}
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
return true;
|
|
}
|
|
|
|
#define DO_QADDSUB(NAME, ADD, DOUB) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ \
|
|
return op_qaddsub(s, a, ADD, DOUB); \
|
|
}
|
|
|
|
DO_QADDSUB(QADD, true, false)
|
|
DO_QADDSUB(QSUB, false, false)
|
|
DO_QADDSUB(QDADD, true, true)
|
|
DO_QADDSUB(QDSUB, false, true)
|
|
|
|
#undef DO_QADDSUB
|
|
|
|
/*
|
|
* Halfword multiply and multiply accumulate
|
|
*/
|
|
|
|
static bool op_smlaxxx(DisasContext *s, arg_rrrr *a,
|
|
int add_long, bool nt, bool mt)
|
|
{
|
|
TCGv_i32 t0, t1, tl, th;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
gen_mulxy(t0, t1, nt, mt);
|
|
tcg_temp_free_i32(t1);
|
|
|
|
switch (add_long) {
|
|
case 0:
|
|
store_reg(s, a->rd, t0);
|
|
break;
|
|
case 1:
|
|
t1 = load_reg(s, a->ra);
|
|
gen_helper_add_setq(t0, cpu_env, t0, t1);
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
break;
|
|
case 2:
|
|
tl = load_reg(s, a->ra);
|
|
th = load_reg(s, a->rd);
|
|
/* Sign-extend the 32-bit product to 64 bits. */
|
|
t1 = tcg_temp_new_i32();
|
|
tcg_gen_sari_i32(t1, t0, 31);
|
|
tcg_gen_add2_i32(tl, th, tl, th, t0, t1);
|
|
tcg_temp_free_i32(t0);
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->ra, tl);
|
|
store_reg(s, a->rd, th);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define DO_SMLAX(NAME, add, nt, mt) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \
|
|
{ \
|
|
return op_smlaxxx(s, a, add, nt, mt); \
|
|
}
|
|
|
|
DO_SMLAX(SMULBB, 0, 0, 0)
|
|
DO_SMLAX(SMULBT, 0, 0, 1)
|
|
DO_SMLAX(SMULTB, 0, 1, 0)
|
|
DO_SMLAX(SMULTT, 0, 1, 1)
|
|
|
|
DO_SMLAX(SMLABB, 1, 0, 0)
|
|
DO_SMLAX(SMLABT, 1, 0, 1)
|
|
DO_SMLAX(SMLATB, 1, 1, 0)
|
|
DO_SMLAX(SMLATT, 1, 1, 1)
|
|
|
|
DO_SMLAX(SMLALBB, 2, 0, 0)
|
|
DO_SMLAX(SMLALBT, 2, 0, 1)
|
|
DO_SMLAX(SMLALTB, 2, 1, 0)
|
|
DO_SMLAX(SMLALTT, 2, 1, 1)
|
|
|
|
#undef DO_SMLAX
|
|
|
|
static bool op_smlawx(DisasContext *s, arg_rrrr *a, bool add, bool mt)
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
|
|
if (!ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
/*
|
|
* Since the nominal result is product<47:16>, shift the 16-bit
|
|
* input up by 16 bits, so that the result is at product<63:32>.
|
|
*/
|
|
if (mt) {
|
|
tcg_gen_andi_i32(t1, t1, 0xffff0000);
|
|
} else {
|
|
tcg_gen_shli_i32(t1, t1, 16);
|
|
}
|
|
tcg_gen_muls2_i32(t0, t1, t0, t1);
|
|
tcg_temp_free_i32(t0);
|
|
if (add) {
|
|
t0 = load_reg(s, a->ra);
|
|
gen_helper_add_setq(t1, cpu_env, t1, t0);
|
|
tcg_temp_free_i32(t0);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
#define DO_SMLAWX(NAME, add, mt) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \
|
|
{ \
|
|
return op_smlawx(s, a, add, mt); \
|
|
}
|
|
|
|
DO_SMLAWX(SMULWB, 0, 0)
|
|
DO_SMLAWX(SMULWT, 0, 1)
|
|
DO_SMLAWX(SMLAWB, 1, 0)
|
|
DO_SMLAWX(SMLAWT, 1, 1)
|
|
|
|
#undef DO_SMLAWX
|
|
|
|
/*
|
|
* MSR (immediate) and hints
|
|
*/
|
|
|
|
static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
|
|
{
|
|
/*
|
|
* When running single-threaded TCG code, use the helper to ensure that
|
|
* the next round-robin scheduled vCPU gets a crack. When running in
|
|
* MTTCG we don't generate jumps to the helper as it won't affect the
|
|
* scheduling of other vCPUs.
|
|
*/
|
|
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_YIELD;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_WFE(DisasContext *s, arg_WFE *a)
|
|
{
|
|
/*
|
|
* When running single-threaded TCG code, use the helper to ensure that
|
|
* the next round-robin scheduled vCPU gets a crack. In MTTCG mode we
|
|
* just skip this instruction. Currently the SEV/SEVL instructions,
|
|
* which are *one* of many ways to wake the CPU from WFE, are not
|
|
* implemented so we can't sleep like WFI does.
|
|
*/
|
|
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_WFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_WFI(DisasContext *s, arg_WFI *a)
|
|
{
|
|
/* For WFI, halt the vCPU until an IRQ. */
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_WFI;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_NOP(DisasContext *s, arg_NOP *a)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_imm(DisasContext *s, arg_MSR_imm *a)
|
|
{
|
|
uint32_t val = ror32(a->imm, a->rot * 2);
|
|
uint32_t mask = msr_mask(s, a->mask, a->r);
|
|
|
|
if (gen_set_psr_im(s, mask, a->r, val)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Cyclic Redundancy Check
|
|
*/
|
|
|
|
static bool op_crc32(DisasContext *s, arg_rrr *a, bool c, MemOp sz)
|
|
{
|
|
TCGv_i32 t1, t2, t3;
|
|
|
|
if (!dc_isar_feature(aa32_crc32, s)) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
switch (sz) {
|
|
case MO_8:
|
|
gen_uxtb(t2);
|
|
break;
|
|
case MO_16:
|
|
gen_uxth(t2);
|
|
break;
|
|
case MO_32:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
t3 = tcg_const_i32(1 << sz);
|
|
if (c) {
|
|
gen_helper_crc32c(t1, t1, t2, t3);
|
|
} else {
|
|
gen_helper_crc32(t1, t1, t2, t3);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t3);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
#define DO_CRC32(NAME, c, sz) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ return op_crc32(s, a, c, sz); }
|
|
|
|
DO_CRC32(CRC32B, false, MO_8)
|
|
DO_CRC32(CRC32H, false, MO_16)
|
|
DO_CRC32(CRC32W, false, MO_32)
|
|
DO_CRC32(CRC32CB, true, MO_8)
|
|
DO_CRC32(CRC32CH, true, MO_16)
|
|
DO_CRC32(CRC32CW, true, MO_32)
|
|
|
|
#undef DO_CRC32
|
|
|
|
/*
|
|
* Miscellaneous instructions
|
|
*/
|
|
|
|
static bool trans_MRS_bank(DisasContext *s, arg_MRS_bank *a)
|
|
{
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
gen_mrs_banked(s, a->r, a->sysm, a->rd);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_bank(DisasContext *s, arg_MSR_bank *a)
|
|
{
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
gen_msr_banked(s, a->r, a->sysm, a->rn);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MRS_reg(DisasContext *s, arg_MRS_reg *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (a->r) {
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
tmp = load_cpu_field(spsr);
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
gen_helper_cpsr_read(tmp, cpu_env);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_reg(DisasContext *s, arg_MSR_reg *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
uint32_t mask = msr_mask(s, a->mask, a->r);
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
tmp = load_reg(s, a->rn);
|
|
if (gen_set_psr(s, mask, a->r, tmp)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
tmp = tcg_const_i32(a->sysm);
|
|
gen_helper_v7m_mrs(tmp, cpu_env, tmp);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a)
|
|
{
|
|
TCGv_i32 addr, reg;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
addr = tcg_const_i32((a->mask << 10) | a->sysm);
|
|
reg = load_reg(s, a->rn);
|
|
gen_helper_v7m_msr(cpu_env, addr, reg);
|
|
tcg_temp_free_i32(addr);
|
|
tcg_temp_free_i32(reg);
|
|
/* If we wrote to CONTROL, the EL might have changed */
|
|
gen_helper_rebuild_hflags_m32_newel(cpu_env);
|
|
gen_lookup_tb(s);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BX(DisasContext *s, arg_BX *a)
|
|
{
|
|
if (!ENABLE_ARCH_4T) {
|
|
return false;
|
|
}
|
|
gen_bx_excret(s, load_reg(s, a->rm));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BXJ(DisasContext *s, arg_BXJ *a)
|
|
{
|
|
if (!ENABLE_ARCH_5J || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
/* Trivial implementation equivalent to bx. */
|
|
gen_bx(s, load_reg(s, a->rm));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLX_r(DisasContext *s, arg_BLX_r *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
tmp = load_reg(s, a->rm);
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb);
|
|
gen_bx(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* BXNS/BLXNS: only exist for v8M with the security extensions,
|
|
* and always UNDEF if NonSecure. We don't implement these in
|
|
* the user-only mode either (in theory you can use them from
|
|
* Secure User mode but they are too tied in to system emulation).
|
|
*/
|
|
static bool trans_BXNS(DisasContext *s, arg_BXNS *a)
|
|
{
|
|
if (!s->v8m_secure || IS_USER_ONLY) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_bxns(s, a->rm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLXNS(DisasContext *s, arg_BLXNS *a)
|
|
{
|
|
if (!s->v8m_secure || IS_USER_ONLY) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_blxns(s, a->rm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CLZ(DisasContext *s, arg_CLZ *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
tmp = load_reg(s, a->rm);
|
|
tcg_gen_clzi_i32(tmp, tmp, 32);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ERET(DisasContext *s, arg_ERET *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V7VE)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
if (s->current_el == 2) {
|
|
/* ERET from Hyp uses ELR_Hyp, not LR */
|
|
tmp = load_cpu_field(elr_el[2]);
|
|
} else {
|
|
tmp = load_reg(s, 14);
|
|
}
|
|
gen_exception_return(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_HLT(DisasContext *s, arg_HLT *a)
|
|
{
|
|
gen_hlt(s, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BKPT(DisasContext *s, arg_BKPT *a)
|
|
{
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
/* BKPT is OK with ECI set and leaves it untouched */
|
|
s->eci_handled = true;
|
|
if (arm_dc_feature(s, ARM_FEATURE_M) &&
|
|
semihosting_enabled() &&
|
|
#ifndef CONFIG_USER_ONLY
|
|
!IS_USER(s) &&
|
|
#endif
|
|
(a->imm == 0xab)) {
|
|
gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
|
|
} else {
|
|
gen_exception_bkpt_insn(s, syn_aa32_bkpt(a->imm, false));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_HVC(DisasContext *s, arg_HVC *a)
|
|
{
|
|
if (!ENABLE_ARCH_7 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_hvc(s, a->imm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMC(DisasContext *s, arg_SMC *a)
|
|
{
|
|
if (!ENABLE_ARCH_6K || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_smc(s);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SG(DisasContext *s, arg_SG *a)
|
|
{
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* SG (v8M only)
|
|
* The bulk of the behaviour for this instruction is implemented
|
|
* in v7m_handle_execute_nsc(), which deals with the insn when
|
|
* it is executed by a CPU in non-secure state from memory
|
|
* which is Secure & NonSecure-Callable.
|
|
* Here we only need to handle the remaining cases:
|
|
* * in NS memory (including the "security extension not
|
|
* implemented" case) : NOP
|
|
* * in S memory but CPU already secure (clear IT bits)
|
|
* We know that the attribute for the memory this insn is
|
|
* in must match the current CPU state, because otherwise
|
|
* get_phys_addr_pmsav8 would have generated an exception.
|
|
*/
|
|
if (s->v8m_secure) {
|
|
/* Like the IT insn, we don't need to generate any code */
|
|
s->condexec_cond = 0;
|
|
s->condexec_mask = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_TT(DisasContext *s, arg_TT *a)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
return false;
|
|
}
|
|
if (a->rd == 13 || a->rd == 15 || a->rn == 15) {
|
|
/* We UNDEF for these UNPREDICTABLE cases */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
if (a->A && !s->v8m_secure) {
|
|
/* This case is UNDEFINED. */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tmp = tcg_const_i32((a->A << 1) | a->T);
|
|
gen_helper_v7m_tt(tmp, cpu_env, addr, tmp);
|
|
tcg_temp_free_i32(addr);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Load/store register index
|
|
*/
|
|
|
|
static ISSInfo make_issinfo(DisasContext *s, int rd, bool p, bool w)
|
|
{
|
|
ISSInfo ret;
|
|
|
|
/* ISS not valid if writeback */
|
|
if (p && !w) {
|
|
ret = rd;
|
|
if (s->base.pc_next - s->pc_curr == 2) {
|
|
ret |= ISSIs16Bit;
|
|
}
|
|
} else {
|
|
ret = ISSInvalid;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static TCGv_i32 op_addr_rr_pre(DisasContext *s, arg_ldst_rr *a)
|
|
{
|
|
TCGv_i32 addr = load_reg(s, a->rn);
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
gen_helper_v8m_stackcheck(cpu_env, addr);
|
|
}
|
|
|
|
if (a->p) {
|
|
TCGv_i32 ofs = load_reg(s, a->rm);
|
|
gen_arm_shift_im(ofs, a->shtype, a->shimm, 0);
|
|
if (a->u) {
|
|
tcg_gen_add_i32(addr, addr, ofs);
|
|
} else {
|
|
tcg_gen_sub_i32(addr, addr, ofs);
|
|
}
|
|
tcg_temp_free_i32(ofs);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static void op_addr_rr_post(DisasContext *s, arg_ldst_rr *a,
|
|
TCGv_i32 addr, int address_offset)
|
|
{
|
|
if (!a->p) {
|
|
TCGv_i32 ofs = load_reg(s, a->rm);
|
|
gen_arm_shift_im(ofs, a->shtype, a->shimm, 0);
|
|
if (a->u) {
|
|
tcg_gen_add_i32(addr, addr, ofs);
|
|
} else {
|
|
tcg_gen_sub_i32(addr, addr, ofs);
|
|
}
|
|
tcg_temp_free_i32(ofs);
|
|
} else if (!a->w) {
|
|
tcg_temp_free_i32(addr);
|
|
return;
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, address_offset);
|
|
store_reg(s, a->rn, addr);
|
|
}
|
|
|
|
static bool op_load_rr(DisasContext *s, arg_ldst_rr *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
|
|
/*
|
|
* Perform base writeback before the loaded value to
|
|
* ensure correct behavior with overlapping index registers.
|
|
*/
|
|
op_addr_rr_post(s, a, addr, 0);
|
|
store_reg_from_load(s, a->rt, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool op_store_rr(DisasContext *s, arg_ldst_rr *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite;
|
|
TCGv_i32 addr, tmp;
|
|
|
|
/*
|
|
* In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it
|
|
* is either UNPREDICTABLE or has defined behaviour
|
|
*/
|
|
if (s->thumb && a->rn == 15) {
|
|
return false;
|
|
}
|
|
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, mop);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_rr_post(s, a, addr, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDRD_rr(DisasContext *s, arg_ldst_rr *a)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
store_reg(s, a->rt, tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
store_reg(s, a->rt + 1, tmp);
|
|
|
|
/* LDRD w/ base writeback is undefined if the registers overlap. */
|
|
op_addr_rr_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STRD_rr(DisasContext *s, arg_ldst_rr *a)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = load_reg(s, a->rt + 1);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_rr_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Load/store immediate index
|
|
*/
|
|
|
|
static TCGv_i32 op_addr_ri_pre(DisasContext *s, arg_ldst_ri *a)
|
|
{
|
|
int ofs = a->imm;
|
|
|
|
if (!a->u) {
|
|
ofs = -ofs;
|
|
}
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
/*
|
|
* Stackcheck. Here we know 'addr' is the current SP;
|
|
* U is set if we're moving SP up, else down. It is
|
|
* UNKNOWN whether the limit check triggers when SP starts
|
|
* below the limit and ends up above it; we chose to do so.
|
|
*/
|
|
if (!a->u) {
|
|
TCGv_i32 newsp = tcg_temp_new_i32();
|
|
tcg_gen_addi_i32(newsp, cpu_R[13], ofs);
|
|
gen_helper_v8m_stackcheck(cpu_env, newsp);
|
|
tcg_temp_free_i32(newsp);
|
|
} else {
|
|
gen_helper_v8m_stackcheck(cpu_env, cpu_R[13]);
|
|
}
|
|
}
|
|
|
|
return add_reg_for_lit(s, a->rn, a->p ? ofs : 0);
|
|
}
|
|
|
|
static void op_addr_ri_post(DisasContext *s, arg_ldst_ri *a,
|
|
TCGv_i32 addr, int address_offset)
|
|
{
|
|
if (!a->p) {
|
|
if (a->u) {
|
|
address_offset += a->imm;
|
|
} else {
|
|
address_offset -= a->imm;
|
|
}
|
|
} else if (!a->w) {
|
|
tcg_temp_free_i32(addr);
|
|
return;
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, address_offset);
|
|
store_reg(s, a->rn, addr);
|
|
}
|
|
|
|
static bool op_load_ri(DisasContext *s, arg_ldst_ri *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
|
|
/*
|
|
* Perform base writeback before the loaded value to
|
|
* ensure correct behavior with overlapping index registers.
|
|
*/
|
|
op_addr_ri_post(s, a, addr, 0);
|
|
store_reg_from_load(s, a->rt, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool op_store_ri(DisasContext *s, arg_ldst_ri *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite;
|
|
TCGv_i32 addr, tmp;
|
|
|
|
/*
|
|
* In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it
|
|
* is either UNPREDICTABLE or has defined behaviour
|
|
*/
|
|
if (s->thumb && a->rn == 15) {
|
|
return false;
|
|
}
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, mop);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_ri_post(s, a, addr, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool op_ldrd_ri(DisasContext *s, arg_ldst_ri *a, int rt2)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
store_reg(s, a->rt, tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
store_reg(s, rt2, tmp);
|
|
|
|
/* LDRD w/ base writeback is undefined if the registers overlap. */
|
|
op_addr_ri_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDRD_ri_a32(DisasContext *s, arg_ldst_ri *a)
|
|
{
|
|
if (!ENABLE_ARCH_5TE || (a->rt & 1)) {
|
|
return false;
|
|
}
|
|
return op_ldrd_ri(s, a, a->rt + 1);
|
|
}
|
|
|
|
static bool trans_LDRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a)
|
|
{
|
|
arg_ldst_ri b = {
|
|
.u = a->u, .w = a->w, .p = a->p,
|
|
.rn = a->rn, .rt = a->rt, .imm = a->imm
|
|
};
|
|
return op_ldrd_ri(s, &b, a->rt2);
|
|
}
|
|
|
|
static bool op_strd_ri(DisasContext *s, arg_ldst_ri *a, int rt2)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = load_reg(s, rt2);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_ri_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STRD_ri_a32(DisasContext *s, arg_ldst_ri *a)
|
|
{
|
|
if (!ENABLE_ARCH_5TE || (a->rt & 1)) {
|
|
return false;
|
|
}
|
|
return op_strd_ri(s, a, a->rt + 1);
|
|
}
|
|
|
|
static bool trans_STRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a)
|
|
{
|
|
arg_ldst_ri b = {
|
|
.u = a->u, .w = a->w, .p = a->p,
|
|
.rn = a->rn, .rt = a->rt, .imm = a->imm
|
|
};
|
|
return op_strd_ri(s, &b, a->rt2);
|
|
}
|
|
|
|
#define DO_LDST(NAME, WHICH, MEMOP) \
|
|
static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \
|
|
{ \
|
|
return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \
|
|
} \
|
|
static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \
|
|
{ \
|
|
return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \
|
|
} \
|
|
static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \
|
|
{ \
|
|
return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \
|
|
} \
|
|
static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \
|
|
{ \
|
|
return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \
|
|
}
|
|
|
|
DO_LDST(LDR, load, MO_UL)
|
|
DO_LDST(LDRB, load, MO_UB)
|
|
DO_LDST(LDRH, load, MO_UW)
|
|
DO_LDST(LDRSB, load, MO_SB)
|
|
DO_LDST(LDRSH, load, MO_SW)
|
|
|
|
DO_LDST(STR, store, MO_UL)
|
|
DO_LDST(STRB, store, MO_UB)
|
|
DO_LDST(STRH, store, MO_UW)
|
|
|
|
#undef DO_LDST
|
|
|
|
/*
|
|
* Synchronization primitives
|
|
*/
|
|
|
|
static bool op_swp(DisasContext *s, arg_SWP *a, MemOp opc)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
TCGv taddr;
|
|
|
|
opc |= s->be_data;
|
|
addr = load_reg(s, a->rn);
|
|
taddr = gen_aa32_addr(s, addr, opc);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
tmp = load_reg(s, a->rt2);
|
|
tcg_gen_atomic_xchg_i32(tmp, taddr, tmp, get_mem_index(s), opc);
|
|
tcg_temp_free(taddr);
|
|
|
|
store_reg(s, a->rt, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SWP(DisasContext *s, arg_SWP *a)
|
|
{
|
|
return op_swp(s, a, MO_UL | MO_ALIGN);
|
|
}
|
|
|
|
static bool trans_SWPB(DisasContext *s, arg_SWP *a)
|
|
{
|
|
return op_swp(s, a, MO_UB);
|
|
}
|
|
|
|
/*
|
|
* Load/Store Exclusive and Load-Acquire/Store-Release
|
|
*/
|
|
|
|
static bool op_strex(DisasContext *s, arg_STREX *a, MemOp mop, bool rel)
|
|
{
|
|
TCGv_i32 addr;
|
|
/* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */
|
|
bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M);
|
|
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rd == 15 || a->rn == 15 || a->rt == 15
|
|
|| a->rd == a->rn || a->rd == a->rt
|
|
|| (!v8a && s->thumb && (a->rd == 13 || a->rt == 13))
|
|
|| (mop == MO_64
|
|
&& (a->rt2 == 15
|
|
|| a->rd == a->rt2
|
|
|| (!v8a && s->thumb && a->rt2 == 13)))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
if (rel) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
}
|
|
|
|
addr = tcg_temp_local_new_i32();
|
|
load_reg_var(s, addr, a->rn);
|
|
tcg_gen_addi_i32(addr, addr, a->imm);
|
|
|
|
gen_store_exclusive(s, a->rd, a->rt, a->rt2, addr, mop);
|
|
tcg_temp_free_i32(addr);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STREX(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_32, false);
|
|
}
|
|
|
|
static bool trans_STREXD_a32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_strex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_STREXD_t32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
return op_strex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_STREXB(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_8, false);
|
|
}
|
|
|
|
static bool trans_STREXH(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_16, false);
|
|
}
|
|
|
|
static bool trans_STLEX(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_32, true);
|
|
}
|
|
|
|
static bool trans_STLEXD_a32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_strex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_STLEXD_t32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_STLEXB(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_8, true);
|
|
}
|
|
|
|
static bool trans_STLEXH(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_16, true);
|
|
}
|
|
|
|
static bool op_stl(DisasContext *s, arg_STL *a, MemOp mop)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rn == 15 || a->rt == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tmp = load_reg(s, a->rt);
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN);
|
|
disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel | ISSIsWrite);
|
|
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(addr);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STL(DisasContext *s, arg_STL *a)
|
|
{
|
|
return op_stl(s, a, MO_UL);
|
|
}
|
|
|
|
static bool trans_STLB(DisasContext *s, arg_STL *a)
|
|
{
|
|
return op_stl(s, a, MO_UB);
|
|
}
|
|
|
|
static bool trans_STLH(DisasContext *s, arg_STL *a)
|
|
{
|
|
return op_stl(s, a, MO_UW);
|
|
}
|
|
|
|
static bool op_ldrex(DisasContext *s, arg_LDREX *a, MemOp mop, bool acq)
|
|
{
|
|
TCGv_i32 addr;
|
|
/* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */
|
|
bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M);
|
|
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rn == 15 || a->rt == 15
|
|
|| (!v8a && s->thumb && a->rt == 13)
|
|
|| (mop == MO_64
|
|
&& (a->rt2 == 15 || a->rt == a->rt2
|
|
|| (!v8a && s->thumb && a->rt2 == 13)))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = tcg_temp_local_new_i32();
|
|
load_reg_var(s, addr, a->rn);
|
|
tcg_gen_addi_i32(addr, addr, a->imm);
|
|
|
|
gen_load_exclusive(s, a->rt, a->rt2, addr, mop);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
if (acq) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDREX(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_32, false);
|
|
}
|
|
|
|
static bool trans_LDREXD_a32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_ldrex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_LDREXD_t32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
return op_ldrex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_LDREXB(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_8, false);
|
|
}
|
|
|
|
static bool trans_LDREXH(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_16, false);
|
|
}
|
|
|
|
static bool trans_LDAEX(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_32, true);
|
|
}
|
|
|
|
static bool trans_LDAEXD_a32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_ldrex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_LDAEXD_t32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_LDAEXB(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_8, true);
|
|
}
|
|
|
|
static bool trans_LDAEXH(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_16, true);
|
|
}
|
|
|
|
static bool op_lda(DisasContext *s, arg_LDA *a, MemOp mop)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rn == 15 || a->rt == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN);
|
|
disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
store_reg(s, a->rt, tmp);
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDA(DisasContext *s, arg_LDA *a)
|
|
{
|
|
return op_lda(s, a, MO_UL);
|
|
}
|
|
|
|
static bool trans_LDAB(DisasContext *s, arg_LDA *a)
|
|
{
|
|
return op_lda(s, a, MO_UB);
|
|
}
|
|
|
|
static bool trans_LDAH(DisasContext *s, arg_LDA *a)
|
|
{
|
|
return op_lda(s, a, MO_UW);
|
|
}
|
|
|
|
/*
|
|
* Media instructions
|
|
*/
|
|
|
|
static bool trans_USADA8(DisasContext *s, arg_USADA8 *a)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
gen_helper_usad8(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
if (a->ra != 15) {
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_add_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool op_bfx(DisasContext *s, arg_UBFX *a, bool u)
|
|
{
|
|
TCGv_i32 tmp;
|
|
int width = a->widthm1 + 1;
|
|
int shift = a->lsb;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
if (shift + width > 32) {
|
|
/* UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rn);
|
|
if (u) {
|
|
tcg_gen_extract_i32(tmp, tmp, shift, width);
|
|
} else {
|
|
tcg_gen_sextract_i32(tmp, tmp, shift, width);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SBFX(DisasContext *s, arg_SBFX *a)
|
|
{
|
|
return op_bfx(s, a, false);
|
|
}
|
|
|
|
static bool trans_UBFX(DisasContext *s, arg_UBFX *a)
|
|
{
|
|
return op_bfx(s, a, true);
|
|
}
|
|
|
|
static bool trans_BFCI(DisasContext *s, arg_BFCI *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
int msb = a->msb, lsb = a->lsb;
|
|
int width;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
if (msb < lsb) {
|
|
/* UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
width = msb + 1 - lsb;
|
|
if (a->rn == 15) {
|
|
/* BFC */
|
|
tmp = tcg_const_i32(0);
|
|
} else {
|
|
/* BFI */
|
|
tmp = load_reg(s, a->rn);
|
|
}
|
|
if (width != 32) {
|
|
TCGv_i32 tmp2 = load_reg(s, a->rd);
|
|
tcg_gen_deposit_i32(tmp, tmp2, tmp, lsb, width);
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_UDF(DisasContext *s, arg_UDF *a)
|
|
{
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Parallel addition and subtraction
|
|
*/
|
|
|
|
static bool op_par_addsub(DisasContext *s, arg_rrr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
|
|
gen(t0, t0, t1);
|
|
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
return true;
|
|
}
|
|
|
|
static bool op_par_addsub_ge(DisasContext *s, arg_rrr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32,
|
|
TCGv_i32, TCGv_ptr))
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
TCGv_ptr ge;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
|
|
ge = tcg_temp_new_ptr();
|
|
tcg_gen_addi_ptr(ge, cpu_env, offsetof(CPUARMState, GE));
|
|
gen(t0, t0, t1, ge);
|
|
|
|
tcg_temp_free_ptr(ge);
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
return true;
|
|
}
|
|
|
|
#define DO_PAR_ADDSUB(NAME, helper) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ \
|
|
return op_par_addsub(s, a, helper); \
|
|
}
|
|
|
|
#define DO_PAR_ADDSUB_GE(NAME, helper) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ \
|
|
return op_par_addsub_ge(s, a, helper); \
|
|
}
|
|
|
|
DO_PAR_ADDSUB_GE(SADD16, gen_helper_sadd16)
|
|
DO_PAR_ADDSUB_GE(SASX, gen_helper_saddsubx)
|
|
DO_PAR_ADDSUB_GE(SSAX, gen_helper_ssubaddx)
|
|
DO_PAR_ADDSUB_GE(SSUB16, gen_helper_ssub16)
|
|
DO_PAR_ADDSUB_GE(SADD8, gen_helper_sadd8)
|
|
DO_PAR_ADDSUB_GE(SSUB8, gen_helper_ssub8)
|
|
|
|
DO_PAR_ADDSUB_GE(UADD16, gen_helper_uadd16)
|
|
DO_PAR_ADDSUB_GE(UASX, gen_helper_uaddsubx)
|
|
DO_PAR_ADDSUB_GE(USAX, gen_helper_usubaddx)
|
|
DO_PAR_ADDSUB_GE(USUB16, gen_helper_usub16)
|
|
DO_PAR_ADDSUB_GE(UADD8, gen_helper_uadd8)
|
|
DO_PAR_ADDSUB_GE(USUB8, gen_helper_usub8)
|
|
|
|
DO_PAR_ADDSUB(QADD16, gen_helper_qadd16)
|
|
DO_PAR_ADDSUB(QASX, gen_helper_qaddsubx)
|
|
DO_PAR_ADDSUB(QSAX, gen_helper_qsubaddx)
|
|
DO_PAR_ADDSUB(QSUB16, gen_helper_qsub16)
|
|
DO_PAR_ADDSUB(QADD8, gen_helper_qadd8)
|
|
DO_PAR_ADDSUB(QSUB8, gen_helper_qsub8)
|
|
|
|
DO_PAR_ADDSUB(UQADD16, gen_helper_uqadd16)
|
|
DO_PAR_ADDSUB(UQASX, gen_helper_uqaddsubx)
|
|
DO_PAR_ADDSUB(UQSAX, gen_helper_uqsubaddx)
|
|
DO_PAR_ADDSUB(UQSUB16, gen_helper_uqsub16)
|
|
DO_PAR_ADDSUB(UQADD8, gen_helper_uqadd8)
|
|
DO_PAR_ADDSUB(UQSUB8, gen_helper_uqsub8)
|
|
|
|
DO_PAR_ADDSUB(SHADD16, gen_helper_shadd16)
|
|
DO_PAR_ADDSUB(SHASX, gen_helper_shaddsubx)
|
|
DO_PAR_ADDSUB(SHSAX, gen_helper_shsubaddx)
|
|
DO_PAR_ADDSUB(SHSUB16, gen_helper_shsub16)
|
|
DO_PAR_ADDSUB(SHADD8, gen_helper_shadd8)
|
|
DO_PAR_ADDSUB(SHSUB8, gen_helper_shsub8)
|
|
|
|
DO_PAR_ADDSUB(UHADD16, gen_helper_uhadd16)
|
|
DO_PAR_ADDSUB(UHASX, gen_helper_uhaddsubx)
|
|
DO_PAR_ADDSUB(UHSAX, gen_helper_uhsubaddx)
|
|
DO_PAR_ADDSUB(UHSUB16, gen_helper_uhsub16)
|
|
DO_PAR_ADDSUB(UHADD8, gen_helper_uhadd8)
|
|
DO_PAR_ADDSUB(UHSUB8, gen_helper_uhsub8)
|
|
|
|
#undef DO_PAR_ADDSUB
|
|
#undef DO_PAR_ADDSUB_GE
|
|
|
|
/*
|
|
* Packing, unpacking, saturation, and reversal
|
|
*/
|
|
|
|
static bool trans_PKH(DisasContext *s, arg_PKH *a)
|
|
{
|
|
TCGv_i32 tn, tm;
|
|
int shift = a->imm;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
tn = load_reg(s, a->rn);
|
|
tm = load_reg(s, a->rm);
|
|
if (a->tb) {
|
|
/* PKHTB */
|
|
if (shift == 0) {
|
|
shift = 31;
|
|
}
|
|
tcg_gen_sari_i32(tm, tm, shift);
|
|
tcg_gen_deposit_i32(tn, tn, tm, 0, 16);
|
|
} else {
|
|
/* PKHBT */
|
|
tcg_gen_shli_i32(tm, tm, shift);
|
|
tcg_gen_deposit_i32(tn, tm, tn, 0, 16);
|
|
}
|
|
tcg_temp_free_i32(tm);
|
|
store_reg(s, a->rd, tn);
|
|
return true;
|
|
}
|
|
|
|
static bool op_sat(DisasContext *s, arg_sat *a,
|
|
void (*gen)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 tmp, satimm;
|
|
int shift = a->imm;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rn);
|
|
if (a->sh) {
|
|
tcg_gen_sari_i32(tmp, tmp, shift ? shift : 31);
|
|
} else {
|
|
tcg_gen_shli_i32(tmp, tmp, shift);
|
|
}
|
|
|
|
satimm = tcg_const_i32(a->satimm);
|
|
gen(tmp, cpu_env, tmp, satimm);
|
|
tcg_temp_free_i32(satimm);
|
|
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SSAT(DisasContext *s, arg_sat *a)
|
|
{
|
|
return op_sat(s, a, gen_helper_ssat);
|
|
}
|
|
|
|
static bool trans_USAT(DisasContext *s, arg_sat *a)
|
|
{
|
|
return op_sat(s, a, gen_helper_usat);
|
|
}
|
|
|
|
static bool trans_SSAT16(DisasContext *s, arg_sat *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_sat(s, a, gen_helper_ssat16);
|
|
}
|
|
|
|
static bool trans_USAT16(DisasContext *s, arg_sat *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_sat(s, a, gen_helper_usat16);
|
|
}
|
|
|
|
static bool op_xta(DisasContext *s, arg_rrr_rot *a,
|
|
void (*gen_extract)(TCGv_i32, TCGv_i32),
|
|
void (*gen_add)(TCGv_i32, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
/*
|
|
* TODO: In many cases we could do a shift instead of a rotate.
|
|
* Combined with a simple extend, that becomes an extract.
|
|
*/
|
|
tcg_gen_rotri_i32(tmp, tmp, a->rot * 8);
|
|
gen_extract(tmp, tmp);
|
|
|
|
if (a->rn != 15) {
|
|
TCGv_i32 tmp2 = load_reg(s, a->rn);
|
|
gen_add(tmp, tmp, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SXTAB(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext8s_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_SXTAH(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext16s_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_SXTAB16(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_xta(s, a, gen_helper_sxtb16, gen_add16);
|
|
}
|
|
|
|
static bool trans_UXTAB(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext8u_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_UXTAH(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext16u_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_UXTAB16(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_xta(s, a, gen_helper_uxtb16, gen_add16);
|
|
}
|
|
|
|
static bool trans_SEL(DisasContext *s, arg_rrr *a)
|
|
{
|
|
TCGv_i32 t1, t2, t3;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
t3 = tcg_temp_new_i32();
|
|
tcg_gen_ld_i32(t3, cpu_env, offsetof(CPUARMState, GE));
|
|
gen_helper_sel_flags(t1, t3, t1, t2);
|
|
tcg_temp_free_i32(t3);
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool op_rr(DisasContext *s, arg_rr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
gen(tmp, tmp);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_REV(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, tcg_gen_bswap32_i32);
|
|
}
|
|
|
|
static bool trans_REV16(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, gen_rev16);
|
|
}
|
|
|
|
static bool trans_REVSH(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, gen_revsh);
|
|
}
|
|
|
|
static bool trans_RBIT(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, gen_helper_rbit);
|
|
}
|
|
|
|
/*
|
|
* Signed multiply, signed and unsigned divide
|
|
*/
|
|
|
|
static bool op_smlad(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
if (m_swap) {
|
|
gen_swap_half(t2, t2);
|
|
}
|
|
gen_smul_dual(t1, t2);
|
|
|
|
if (sub) {
|
|
/*
|
|
* This subtraction cannot overflow, so we can do a simple
|
|
* 32-bit subtraction and then a possible 32-bit saturating
|
|
* addition of Ra.
|
|
*/
|
|
tcg_gen_sub_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
|
|
if (a->ra != 15) {
|
|
t2 = load_reg(s, a->ra);
|
|
gen_helper_add_setq(t1, cpu_env, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
} else if (a->ra == 15) {
|
|
/* Single saturation-checking addition */
|
|
gen_helper_add_setq(t1, cpu_env, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
} else {
|
|
/*
|
|
* We need to add the products and Ra together and then
|
|
* determine whether the final result overflowed. Doing
|
|
* this as two separate add-and-check-overflow steps incorrectly
|
|
* sets Q for cases like (-32768 * -32768) + (-32768 * -32768) + -1.
|
|
* Do all the arithmetic at 64-bits and then check for overflow.
|
|
*/
|
|
TCGv_i64 p64, q64;
|
|
TCGv_i32 t3, qf, one;
|
|
|
|
p64 = tcg_temp_new_i64();
|
|
q64 = tcg_temp_new_i64();
|
|
tcg_gen_ext_i32_i64(p64, t1);
|
|
tcg_gen_ext_i32_i64(q64, t2);
|
|
tcg_gen_add_i64(p64, p64, q64);
|
|
load_reg_var(s, t2, a->ra);
|
|
tcg_gen_ext_i32_i64(q64, t2);
|
|
tcg_gen_add_i64(p64, p64, q64);
|
|
tcg_temp_free_i64(q64);
|
|
|
|
tcg_gen_extr_i64_i32(t1, t2, p64);
|
|
tcg_temp_free_i64(p64);
|
|
/*
|
|
* t1 is the low half of the result which goes into Rd.
|
|
* We have overflow and must set Q if the high half (t2)
|
|
* is different from the sign-extension of t1.
|
|
*/
|
|
t3 = tcg_temp_new_i32();
|
|
tcg_gen_sari_i32(t3, t1, 31);
|
|
qf = load_cpu_field(QF);
|
|
one = tcg_const_i32(1);
|
|
tcg_gen_movcond_i32(TCG_COND_NE, qf, t2, t3, one, qf);
|
|
store_cpu_field(qf, QF);
|
|
tcg_temp_free_i32(one);
|
|
tcg_temp_free_i32(t3);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMLAD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_SMLADX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMLSD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_SMLSDX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, true, true);
|
|
}
|
|
|
|
static bool op_smlald(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
TCGv_i64 l1, l2;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
if (m_swap) {
|
|
gen_swap_half(t2, t2);
|
|
}
|
|
gen_smul_dual(t1, t2);
|
|
|
|
l1 = tcg_temp_new_i64();
|
|
l2 = tcg_temp_new_i64();
|
|
tcg_gen_ext_i32_i64(l1, t1);
|
|
tcg_gen_ext_i32_i64(l2, t2);
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t2);
|
|
|
|
if (sub) {
|
|
tcg_gen_sub_i64(l1, l1, l2);
|
|
} else {
|
|
tcg_gen_add_i64(l1, l1, l2);
|
|
}
|
|
tcg_temp_free_i64(l2);
|
|
|
|
gen_addq(s, l1, a->ra, a->rd);
|
|
gen_storeq_reg(s, a->ra, a->rd, l1);
|
|
tcg_temp_free_i64(l1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMLALD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_SMLALDX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMLSLD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_SMLSLDX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, true, true);
|
|
}
|
|
|
|
static bool op_smmla(DisasContext *s, arg_rrrr *a, bool round, bool sub)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
tcg_gen_muls2_i32(t2, t1, t1, t2);
|
|
|
|
if (a->ra != 15) {
|
|
TCGv_i32 t3 = load_reg(s, a->ra);
|
|
if (sub) {
|
|
/*
|
|
* For SMMLS, we need a 64-bit subtract. Borrow caused by
|
|
* a non-zero multiplicand lowpart, and the correct result
|
|
* lowpart for rounding.
|
|
*/
|
|
TCGv_i32 zero = tcg_const_i32(0);
|
|
tcg_gen_sub2_i32(t2, t1, zero, t3, t2, t1);
|
|
tcg_temp_free_i32(zero);
|
|
} else {
|
|
tcg_gen_add_i32(t1, t1, t3);
|
|
}
|
|
tcg_temp_free_i32(t3);
|
|
}
|
|
if (round) {
|
|
/*
|
|
* Adding 0x80000000 to the 64-bit quantity means that we have
|
|
* carry in to the high word when the low word has the msb set.
|
|
*/
|
|
tcg_gen_shri_i32(t2, t2, 31);
|
|
tcg_gen_add_i32(t1, t1, t2);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMMLA(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_SMMLAR(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMMLS(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_SMMLSR(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, true, true);
|
|
}
|
|
|
|
static bool op_div(DisasContext *s, arg_rrr *a, bool u)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (s->thumb
|
|
? !dc_isar_feature(aa32_thumb_div, s)
|
|
: !dc_isar_feature(aa32_arm_div, s)) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
if (u) {
|
|
gen_helper_udiv(t1, t1, t2);
|
|
} else {
|
|
gen_helper_sdiv(t1, t1, t2);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SDIV(DisasContext *s, arg_rrr *a)
|
|
{
|
|
return op_div(s, a, false);
|
|
}
|
|
|
|
static bool trans_UDIV(DisasContext *s, arg_rrr *a)
|
|
{
|
|
return op_div(s, a, true);
|
|
}
|
|
|
|
/*
|
|
* Block data transfer
|
|
*/
|
|
|
|
static TCGv_i32 op_addr_block_pre(DisasContext *s, arg_ldst_block *a, int n)
|
|
{
|
|
TCGv_i32 addr = load_reg(s, a->rn);
|
|
|
|
if (a->b) {
|
|
if (a->i) {
|
|
/* pre increment */
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
} else {
|
|
/* pre decrement */
|
|
tcg_gen_addi_i32(addr, addr, -(n * 4));
|
|
}
|
|
} else if (!a->i && n != 1) {
|
|
/* post decrement */
|
|
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
|
|
}
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
/*
|
|
* If the writeback is incrementing SP rather than
|
|
* decrementing it, and the initial SP is below the
|
|
* stack limit but the final written-back SP would
|
|
* be above, then then we must not perform any memory
|
|
* accesses, but it is IMPDEF whether we generate
|
|
* an exception. We choose to do so in this case.
|
|
* At this point 'addr' is the lowest address, so
|
|
* either the original SP (if incrementing) or our
|
|
* final SP (if decrementing), so that's what we check.
|
|
*/
|
|
gen_helper_v8m_stackcheck(cpu_env, addr);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static void op_addr_block_post(DisasContext *s, arg_ldst_block *a,
|
|
TCGv_i32 addr, int n)
|
|
{
|
|
if (a->w) {
|
|
/* write back */
|
|
if (!a->b) {
|
|
if (a->i) {
|
|
/* post increment */
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
} else {
|
|
/* post decrement */
|
|
tcg_gen_addi_i32(addr, addr, -(n * 4));
|
|
}
|
|
} else if (!a->i && n != 1) {
|
|
/* pre decrement */
|
|
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
|
|
}
|
|
store_reg(s, a->rn, addr);
|
|
} else {
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
}
|
|
|
|
static bool op_stm(DisasContext *s, arg_ldst_block *a, int min_n)
|
|
{
|
|
int i, j, n, list, mem_idx;
|
|
bool user = a->u;
|
|
TCGv_i32 addr, tmp, tmp2;
|
|
|
|
if (user) {
|
|
/* STM (user) */
|
|
if (IS_USER(s)) {
|
|
/* Only usable in supervisor mode. */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
list = a->list;
|
|
n = ctpop16(list);
|
|
if (n < min_n || a->rn == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
s->eci_handled = true;
|
|
|
|
addr = op_addr_block_pre(s, a, n);
|
|
mem_idx = get_mem_index(s);
|
|
|
|
for (i = j = 0; i < 16; i++) {
|
|
if (!(list & (1 << i))) {
|
|
continue;
|
|
}
|
|
|
|
if (user && i != 15) {
|
|
tmp = tcg_temp_new_i32();
|
|
tmp2 = tcg_const_i32(i);
|
|
gen_helper_get_user_reg(tmp, cpu_env, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
} else {
|
|
tmp = load_reg(s, i);
|
|
}
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
/* No need to add after the last transfer. */
|
|
if (++j != n) {
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
}
|
|
}
|
|
|
|
op_addr_block_post(s, a, addr, n);
|
|
clear_eci_state(s);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STM(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* BitCount(list) < 1 is UNPREDICTABLE */
|
|
return op_stm(s, a, 1);
|
|
}
|
|
|
|
static bool trans_STM_t32(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* Writeback register in register list is UNPREDICTABLE for T32. */
|
|
if (a->w && (a->list & (1 << a->rn))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* BitCount(list) < 2 is UNPREDICTABLE */
|
|
return op_stm(s, a, 2);
|
|
}
|
|
|
|
static bool do_ldm(DisasContext *s, arg_ldst_block *a, int min_n)
|
|
{
|
|
int i, j, n, list, mem_idx;
|
|
bool loaded_base;
|
|
bool user = a->u;
|
|
bool exc_return = false;
|
|
TCGv_i32 addr, tmp, tmp2, loaded_var;
|
|
|
|
if (user) {
|
|
/* LDM (user), LDM (exception return) */
|
|
if (IS_USER(s)) {
|
|
/* Only usable in supervisor mode. */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
if (extract32(a->list, 15, 1)) {
|
|
exc_return = true;
|
|
user = false;
|
|
} else {
|
|
/* LDM (user) does not allow writeback. */
|
|
if (a->w) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
list = a->list;
|
|
n = ctpop16(list);
|
|
if (n < min_n || a->rn == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
s->eci_handled = true;
|
|
|
|
addr = op_addr_block_pre(s, a, n);
|
|
mem_idx = get_mem_index(s);
|
|
loaded_base = false;
|
|
loaded_var = NULL;
|
|
|
|
for (i = j = 0; i < 16; i++) {
|
|
if (!(list & (1 << i))) {
|
|
continue;
|
|
}
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN);
|
|
if (user) {
|
|
tmp2 = tcg_const_i32(i);
|
|
gen_helper_set_user_reg(cpu_env, tmp2, tmp);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
} else if (i == a->rn) {
|
|
loaded_var = tmp;
|
|
loaded_base = true;
|
|
} else if (i == 15 && exc_return) {
|
|
store_pc_exc_ret(s, tmp);
|
|
} else {
|
|
store_reg_from_load(s, i, tmp);
|
|
}
|
|
|
|
/* No need to add after the last transfer. */
|
|
if (++j != n) {
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
}
|
|
}
|
|
|
|
op_addr_block_post(s, a, addr, n);
|
|
|
|
if (loaded_base) {
|
|
/* Note that we reject base == pc above. */
|
|
store_reg(s, a->rn, loaded_var);
|
|
}
|
|
|
|
if (exc_return) {
|
|
/* Restore CPSR from SPSR. */
|
|
tmp = load_cpu_field(spsr);
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
gen_io_start();
|
|
}
|
|
gen_helper_cpsr_write_eret(cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
/* Must exit loop to check un-masked IRQs */
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
clear_eci_state(s);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDM_a32(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/*
|
|
* Writeback register in register list is UNPREDICTABLE
|
|
* for ArchVersion() >= 7. Prior to v7, A32 would write
|
|
* an UNKNOWN value to the base register.
|
|
*/
|
|
if (ENABLE_ARCH_7 && a->w && (a->list & (1 << a->rn))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* BitCount(list) < 1 is UNPREDICTABLE */
|
|
return do_ldm(s, a, 1);
|
|
}
|
|
|
|
static bool trans_LDM_t32(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* Writeback register in register list is UNPREDICTABLE for T32. */
|
|
if (a->w && (a->list & (1 << a->rn))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* BitCount(list) < 2 is UNPREDICTABLE */
|
|
return do_ldm(s, a, 2);
|
|
}
|
|
|
|
static bool trans_LDM_t16(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* Writeback is conditional on the base register not being loaded. */
|
|
a->w = !(a->list & (1 << a->rn));
|
|
/* BitCount(list) < 1 is UNPREDICTABLE */
|
|
return do_ldm(s, a, 1);
|
|
}
|
|
|
|
static bool trans_CLRM(DisasContext *s, arg_CLRM *a)
|
|
{
|
|
int i;
|
|
TCGv_i32 zero;
|
|
|
|
if (!dc_isar_feature(aa32_m_sec_state, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (extract32(a->list, 13, 1)) {
|
|
return false;
|
|
}
|
|
|
|
if (!a->list) {
|
|
/* UNPREDICTABLE; we choose to UNDEF */
|
|
return false;
|
|
}
|
|
|
|
s->eci_handled = true;
|
|
|
|
zero = tcg_const_i32(0);
|
|
for (i = 0; i < 15; i++) {
|
|
if (extract32(a->list, i, 1)) {
|
|
/* Clear R[i] */
|
|
tcg_gen_mov_i32(cpu_R[i], zero);
|
|
}
|
|
}
|
|
if (extract32(a->list, 15, 1)) {
|
|
/*
|
|
* Clear APSR (by calling the MSR helper with the same argument
|
|
* as for "MSR APSR_nzcvqg, Rn": mask = 0b1100, SYSM=0)
|
|
*/
|
|
TCGv_i32 maskreg = tcg_const_i32(0xc << 8);
|
|
gen_helper_v7m_msr(cpu_env, maskreg, zero);
|
|
tcg_temp_free_i32(maskreg);
|
|
}
|
|
tcg_temp_free_i32(zero);
|
|
clear_eci_state(s);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Branch, branch with link
|
|
*/
|
|
|
|
static bool trans_B(DisasContext *s, arg_i *a)
|
|
{
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_B_cond_thumb(DisasContext *s, arg_ci *a)
|
|
{
|
|
/* This has cond from encoding, required to be outside IT block. */
|
|
if (a->cond >= 0xe) {
|
|
return false;
|
|
}
|
|
if (s->condexec_mask) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
arm_skip_unless(s, a->cond);
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BL(DisasContext *s, arg_i *a)
|
|
{
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb);
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLX_i(DisasContext *s, arg_BLX_i *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
/*
|
|
* BLX <imm> would be useless on M-profile; the encoding space
|
|
* is used for other insns from v8.1M onward, and UNDEFs before that.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
|
|
/* For A32, ARM_FEATURE_V5 is checked near the start of the uncond block. */
|
|
if (s->thumb && (a->imm & 2)) {
|
|
return false;
|
|
}
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb);
|
|
tmp = tcg_const_i32(!s->thumb);
|
|
store_cpu_field(tmp, thumb);
|
|
gen_jmp(s, (read_pc(s) & ~3) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BL_BLX_prefix(DisasContext *s, arg_BL_BLX_prefix *a)
|
|
{
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2));
|
|
tcg_gen_movi_i32(cpu_R[14], read_pc(s) + (a->imm << 12));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BL_suffix(DisasContext *s, arg_BL_suffix *a)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2));
|
|
tcg_gen_addi_i32(tmp, cpu_R[14], (a->imm << 1) | 1);
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | 1);
|
|
gen_bx(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLX_suffix(DisasContext *s, arg_BLX_suffix *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2));
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_addi_i32(tmp, cpu_R[14], a->imm << 1);
|
|
tcg_gen_andi_i32(tmp, tmp, 0xfffffffc);
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | 1);
|
|
gen_bx(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BF(DisasContext *s, arg_BF *a)
|
|
{
|
|
/*
|
|
* M-profile branch future insns. The architecture permits an
|
|
* implementation to implement these as NOPs (equivalent to
|
|
* discarding the LO_BRANCH_INFO cache immediately), and we
|
|
* take that IMPDEF option because for QEMU a "real" implementation
|
|
* would be complicated and wouldn't execute any faster.
|
|
*/
|
|
if (!dc_isar_feature(aa32_lob, s)) {
|
|
return false;
|
|
}
|
|
if (a->boff == 0) {
|
|
/* SEE "Related encodings" (loop insns) */
|
|
return false;
|
|
}
|
|
/* Handle as NOP */
|
|
return true;
|
|
}
|
|
|
|
static bool trans_DLS(DisasContext *s, arg_DLS *a)
|
|
{
|
|
/* M-profile low-overhead loop start */
|
|
TCGv_i32 tmp;
|
|
|
|
if (!dc_isar_feature(aa32_lob, s)) {
|
|
return false;
|
|
}
|
|
if (a->rn == 13 || a->rn == 15) {
|
|
/*
|
|
* For DLSTP rn == 15 is a related encoding (LCTP); the
|
|
* other cases caught by this condition are all
|
|
* CONSTRAINED UNPREDICTABLE: we choose to UNDEF
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
if (a->size != 4) {
|
|
/* DLSTP */
|
|
if (!dc_isar_feature(aa32_mve, s)) {
|
|
return false;
|
|
}
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* Not a while loop: set LR to the count, and set LTPSIZE for DLSTP */
|
|
tmp = load_reg(s, a->rn);
|
|
store_reg(s, 14, tmp);
|
|
if (a->size != 4) {
|
|
/* DLSTP: set FPSCR.LTPSIZE */
|
|
tmp = tcg_const_i32(a->size);
|
|
store_cpu_field(tmp, v7m.ltpsize);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_WLS(DisasContext *s, arg_WLS *a)
|
|
{
|
|
/* M-profile low-overhead while-loop start */
|
|
TCGv_i32 tmp;
|
|
TCGLabel *nextlabel;
|
|
|
|
if (!dc_isar_feature(aa32_lob, s)) {
|
|
return false;
|
|
}
|
|
if (a->rn == 13 || a->rn == 15) {
|
|
/*
|
|
* For WLSTP rn == 15 is a related encoding (LE); the
|
|
* other cases caught by this condition are all
|
|
* CONSTRAINED UNPREDICTABLE: we choose to UNDEF
|
|
*/
|
|
return false;
|
|
}
|
|
if (s->condexec_mask) {
|
|
/*
|
|
* WLS in an IT block is CONSTRAINED UNPREDICTABLE;
|
|
* we choose to UNDEF, because otherwise our use of
|
|
* gen_goto_tb(1) would clash with the use of TB exit 1
|
|
* in the dc->condjmp condition-failed codepath in
|
|
* arm_tr_tb_stop() and we'd get an assertion.
|
|
*/
|
|
return false;
|
|
}
|
|
if (a->size != 4) {
|
|
/* WLSTP */
|
|
if (!dc_isar_feature(aa32_mve, s)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* We need to check that the FPU is enabled here, but mustn't
|
|
* call vfp_access_check() to do that because we don't want to
|
|
* do the lazy state preservation in the "loop count is zero" case.
|
|
* Do the check-and-raise-exception by hand.
|
|
*/
|
|
if (s->fp_excp_el) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_NOCP,
|
|
syn_uncategorized(), s->fp_excp_el);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
nextlabel = gen_new_label();
|
|
tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_R[a->rn], 0, nextlabel);
|
|
tmp = load_reg(s, a->rn);
|
|
store_reg(s, 14, tmp);
|
|
if (a->size != 4) {
|
|
/*
|
|
* WLSTP: set FPSCR.LTPSIZE. This requires that we do the
|
|
* lazy state preservation, new FP context creation, etc,
|
|
* that vfp_access_check() does. We know that the actual
|
|
* access check will succeed (ie it won't generate code that
|
|
* throws an exception) because we did that check by hand earlier.
|
|
*/
|
|
bool ok = vfp_access_check(s);
|
|
assert(ok);
|
|
tmp = tcg_const_i32(a->size);
|
|
store_cpu_field(tmp, v7m.ltpsize);
|
|
}
|
|
gen_jmp_tb(s, s->base.pc_next, 1);
|
|
|
|
gen_set_label(nextlabel);
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LE(DisasContext *s, arg_LE *a)
|
|
{
|
|
/*
|
|
* M-profile low-overhead loop end. The architecture permits an
|
|
* implementation to discard the LO_BRANCH_INFO cache at any time,
|
|
* and we take the IMPDEF option to never set it in the first place
|
|
* (equivalent to always discarding it immediately), because for QEMU
|
|
* a "real" implementation would be complicated and wouldn't execute
|
|
* any faster.
|
|
*/
|
|
TCGv_i32 tmp;
|
|
TCGLabel *loopend;
|
|
bool fpu_active;
|
|
|
|
if (!dc_isar_feature(aa32_lob, s)) {
|
|
return false;
|
|
}
|
|
if (a->f && a->tp) {
|
|
return false;
|
|
}
|
|
if (s->condexec_mask) {
|
|
/*
|
|
* LE in an IT block is CONSTRAINED UNPREDICTABLE;
|
|
* we choose to UNDEF, because otherwise our use of
|
|
* gen_goto_tb(1) would clash with the use of TB exit 1
|
|
* in the dc->condjmp condition-failed codepath in
|
|
* arm_tr_tb_stop() and we'd get an assertion.
|
|
*/
|
|
return false;
|
|
}
|
|
if (a->tp) {
|
|
/* LETP */
|
|
if (!dc_isar_feature(aa32_mve, s)) {
|
|
return false;
|
|
}
|
|
if (!vfp_access_check(s)) {
|
|
s->eci_handled = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* LE/LETP is OK with ECI set and leaves it untouched */
|
|
s->eci_handled = true;
|
|
|
|
/*
|
|
* With MVE, LTPSIZE might not be 4, and we must emit an INVSTATE
|
|
* UsageFault exception for the LE insn in that case. Note that we
|
|
* are not directly checking FPSCR.LTPSIZE but instead check the
|
|
* pseudocode LTPSIZE() function, which returns 4 if the FPU is
|
|
* not currently active (ie ActiveFPState() returns false). We
|
|
* can identify not-active purely from our TB state flags, as the
|
|
* FPU is active only if:
|
|
* the FPU is enabled
|
|
* AND lazy state preservation is not active
|
|
* AND we do not need a new fp context (this is the ASPEN/FPCA check)
|
|
*
|
|
* Usually we don't need to care about this distinction between
|
|
* LTPSIZE and FPSCR.LTPSIZE, because the code in vfp_access_check()
|
|
* will either take an exception or clear the conditions that make
|
|
* the FPU not active. But LE is an unusual case of a non-FP insn
|
|
* that looks at LTPSIZE.
|
|
*/
|
|
fpu_active = !s->fp_excp_el && !s->v7m_lspact && !s->v7m_new_fp_ctxt_needed;
|
|
|
|
if (!a->tp && dc_isar_feature(aa32_mve, s) && fpu_active) {
|
|
/* Need to do a runtime check for LTPSIZE != 4 */
|
|
TCGLabel *skipexc = gen_new_label();
|
|
tmp = load_cpu_field(v7m.ltpsize);
|
|
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 4, skipexc);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
|
|
default_exception_el(s));
|
|
gen_set_label(skipexc);
|
|
}
|
|
|
|
if (a->f) {
|
|
/* Loop-forever: just jump back to the loop start */
|
|
gen_jmp(s, read_pc(s) - a->imm);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Not loop-forever. If LR <= loop-decrement-value this is the last loop.
|
|
* For LE, we know at this point that LTPSIZE must be 4 and the
|
|
* loop decrement value is 1. For LETP we need to calculate the decrement
|
|
* value from LTPSIZE.
|
|
*/
|
|
loopend = gen_new_label();
|
|
if (!a->tp) {
|
|
tcg_gen_brcondi_i32(TCG_COND_LEU, cpu_R[14], 1, loopend);
|
|
tcg_gen_addi_i32(cpu_R[14], cpu_R[14], -1);
|
|
} else {
|
|
/*
|
|
* Decrement by 1 << (4 - LTPSIZE). We need to use a TCG local
|
|
* so that decr stays live after the brcondi.
|
|
*/
|
|
TCGv_i32 decr = tcg_temp_local_new_i32();
|
|
TCGv_i32 ltpsize = load_cpu_field(v7m.ltpsize);
|
|
tcg_gen_sub_i32(decr, tcg_constant_i32(4), ltpsize);
|
|
tcg_gen_shl_i32(decr, tcg_constant_i32(1), decr);
|
|
tcg_temp_free_i32(ltpsize);
|
|
|
|
tcg_gen_brcond_i32(TCG_COND_LEU, cpu_R[14], decr, loopend);
|
|
|
|
tcg_gen_sub_i32(cpu_R[14], cpu_R[14], decr);
|
|
tcg_temp_free_i32(decr);
|
|
}
|
|
/* Jump back to the loop start */
|
|
gen_jmp(s, read_pc(s) - a->imm);
|
|
|
|
gen_set_label(loopend);
|
|
if (a->tp) {
|
|
/* Exits from tail-pred loops must reset LTPSIZE to 4 */
|
|
tmp = tcg_const_i32(4);
|
|
store_cpu_field(tmp, v7m.ltpsize);
|
|
}
|
|
/* End TB, continuing to following insn */
|
|
gen_jmp_tb(s, s->base.pc_next, 1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LCTP(DisasContext *s, arg_LCTP *a)
|
|
{
|
|
/*
|
|
* M-profile Loop Clear with Tail Predication. Since our implementation
|
|
* doesn't cache branch information, all we need to do is reset
|
|
* FPSCR.LTPSIZE to 4.
|
|
*/
|
|
TCGv_i32 ltpsize;
|
|
|
|
if (!dc_isar_feature(aa32_lob, s) ||
|
|
!dc_isar_feature(aa32_mve, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
ltpsize = tcg_const_i32(4);
|
|
store_cpu_field(ltpsize, v7m.ltpsize);
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool op_tbranch(DisasContext *s, arg_tbranch *a, bool half)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
if (half) {
|
|
tcg_gen_add_i32(tmp, tmp, tmp);
|
|
}
|
|
addr = load_reg(s, a->rn);
|
|
tcg_gen_add_i32(addr, addr, tmp);
|
|
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), half ? MO_UW : MO_UB);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
tcg_gen_add_i32(tmp, tmp, tmp);
|
|
tcg_gen_addi_i32(tmp, tmp, read_pc(s));
|
|
store_reg(s, 15, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_TBB(DisasContext *s, arg_tbranch *a)
|
|
{
|
|
return op_tbranch(s, a, false);
|
|
}
|
|
|
|
static bool trans_TBH(DisasContext *s, arg_tbranch *a)
|
|
{
|
|
return op_tbranch(s, a, true);
|
|
}
|
|
|
|
static bool trans_CBZ(DisasContext *s, arg_CBZ *a)
|
|
{
|
|
TCGv_i32 tmp = load_reg(s, a->rn);
|
|
|
|
arm_gen_condlabel(s);
|
|
tcg_gen_brcondi_i32(a->nz ? TCG_COND_EQ : TCG_COND_NE,
|
|
tmp, 0, s->condlabel);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Supervisor call - both T32 & A32 come here so we need to check
|
|
* which mode we are in when checking for semihosting.
|
|
*/
|
|
|
|
static bool trans_SVC(DisasContext *s, arg_SVC *a)
|
|
{
|
|
const uint32_t semihost_imm = s->thumb ? 0xab : 0x123456;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M) && semihosting_enabled() &&
|
|
#ifndef CONFIG_USER_ONLY
|
|
!IS_USER(s) &&
|
|
#endif
|
|
(a->imm == semihost_imm)) {
|
|
gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
|
|
} else {
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->svc_imm = a->imm;
|
|
s->base.is_jmp = DISAS_SWI;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Unconditional system instructions
|
|
*/
|
|
|
|
static bool trans_RFE(DisasContext *s, arg_RFE *a)
|
|
{
|
|
static const int8_t pre_offset[4] = {
|
|
/* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4
|
|
};
|
|
static const int8_t post_offset[4] = {
|
|
/* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0
|
|
};
|
|
TCGv_i32 addr, t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tcg_gen_addi_i32(addr, addr, pre_offset[a->pu]);
|
|
|
|
/* Load PC into tmp and CPSR into tmp2. */
|
|
t1 = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, t1, addr, get_mem_index(s), MO_UL | MO_ALIGN);
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
t2 = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, t2, addr, get_mem_index(s), MO_UL | MO_ALIGN);
|
|
|
|
if (a->w) {
|
|
/* Base writeback. */
|
|
tcg_gen_addi_i32(addr, addr, post_offset[a->pu]);
|
|
store_reg(s, a->rn, addr);
|
|
} else {
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
gen_rfe(s, t1, t2);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SRS(DisasContext *s, arg_SRS *a)
|
|
{
|
|
if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
gen_srs(s, a->mode, a->pu, a->w);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CPS(DisasContext *s, arg_CPS *a)
|
|
{
|
|
uint32_t mask, val;
|
|
|
|
if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
/* Implemented as NOP in user mode. */
|
|
return true;
|
|
}
|
|
/* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */
|
|
|
|
mask = val = 0;
|
|
if (a->imod & 2) {
|
|
if (a->A) {
|
|
mask |= CPSR_A;
|
|
}
|
|
if (a->I) {
|
|
mask |= CPSR_I;
|
|
}
|
|
if (a->F) {
|
|
mask |= CPSR_F;
|
|
}
|
|
if (a->imod & 1) {
|
|
val |= mask;
|
|
}
|
|
}
|
|
if (a->M) {
|
|
mask |= CPSR_M;
|
|
val |= a->mode;
|
|
}
|
|
if (mask) {
|
|
gen_set_psr_im(s, mask, 0, val);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a)
|
|
{
|
|
TCGv_i32 tmp, addr, el;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
/* Implemented as NOP in user mode. */
|
|
return true;
|
|
}
|
|
|
|
tmp = tcg_const_i32(a->im);
|
|
/* FAULTMASK */
|
|
if (a->F) {
|
|
addr = tcg_const_i32(19);
|
|
gen_helper_v7m_msr(cpu_env, addr, tmp);
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
/* PRIMASK */
|
|
if (a->I) {
|
|
addr = tcg_const_i32(16);
|
|
gen_helper_v7m_msr(cpu_env, addr, tmp);
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
el = tcg_const_i32(s->current_el);
|
|
gen_helper_rebuild_hflags_m32(cpu_env, el);
|
|
tcg_temp_free_i32(el);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_lookup_tb(s);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Clear-Exclusive, Barriers
|
|
*/
|
|
|
|
static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
|
|
{
|
|
if (s->thumb
|
|
? !ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)
|
|
: !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
gen_clrex(s);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_DSB(DisasContext *s, arg_DSB *a)
|
|
{
|
|
if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_DMB(DisasContext *s, arg_DMB *a)
|
|
{
|
|
return trans_DSB(s, NULL);
|
|
}
|
|
|
|
static bool trans_ISB(DisasContext *s, arg_ISB *a)
|
|
{
|
|
if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* We need to break the TB after this insn to execute
|
|
* self-modifying code correctly and also to take
|
|
* any pending interrupts immediately.
|
|
*/
|
|
gen_goto_tb(s, 0, s->base.pc_next);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SB(DisasContext *s, arg_SB *a)
|
|
{
|
|
if (!dc_isar_feature(aa32_sb, s)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* TODO: There is no speculation barrier opcode
|
|
* for TCG; MB and end the TB instead.
|
|
*/
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
|
|
gen_goto_tb(s, 0, s->base.pc_next);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SETEND(DisasContext *s, arg_SETEND *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
if (a->E != (s->be_data == MO_BE)) {
|
|
gen_helper_setend(cpu_env);
|
|
s->base.is_jmp = DISAS_UPDATE_EXIT;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Preload instructions
|
|
* All are nops, contingent on the appropriate arch level.
|
|
*/
|
|
|
|
static bool trans_PLD(DisasContext *s, arg_PLD *a)
|
|
{
|
|
return ENABLE_ARCH_5TE;
|
|
}
|
|
|
|
static bool trans_PLDW(DisasContext *s, arg_PLD *a)
|
|
{
|
|
return arm_dc_feature(s, ARM_FEATURE_V7MP);
|
|
}
|
|
|
|
static bool trans_PLI(DisasContext *s, arg_PLD *a)
|
|
{
|
|
return ENABLE_ARCH_7;
|
|
}
|
|
|
|
/*
|
|
* If-then
|
|
*/
|
|
|
|
static bool trans_IT(DisasContext *s, arg_IT *a)
|
|
{
|
|
int cond_mask = a->cond_mask;
|
|
|
|
/*
|
|
* No actual code generated for this insn, just setup state.
|
|
*
|
|
* Combinations of firstcond and mask which set up an 0b1111
|
|
* condition are UNPREDICTABLE; we take the CONSTRAINED
|
|
* UNPREDICTABLE choice to treat 0b1111 the same as 0b1110,
|
|
* i.e. both meaning "execute always".
|
|
*/
|
|
s->condexec_cond = (cond_mask >> 4) & 0xe;
|
|
s->condexec_mask = cond_mask & 0x1f;
|
|
return true;
|
|
}
|
|
|
|
/* v8.1M CSEL/CSINC/CSNEG/CSINV */
|
|
static bool trans_CSEL(DisasContext *s, arg_CSEL *a)
|
|
{
|
|
TCGv_i32 rn, rm, zero;
|
|
DisasCompare c;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rm == 13) {
|
|
/* SEE "Related encodings" (MVE shifts) */
|
|
return false;
|
|
}
|
|
|
|
if (a->rd == 13 || a->rd == 15 || a->rn == 13 || a->fcond >= 14) {
|
|
/* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */
|
|
return false;
|
|
}
|
|
|
|
/* In this insn input reg fields of 0b1111 mean "zero", not "PC" */
|
|
if (a->rn == 15) {
|
|
rn = tcg_const_i32(0);
|
|
} else {
|
|
rn = load_reg(s, a->rn);
|
|
}
|
|
if (a->rm == 15) {
|
|
rm = tcg_const_i32(0);
|
|
} else {
|
|
rm = load_reg(s, a->rm);
|
|
}
|
|
|
|
switch (a->op) {
|
|
case 0: /* CSEL */
|
|
break;
|
|
case 1: /* CSINC */
|
|
tcg_gen_addi_i32(rm, rm, 1);
|
|
break;
|
|
case 2: /* CSINV */
|
|
tcg_gen_not_i32(rm, rm);
|
|
break;
|
|
case 3: /* CSNEG */
|
|
tcg_gen_neg_i32(rm, rm);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
arm_test_cc(&c, a->fcond);
|
|
zero = tcg_const_i32(0);
|
|
tcg_gen_movcond_i32(c.cond, rn, c.value, zero, rn, rm);
|
|
arm_free_cc(&c);
|
|
tcg_temp_free_i32(zero);
|
|
|
|
store_reg(s, a->rd, rn);
|
|
tcg_temp_free_i32(rm);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Legacy decoder.
|
|
*/
|
|
|
|
static void disas_arm_insn(DisasContext *s, unsigned int insn)
|
|
{
|
|
unsigned int cond = insn >> 28;
|
|
|
|
/* M variants do not implement ARM mode; this must raise the INVSTATE
|
|
* UsageFault exception.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
|
|
default_exception_el(s));
|
|
return;
|
|
}
|
|
|
|
if (cond == 0xf) {
|
|
/* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we
|
|
* choose to UNDEF. In ARMv5 and above the space is used
|
|
* for miscellaneous unconditional instructions.
|
|
*/
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V5)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
/* Unconditional instructions. */
|
|
/* TODO: Perhaps merge these into one decodetree output file. */
|
|
if (disas_a32_uncond(s, insn) ||
|
|
disas_vfp_uncond(s, insn) ||
|
|
disas_neon_dp(s, insn) ||
|
|
disas_neon_ls(s, insn) ||
|
|
disas_neon_shared(s, insn)) {
|
|
return;
|
|
}
|
|
/* fall back to legacy decoder */
|
|
|
|
if ((insn & 0x0e000f00) == 0x0c000100) {
|
|
if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) {
|
|
/* iWMMXt register transfer. */
|
|
if (extract32(s->c15_cpar, 1, 1)) {
|
|
if (!disas_iwmmxt_insn(s, insn)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
goto illegal_op;
|
|
}
|
|
if (cond != 0xe) {
|
|
/* if not always execute, we generate a conditional jump to
|
|
next instruction */
|
|
arm_skip_unless(s, cond);
|
|
}
|
|
|
|
/* TODO: Perhaps merge these into one decodetree output file. */
|
|
if (disas_a32(s, insn) ||
|
|
disas_vfp(s, insn)) {
|
|
return;
|
|
}
|
|
/* fall back to legacy decoder */
|
|
/* TODO: convert xscale/iwmmxt decoder to decodetree ?? */
|
|
if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) {
|
|
if (((insn & 0x0c000e00) == 0x0c000000)
|
|
&& ((insn & 0x03000000) != 0x03000000)) {
|
|
/* Coprocessor insn, coprocessor 0 or 1 */
|
|
disas_xscale_insn(s, insn);
|
|
return;
|
|
}
|
|
}
|
|
|
|
illegal_op:
|
|
unallocated_encoding(s);
|
|
}
|
|
|
|
static bool thumb_insn_is_16bit(DisasContext *s, uint32_t pc, uint32_t insn)
|
|
{
|
|
/*
|
|
* Return true if this is a 16 bit instruction. We must be precise
|
|
* about this (matching the decode).
|
|
*/
|
|
if ((insn >> 11) < 0x1d) {
|
|
/* Definitely a 16-bit instruction */
|
|
return true;
|
|
}
|
|
|
|
/* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the
|
|
* first half of a 32-bit Thumb insn. Thumb-1 cores might
|
|
* end up actually treating this as two 16-bit insns, though,
|
|
* if it's half of a bl/blx pair that might span a page boundary.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_THUMB2) ||
|
|
arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* Thumb2 cores (including all M profile ones) always treat
|
|
* 32-bit insns as 32-bit.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
if ((insn >> 11) == 0x1e && pc - s->page_start < TARGET_PAGE_SIZE - 3) {
|
|
/* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix
|
|
* is not on the next page; we merge this into a 32-bit
|
|
* insn.
|
|
*/
|
|
return false;
|
|
}
|
|
/* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF);
|
|
* 0b1111_1xxx_xxxx_xxxx : BL suffix;
|
|
* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page
|
|
* -- handle as single 16 bit insn
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/* Translate a 32-bit thumb instruction. */
|
|
static void disas_thumb2_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
/*
|
|
* ARMv6-M supports a limited subset of Thumb2 instructions.
|
|
* Other Thumb1 architectures allow only 32-bit
|
|
* combined BL/BLX prefix and suffix.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_M) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_V7)) {
|
|
int i;
|
|
bool found = false;
|
|
static const uint32_t armv6m_insn[] = {0xf3808000 /* msr */,
|
|
0xf3b08040 /* dsb */,
|
|
0xf3b08050 /* dmb */,
|
|
0xf3b08060 /* isb */,
|
|
0xf3e08000 /* mrs */,
|
|
0xf000d000 /* bl */};
|
|
static const uint32_t armv6m_mask[] = {0xffe0d000,
|
|
0xfff0d0f0,
|
|
0xfff0d0f0,
|
|
0xfff0d0f0,
|
|
0xffe0d000,
|
|
0xf800d000};
|
|
|
|
for (i = 0; i < ARRAY_SIZE(armv6m_insn); i++) {
|
|
if ((insn & armv6m_mask[i]) == armv6m_insn[i]) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
goto illegal_op;
|
|
}
|
|
} else if ((insn & 0xf800e800) != 0xf000e800) {
|
|
if (!arm_dc_feature(s, ARM_FEATURE_THUMB2)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/*
|
|
* NOCP takes precedence over any UNDEF for (almost) the
|
|
* entire wide range of coprocessor-space encodings, so check
|
|
* for it first before proceeding to actually decode eg VFP
|
|
* insns. This decode also handles the few insns which are
|
|
* in copro space but do not have NOCP checks (eg VLLDM, VLSTM).
|
|
*/
|
|
if (disas_m_nocp(s, insn)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if ((insn & 0xef000000) == 0xef000000) {
|
|
/*
|
|
* T32 encodings 0b111p_1111_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq
|
|
* transform into
|
|
* A32 encodings 0b1111_001p_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq
|
|
*/
|
|
uint32_t a32_insn = (insn & 0xe2ffffff) |
|
|
((insn & (1 << 28)) >> 4) | (1 << 28);
|
|
|
|
if (disas_neon_dp(s, a32_insn)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if ((insn & 0xff100000) == 0xf9000000) {
|
|
/*
|
|
* T32 encodings 0b1111_1001_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq
|
|
* transform into
|
|
* A32 encodings 0b1111_0100_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq
|
|
*/
|
|
uint32_t a32_insn = (insn & 0x00ffffff) | 0xf4000000;
|
|
|
|
if (disas_neon_ls(s, a32_insn)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* TODO: Perhaps merge these into one decodetree output file.
|
|
* Note disas_vfp is written for a32 with cond field in the
|
|
* top nibble. The t32 encoding requires 0xe in the top nibble.
|
|
*/
|
|
if (disas_t32(s, insn) ||
|
|
disas_vfp_uncond(s, insn) ||
|
|
disas_neon_shared(s, insn) ||
|
|
disas_mve(s, insn) ||
|
|
((insn >> 28) == 0xe && disas_vfp(s, insn))) {
|
|
return;
|
|
}
|
|
|
|
illegal_op:
|
|
unallocated_encoding(s);
|
|
}
|
|
|
|
static void disas_thumb_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
if (!disas_t16(s, insn)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
}
|
|
|
|
static bool insn_crosses_page(CPUARMState *env, DisasContext *s)
|
|
{
|
|
/* Return true if the insn at dc->base.pc_next might cross a page boundary.
|
|
* (False positives are OK, false negatives are not.)
|
|
* We know this is a Thumb insn, and our caller ensures we are
|
|
* only called if dc->base.pc_next is less than 4 bytes from the page
|
|
* boundary, so we cross the page if the first 16 bits indicate
|
|
* that this is a 32 bit insn.
|
|
*/
|
|
uint16_t insn = arm_lduw_code(env, s->base.pc_next, s->sctlr_b);
|
|
|
|
return !thumb_insn_is_16bit(s, s->base.pc_next, insn);
|
|
}
|
|
|
|
static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cs->env_ptr;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
|
|
uint32_t condexec, core_mmu_idx;
|
|
|
|
dc->isar = &cpu->isar;
|
|
dc->condjmp = 0;
|
|
|
|
dc->aarch64 = 0;
|
|
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
|
|
* there is no secure EL1, so we route exceptions to EL3.
|
|
*/
|
|
dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_el_is_aa64(env, 3);
|
|
dc->thumb = EX_TBFLAG_AM32(tb_flags, THUMB);
|
|
dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
|
|
condexec = EX_TBFLAG_AM32(tb_flags, CONDEXEC);
|
|
/*
|
|
* the CONDEXEC TB flags are CPSR bits [15:10][26:25]. On A-profile this
|
|
* is always the IT bits. On M-profile, some of the reserved encodings
|
|
* of IT are used instead to indicate either ICI or ECI, which
|
|
* indicate partial progress of a restartable insn that was interrupted
|
|
* partway through by an exception:
|
|
* * if CONDEXEC[3:0] != 0b0000 : CONDEXEC is IT bits
|
|
* * if CONDEXEC[3:0] == 0b0000 : CONDEXEC is ICI or ECI bits
|
|
* In all cases CONDEXEC == 0 means "not in IT block or restartable
|
|
* insn, behave normally".
|
|
*/
|
|
dc->eci = dc->condexec_mask = dc->condexec_cond = 0;
|
|
dc->eci_handled = false;
|
|
dc->insn_eci_rewind = NULL;
|
|
if (condexec & 0xf) {
|
|
dc->condexec_mask = (condexec & 0xf) << 1;
|
|
dc->condexec_cond = condexec >> 4;
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
dc->eci = condexec >> 4;
|
|
}
|
|
}
|
|
|
|
core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
|
|
dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
|
|
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
dc->user = (dc->current_el == 0);
|
|
#endif
|
|
dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
|
|
dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
dc->vfp_enabled = 1;
|
|
dc->be_data = MO_TE;
|
|
dc->v7m_handler_mode = EX_TBFLAG_M32(tb_flags, HANDLER);
|
|
dc->v8m_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
|
|
regime_is_secure(env, dc->mmu_idx);
|
|
dc->v8m_stackcheck = EX_TBFLAG_M32(tb_flags, STACKCHECK);
|
|
dc->v8m_fpccr_s_wrong = EX_TBFLAG_M32(tb_flags, FPCCR_S_WRONG);
|
|
dc->v7m_new_fp_ctxt_needed =
|
|
EX_TBFLAG_M32(tb_flags, NEW_FP_CTXT_NEEDED);
|
|
dc->v7m_lspact = EX_TBFLAG_M32(tb_flags, LSPACT);
|
|
} else {
|
|
dc->debug_target_el = EX_TBFLAG_ANY(tb_flags, DEBUG_TARGET_EL);
|
|
dc->sctlr_b = EX_TBFLAG_A32(tb_flags, SCTLR__B);
|
|
dc->hstr_active = EX_TBFLAG_A32(tb_flags, HSTR_ACTIVE);
|
|
dc->ns = EX_TBFLAG_A32(tb_flags, NS);
|
|
dc->vfp_enabled = EX_TBFLAG_A32(tb_flags, VFPEN);
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
dc->c15_cpar = EX_TBFLAG_A32(tb_flags, XSCALE_CPAR);
|
|
} else {
|
|
dc->vec_len = EX_TBFLAG_A32(tb_flags, VECLEN);
|
|
dc->vec_stride = EX_TBFLAG_A32(tb_flags, VECSTRIDE);
|
|
}
|
|
}
|
|
dc->cp_regs = cpu->cp_regs;
|
|
dc->features = env->features;
|
|
|
|
/* Single step state. The code-generation logic here is:
|
|
* SS_ACTIVE == 0:
|
|
* generate code with no special handling for single-stepping (except
|
|
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
|
|
* this happens anyway because those changes are all system register or
|
|
* PSTATE writes).
|
|
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
|
|
* emit code for one insn
|
|
* emit code to clear PSTATE.SS
|
|
* emit code to generate software step exception for completed step
|
|
* end TB (as usual for having generated an exception)
|
|
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
|
|
* emit code to generate a software step exception
|
|
* end the TB
|
|
*/
|
|
dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
|
|
dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
|
|
dc->is_ldex = false;
|
|
|
|
dc->page_start = dc->base.pc_first & TARGET_PAGE_MASK;
|
|
|
|
/* If architectural single step active, limit to 1. */
|
|
if (is_singlestepping(dc)) {
|
|
dc->base.max_insns = 1;
|
|
}
|
|
|
|
/* ARM is a fixed-length ISA. Bound the number of insns to execute
|
|
to those left on the page. */
|
|
if (!dc->thumb) {
|
|
int bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
|
|
dc->base.max_insns = MIN(dc->base.max_insns, bound);
|
|
}
|
|
|
|
cpu_V0 = tcg_temp_new_i64();
|
|
cpu_V1 = tcg_temp_new_i64();
|
|
cpu_M0 = tcg_temp_new_i64();
|
|
}
|
|
|
|
static void arm_tr_tb_start(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
/* A note on handling of the condexec (IT) bits:
|
|
*
|
|
* We want to avoid the overhead of having to write the updated condexec
|
|
* bits back to the CPUARMState for every instruction in an IT block. So:
|
|
* (1) if the condexec bits are not already zero then we write
|
|
* zero back into the CPUARMState now. This avoids complications trying
|
|
* to do it at the end of the block. (For example if we don't do this
|
|
* it's hard to identify whether we can safely skip writing condexec
|
|
* at the end of the TB, which we definitely want to do for the case
|
|
* where a TB doesn't do anything with the IT state at all.)
|
|
* (2) if we are going to leave the TB then we call gen_set_condexec()
|
|
* which will write the correct value into CPUARMState if zero is wrong.
|
|
* This is done both for leaving the TB at the end, and for leaving
|
|
* it because of an exception we know will happen, which is done in
|
|
* gen_exception_insn(). The latter is necessary because we need to
|
|
* leave the TB with the PC/IT state just prior to execution of the
|
|
* instruction which caused the exception.
|
|
* (3) if we leave the TB unexpectedly (eg a data abort on a load)
|
|
* then the CPUARMState will be wrong and we need to reset it.
|
|
* This is handled in the same way as restoration of the
|
|
* PC in these situations; we save the value of the condexec bits
|
|
* for each PC via tcg_gen_insn_start(), and restore_state_to_opc()
|
|
* then uses this to restore them after an exception.
|
|
*
|
|
* Note that there are no instructions which can read the condexec
|
|
* bits, and none which can write non-static values to them, so
|
|
* we don't need to care about whether CPUARMState is correct in the
|
|
* middle of a TB.
|
|
*/
|
|
|
|
/* Reset the conditional execution bits immediately. This avoids
|
|
complications trying to do it at the end of the block. */
|
|
if (dc->condexec_mask || dc->condexec_cond) {
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
store_cpu_field(tmp, condexec_bits);
|
|
}
|
|
}
|
|
|
|
static void arm_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
/*
|
|
* The ECI/ICI bits share PSR bits with the IT bits, so we
|
|
* need to reconstitute the bits from the split-out DisasContext
|
|
* fields here.
|
|
*/
|
|
uint32_t condexec_bits;
|
|
|
|
if (dc->eci) {
|
|
condexec_bits = dc->eci << 4;
|
|
} else {
|
|
condexec_bits = (dc->condexec_cond << 4) | (dc->condexec_mask >> 1);
|
|
}
|
|
tcg_gen_insn_start(dc->base.pc_next, condexec_bits, 0);
|
|
dc->insn_start = tcg_last_op();
|
|
}
|
|
|
|
static bool arm_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
|
|
const CPUBreakpoint *bp)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
if (bp->flags & BP_CPU) {
|
|
gen_set_condexec(dc);
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
gen_helper_check_breakpoints(cpu_env);
|
|
/* End the TB early; it's likely not going to be executed */
|
|
dc->base.is_jmp = DISAS_TOO_MANY;
|
|
} else {
|
|
gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
|
|
/* The address covered by the breakpoint must be
|
|
included in [tb->pc, tb->pc + tb->size) in order
|
|
to for it to be properly cleared -- thus we
|
|
increment the PC here so that the logic setting
|
|
tb->size below does the right thing. */
|
|
/* TODO: Advance PC by correct instruction length to
|
|
* avoid disassembler error messages */
|
|
dc->base.pc_next += 2;
|
|
dc->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool arm_pre_translate_insn(DisasContext *dc)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* Intercept jump to the magic kernel page. */
|
|
if (dc->base.pc_next >= 0xffff0000) {
|
|
/* We always get here via a jump, so know we are not in a
|
|
conditional execution block. */
|
|
gen_exception_internal(EXCP_KERNEL_TRAP);
|
|
dc->base.is_jmp = DISAS_NORETURN;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
if (dc->ss_active && !dc->pstate_ss) {
|
|
/* Singlestep state is Active-pending.
|
|
* If we're in this state at the start of a TB then either
|
|
* a) we just took an exception to an EL which is being debugged
|
|
* and this is the first insn in the exception handler
|
|
* b) debug exceptions were masked and we just unmasked them
|
|
* without changing EL (eg by clearing PSTATE.D)
|
|
* In either case we're going to take a swstep exception in the
|
|
* "did not step an insn" case, and so the syndrome ISV and EX
|
|
* bits should be zero.
|
|
*/
|
|
assert(dc->base.num_insns == 1);
|
|
gen_swstep_exception(dc, 0, 0);
|
|
dc->base.is_jmp = DISAS_NORETURN;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void arm_post_translate_insn(DisasContext *dc)
|
|
{
|
|
if (dc->condjmp && !dc->base.is_jmp) {
|
|
gen_set_label(dc->condlabel);
|
|
dc->condjmp = 0;
|
|
}
|
|
translator_loop_temp_check(&dc->base);
|
|
}
|
|
|
|
static void arm_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cpu->env_ptr;
|
|
unsigned int insn;
|
|
|
|
if (arm_pre_translate_insn(dc)) {
|
|
dc->base.pc_next += 4;
|
|
return;
|
|
}
|
|
|
|
dc->pc_curr = dc->base.pc_next;
|
|
insn = arm_ldl_code(env, dc->base.pc_next, dc->sctlr_b);
|
|
dc->insn = insn;
|
|
dc->base.pc_next += 4;
|
|
disas_arm_insn(dc, insn);
|
|
|
|
arm_post_translate_insn(dc);
|
|
|
|
/* ARM is a fixed-length ISA. We performed the cross-page check
|
|
in init_disas_context by adjusting max_insns. */
|
|
}
|
|
|
|
static bool thumb_insn_is_unconditional(DisasContext *s, uint32_t insn)
|
|
{
|
|
/* Return true if this Thumb insn is always unconditional,
|
|
* even inside an IT block. This is true of only a very few
|
|
* instructions: BKPT, HLT, and SG.
|
|
*
|
|
* A larger class of instructions are UNPREDICTABLE if used
|
|
* inside an IT block; we do not need to detect those here, because
|
|
* what we do by default (perform the cc check and update the IT
|
|
* bits state machine) is a permitted CONSTRAINED UNPREDICTABLE
|
|
* choice for those situations.
|
|
*
|
|
* insn is either a 16-bit or a 32-bit instruction; the two are
|
|
* distinguishable because for the 16-bit case the top 16 bits
|
|
* are zeroes, and that isn't a valid 32-bit encoding.
|
|
*/
|
|
if ((insn & 0xffffff00) == 0xbe00) {
|
|
/* BKPT */
|
|
return true;
|
|
}
|
|
|
|
if ((insn & 0xffffffc0) == 0xba80 && arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* HLT: v8A only. This is unconditional even when it is going to
|
|
* UNDEF; see the v8A ARM ARM DDI0487B.a H3.3.
|
|
* For v7 cores this was a plain old undefined encoding and so
|
|
* honours its cc check. (We might be using the encoding as
|
|
* a semihosting trap, but we don't change the cc check behaviour
|
|
* on that account, because a debugger connected to a real v7A
|
|
* core and emulating semihosting traps by catching the UNDEF
|
|
* exception would also only see cases where the cc check passed.
|
|
* No guest code should be trying to do a HLT semihosting trap
|
|
* in an IT block anyway.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
if (insn == 0xe97fe97f && arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* SG: v8M only */
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void thumb_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cpu->env_ptr;
|
|
uint32_t insn;
|
|
bool is_16bit;
|
|
|
|
if (arm_pre_translate_insn(dc)) {
|
|
dc->base.pc_next += 2;
|
|
return;
|
|
}
|
|
|
|
dc->pc_curr = dc->base.pc_next;
|
|
insn = arm_lduw_code(env, dc->base.pc_next, dc->sctlr_b);
|
|
is_16bit = thumb_insn_is_16bit(dc, dc->base.pc_next, insn);
|
|
dc->base.pc_next += 2;
|
|
if (!is_16bit) {
|
|
uint32_t insn2 = arm_lduw_code(env, dc->base.pc_next, dc->sctlr_b);
|
|
|
|
insn = insn << 16 | insn2;
|
|
dc->base.pc_next += 2;
|
|
}
|
|
dc->insn = insn;
|
|
|
|
if (dc->eci) {
|
|
/*
|
|
* For M-profile continuable instructions, ECI/ICI handling
|
|
* falls into these cases:
|
|
* - interrupt-continuable instructions
|
|
* These are the various load/store multiple insns (both
|
|
* integer and fp). The ICI bits indicate the register
|
|
* where the load/store can resume. We make the IMPDEF
|
|
* choice to always do "instruction restart", ie ignore
|
|
* the ICI value and always execute the ldm/stm from the
|
|
* start. So all we need to do is zero PSR.ICI if the
|
|
* insn executes.
|
|
* - MVE instructions subject to beat-wise execution
|
|
* Here the ECI bits indicate which beats have already been
|
|
* executed, and we must honour this. Each insn of this
|
|
* type will handle it correctly. We will update PSR.ECI
|
|
* in the helper function for the insn (some ECI values
|
|
* mean that the following insn also has been partially
|
|
* executed).
|
|
* - Special cases which don't advance ECI
|
|
* The insns LE, LETP and BKPT leave the ECI/ICI state
|
|
* bits untouched.
|
|
* - all other insns (the common case)
|
|
* Non-zero ECI/ICI means an INVSTATE UsageFault.
|
|
* We place a rewind-marker here. Insns in the previous
|
|
* three categories will set a flag in the DisasContext.
|
|
* If the flag isn't set after we call disas_thumb_insn()
|
|
* or disas_thumb2_insn() then we know we have a "some other
|
|
* insn" case. We will rewind to the marker (ie throwing away
|
|
* all the generated code) and instead emit "take exception".
|
|
*/
|
|
dc->insn_eci_rewind = tcg_last_op();
|
|
}
|
|
|
|
if (dc->condexec_mask && !thumb_insn_is_unconditional(dc, insn)) {
|
|
uint32_t cond = dc->condexec_cond;
|
|
|
|
/*
|
|
* Conditionally skip the insn. Note that both 0xe and 0xf mean
|
|
* "always"; 0xf is not "never".
|
|
*/
|
|
if (cond < 0x0e) {
|
|
arm_skip_unless(dc, cond);
|
|
}
|
|
}
|
|
|
|
if (is_16bit) {
|
|
disas_thumb_insn(dc, insn);
|
|
} else {
|
|
disas_thumb2_insn(dc, insn);
|
|
}
|
|
|
|
/* Advance the Thumb condexec condition. */
|
|
if (dc->condexec_mask) {
|
|
dc->condexec_cond = ((dc->condexec_cond & 0xe) |
|
|
((dc->condexec_mask >> 4) & 1));
|
|
dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f;
|
|
if (dc->condexec_mask == 0) {
|
|
dc->condexec_cond = 0;
|
|
}
|
|
}
|
|
|
|
if (dc->eci && !dc->eci_handled) {
|
|
/*
|
|
* Insn wasn't valid for ECI/ICI at all: undo what we
|
|
* just generated and instead emit an exception
|
|
*/
|
|
tcg_remove_ops_after(dc->insn_eci_rewind);
|
|
dc->condjmp = 0;
|
|
gen_exception_insn(dc, dc->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
|
|
default_exception_el(dc));
|
|
}
|
|
|
|
arm_post_translate_insn(dc);
|
|
|
|
/* Thumb is a variable-length ISA. Stop translation when the next insn
|
|
* will touch a new page. This ensures that prefetch aborts occur at
|
|
* the right place.
|
|
*
|
|
* We want to stop the TB if the next insn starts in a new page,
|
|
* or if it spans between this page and the next. This means that
|
|
* if we're looking at the last halfword in the page we need to
|
|
* see if it's a 16-bit Thumb insn (which will fit in this TB)
|
|
* or a 32-bit Thumb insn (which won't).
|
|
* This is to avoid generating a silly TB with a single 16-bit insn
|
|
* in it at the end of this page (which would execute correctly
|
|
* but isn't very efficient).
|
|
*/
|
|
if (dc->base.is_jmp == DISAS_NEXT
|
|
&& (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE
|
|
|| (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE - 3
|
|
&& insn_crosses_page(env, dc)))) {
|
|
dc->base.is_jmp = DISAS_TOO_MANY;
|
|
}
|
|
}
|
|
|
|
static void arm_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
/* At this stage dc->condjmp will only be set when the skipped
|
|
instruction was a conditional branch or trap, and the PC has
|
|
already been written. */
|
|
gen_set_condexec(dc);
|
|
if (dc->base.is_jmp == DISAS_BX_EXCRET) {
|
|
/* Exception return branches need some special case code at the
|
|
* end of the TB, which is complex enough that it has to
|
|
* handle the single-step vs not and the condition-failed
|
|
* insn codepath itself.
|
|
*/
|
|
gen_bx_excret_final_code(dc);
|
|
} else if (unlikely(is_singlestepping(dc))) {
|
|
/* Unconditional and "condition passed" instruction codepath. */
|
|
switch (dc->base.is_jmp) {
|
|
case DISAS_SWI:
|
|
gen_ss_advance(dc);
|
|
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
|
|
default_exception_el(dc));
|
|
break;
|
|
case DISAS_HVC:
|
|
gen_ss_advance(dc);
|
|
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
|
|
break;
|
|
case DISAS_SMC:
|
|
gen_ss_advance(dc);
|
|
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
|
|
break;
|
|
case DISAS_NEXT:
|
|
case DISAS_TOO_MANY:
|
|
case DISAS_UPDATE_EXIT:
|
|
case DISAS_UPDATE_NOCHAIN:
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
/* fall through */
|
|
default:
|
|
/* FIXME: Single stepping a WFI insn will not halt the CPU. */
|
|
gen_singlestep_exception(dc);
|
|
break;
|
|
case DISAS_NORETURN:
|
|
break;
|
|
}
|
|
} else {
|
|
/* While branches must always occur at the end of an IT block,
|
|
there are a few other things that can cause us to terminate
|
|
the TB in the middle of an IT block:
|
|
- Exception generating instructions (bkpt, swi, undefined).
|
|
- Page boundaries.
|
|
- Hardware watchpoints.
|
|
Hardware breakpoints have already been handled and skip this code.
|
|
*/
|
|
switch (dc->base.is_jmp) {
|
|
case DISAS_NEXT:
|
|
case DISAS_TOO_MANY:
|
|
gen_goto_tb(dc, 1, dc->base.pc_next);
|
|
break;
|
|
case DISAS_UPDATE_NOCHAIN:
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
/* fall through */
|
|
case DISAS_JUMP:
|
|
gen_goto_ptr();
|
|
break;
|
|
case DISAS_UPDATE_EXIT:
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
/* fall through */
|
|
default:
|
|
/* indicate that the hash table must be used to find the next TB */
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
break;
|
|
case DISAS_NORETURN:
|
|
/* nothing more to generate */
|
|
break;
|
|
case DISAS_WFI:
|
|
{
|
|
TCGv_i32 tmp = tcg_const_i32((dc->thumb &&
|
|
!(dc->insn & (1U << 31))) ? 2 : 4);
|
|
|
|
gen_helper_wfi(cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
/* The helper doesn't necessarily throw an exception, but we
|
|
* must go back to the main loop to check for interrupts anyway.
|
|
*/
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
break;
|
|
}
|
|
case DISAS_WFE:
|
|
gen_helper_wfe(cpu_env);
|
|
break;
|
|
case DISAS_YIELD:
|
|
gen_helper_yield(cpu_env);
|
|
break;
|
|
case DISAS_SWI:
|
|
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
|
|
default_exception_el(dc));
|
|
break;
|
|
case DISAS_HVC:
|
|
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
|
|
break;
|
|
case DISAS_SMC:
|
|
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dc->condjmp) {
|
|
/* "Condition failed" instruction codepath for the branch/trap insn */
|
|
gen_set_label(dc->condlabel);
|
|
gen_set_condexec(dc);
|
|
if (unlikely(is_singlestepping(dc))) {
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
gen_singlestep_exception(dc);
|
|
} else {
|
|
gen_goto_tb(dc, 1, dc->base.pc_next);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void arm_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
|
|
log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
|
|
}
|
|
|
|
static const TranslatorOps arm_translator_ops = {
|
|
.init_disas_context = arm_tr_init_disas_context,
|
|
.tb_start = arm_tr_tb_start,
|
|
.insn_start = arm_tr_insn_start,
|
|
.breakpoint_check = arm_tr_breakpoint_check,
|
|
.translate_insn = arm_tr_translate_insn,
|
|
.tb_stop = arm_tr_tb_stop,
|
|
.disas_log = arm_tr_disas_log,
|
|
};
|
|
|
|
static const TranslatorOps thumb_translator_ops = {
|
|
.init_disas_context = arm_tr_init_disas_context,
|
|
.tb_start = arm_tr_tb_start,
|
|
.insn_start = arm_tr_insn_start,
|
|
.breakpoint_check = arm_tr_breakpoint_check,
|
|
.translate_insn = thumb_tr_translate_insn,
|
|
.tb_stop = arm_tr_tb_stop,
|
|
.disas_log = arm_tr_disas_log,
|
|
};
|
|
|
|
/* generate intermediate code for basic block 'tb'. */
|
|
void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns)
|
|
{
|
|
DisasContext dc = { };
|
|
const TranslatorOps *ops = &arm_translator_ops;
|
|
CPUARMTBFlags tb_flags = arm_tbflags_from_tb(tb);
|
|
|
|
if (EX_TBFLAG_AM32(tb_flags, THUMB)) {
|
|
ops = &thumb_translator_ops;
|
|
}
|
|
#ifdef TARGET_AARCH64
|
|
if (EX_TBFLAG_ANY(tb_flags, AARCH64_STATE)) {
|
|
ops = &aarch64_translator_ops;
|
|
}
|
|
#endif
|
|
|
|
translator_loop(ops, &dc.base, cpu, tb, max_insns);
|
|
}
|
|
|
|
void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb,
|
|
target_ulong *data)
|
|
{
|
|
if (is_a64(env)) {
|
|
env->pc = data[0];
|
|
env->condexec_bits = 0;
|
|
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
|
|
} else {
|
|
env->regs[15] = data[0];
|
|
env->condexec_bits = data[1];
|
|
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
|
|
}
|
|
}
|