mirror of https://gitee.com/openkylin/qemu.git
572 lines
17 KiB
C
572 lines
17 KiB
C
/*
|
|
* PowerPC MMU, TLB and BAT emulation helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
* Copyright (c) 2013 David Gibson, IBM Corporation
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_ppc.h"
|
|
#include "internal.h"
|
|
#include "mmu-hash32.h"
|
|
#include "mmu-books.h"
|
|
#include "exec/log.h"
|
|
|
|
/* #define DEBUG_BATS */
|
|
|
|
#ifdef DEBUG_BATS
|
|
# define LOG_BATS(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
|
|
#else
|
|
# define LOG_BATS(...) do { } while (0)
|
|
#endif
|
|
|
|
struct mmu_ctx_hash32 {
|
|
hwaddr raddr; /* Real address */
|
|
int prot; /* Protection bits */
|
|
int key; /* Access key */
|
|
};
|
|
|
|
static int ppc_hash32_pp_prot(int key, int pp, int nx)
|
|
{
|
|
int prot;
|
|
|
|
if (key == 0) {
|
|
switch (pp) {
|
|
case 0x0:
|
|
case 0x1:
|
|
case 0x2:
|
|
prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
|
|
case 0x3:
|
|
prot = PAGE_READ;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
switch (pp) {
|
|
case 0x0:
|
|
prot = 0;
|
|
break;
|
|
|
|
case 0x1:
|
|
case 0x3:
|
|
prot = PAGE_READ;
|
|
break;
|
|
|
|
case 0x2:
|
|
prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
if (nx == 0) {
|
|
prot |= PAGE_EXEC;
|
|
}
|
|
|
|
return prot;
|
|
}
|
|
|
|
static int ppc_hash32_pte_prot(int mmu_idx,
|
|
target_ulong sr, ppc_hash_pte32_t pte)
|
|
{
|
|
unsigned pp, key;
|
|
|
|
key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS));
|
|
pp = pte.pte1 & HPTE32_R_PP;
|
|
|
|
return ppc_hash32_pp_prot(key, pp, !!(sr & SR32_NX));
|
|
}
|
|
|
|
static target_ulong hash32_bat_size(int mmu_idx,
|
|
target_ulong batu, target_ulong batl)
|
|
{
|
|
if ((mmuidx_pr(mmu_idx) && !(batu & BATU32_VP))
|
|
|| (!mmuidx_pr(mmu_idx) && !(batu & BATU32_VS))) {
|
|
return 0;
|
|
}
|
|
|
|
return BATU32_BEPI & ~((batu & BATU32_BL) << 15);
|
|
}
|
|
|
|
static int hash32_bat_prot(PowerPCCPU *cpu,
|
|
target_ulong batu, target_ulong batl)
|
|
{
|
|
int pp, prot;
|
|
|
|
prot = 0;
|
|
pp = batl & BATL32_PP;
|
|
if (pp != 0) {
|
|
prot = PAGE_READ | PAGE_EXEC;
|
|
if (pp == 0x2) {
|
|
prot |= PAGE_WRITE;
|
|
}
|
|
}
|
|
return prot;
|
|
}
|
|
|
|
static target_ulong hash32_bat_601_size(PowerPCCPU *cpu,
|
|
target_ulong batu, target_ulong batl)
|
|
{
|
|
if (!(batl & BATL32_601_V)) {
|
|
return 0;
|
|
}
|
|
|
|
return BATU32_BEPI & ~((batl & BATL32_601_BL) << 17);
|
|
}
|
|
|
|
static int hash32_bat_601_prot(int mmu_idx,
|
|
target_ulong batu, target_ulong batl)
|
|
{
|
|
int key, pp;
|
|
|
|
pp = batu & BATU32_601_PP;
|
|
if (mmuidx_pr(mmu_idx) == 0) {
|
|
key = !!(batu & BATU32_601_KS);
|
|
} else {
|
|
key = !!(batu & BATU32_601_KP);
|
|
}
|
|
return ppc_hash32_pp_prot(key, pp, 0);
|
|
}
|
|
|
|
static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea,
|
|
MMUAccessType access_type, int *prot,
|
|
int mmu_idx)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong *BATlt, *BATut;
|
|
bool ifetch = access_type == MMU_INST_FETCH;
|
|
int i;
|
|
|
|
LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__,
|
|
ifetch ? 'I' : 'D', ea);
|
|
if (ifetch) {
|
|
BATlt = env->IBAT[1];
|
|
BATut = env->IBAT[0];
|
|
} else {
|
|
BATlt = env->DBAT[1];
|
|
BATut = env->DBAT[0];
|
|
}
|
|
for (i = 0; i < env->nb_BATs; i++) {
|
|
target_ulong batu = BATut[i];
|
|
target_ulong batl = BATlt[i];
|
|
target_ulong mask;
|
|
|
|
if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
|
|
mask = hash32_bat_601_size(cpu, batu, batl);
|
|
} else {
|
|
mask = hash32_bat_size(mmu_idx, batu, batl);
|
|
}
|
|
LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
|
|
" BATl " TARGET_FMT_lx "\n", __func__,
|
|
ifetch ? 'I' : 'D', i, ea, batu, batl);
|
|
|
|
if (mask && ((ea & mask) == (batu & BATU32_BEPI))) {
|
|
hwaddr raddr = (batl & mask) | (ea & ~mask);
|
|
|
|
if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
|
|
*prot = hash32_bat_601_prot(mmu_idx, batu, batl);
|
|
} else {
|
|
*prot = hash32_bat_prot(cpu, batu, batl);
|
|
}
|
|
|
|
return raddr & TARGET_PAGE_MASK;
|
|
}
|
|
}
|
|
|
|
/* No hit */
|
|
#if defined(DEBUG_BATS)
|
|
if (qemu_log_enabled()) {
|
|
target_ulong *BATu, *BATl;
|
|
target_ulong BEPIl, BEPIu, bl;
|
|
|
|
LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", ea);
|
|
for (i = 0; i < 4; i++) {
|
|
BATu = &BATut[i];
|
|
BATl = &BATlt[i];
|
|
BEPIu = *BATu & BATU32_BEPIU;
|
|
BEPIl = *BATu & BATU32_BEPIL;
|
|
bl = (*BATu & 0x00001FFC) << 15;
|
|
LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
|
|
" BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " "
|
|
TARGET_FMT_lx " " TARGET_FMT_lx "\n",
|
|
__func__, ifetch ? 'I' : 'D', i, ea,
|
|
*BATu, *BATl, BEPIu, BEPIl, bl);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return -1;
|
|
}
|
|
|
|
static bool ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
|
|
target_ulong eaddr,
|
|
MMUAccessType access_type,
|
|
hwaddr *raddr, int *prot, int mmu_idx,
|
|
bool guest_visible)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
int key = !!(mmuidx_pr(mmu_idx) ? (sr & SR32_KP) : (sr & SR32_KS));
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "direct store...\n");
|
|
|
|
if ((sr & 0x1FF00000) >> 20 == 0x07f) {
|
|
/*
|
|
* Memory-forced I/O controller interface access
|
|
*
|
|
* If T=1 and BUID=x'07F', the 601 performs a memory access
|
|
* to SR[28-31] LA[4-31], bypassing all protection mechanisms.
|
|
*/
|
|
*raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF);
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return true;
|
|
}
|
|
|
|
if (access_type == MMU_INST_FETCH) {
|
|
/* No code fetch is allowed in direct-store areas */
|
|
if (guest_visible) {
|
|
cs->exception_index = POWERPC_EXCP_ISI;
|
|
env->error_code = 0x10000000;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* From ppc_cpu_get_phys_page_debug, env->access_type is not set.
|
|
* Assume ACCESS_INT for that case.
|
|
*/
|
|
switch (guest_visible ? env->access_type : ACCESS_INT) {
|
|
case ACCESS_INT:
|
|
/* Integer load/store : only access allowed */
|
|
break;
|
|
case ACCESS_FLOAT:
|
|
/* Floating point load/store */
|
|
cs->exception_index = POWERPC_EXCP_ALIGN;
|
|
env->error_code = POWERPC_EXCP_ALIGN_FP;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
return false;
|
|
case ACCESS_RES:
|
|
/* lwarx, ldarx or srwcx. */
|
|
env->error_code = 0;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
if (access_type == MMU_DATA_STORE) {
|
|
env->spr[SPR_DSISR] = 0x06000000;
|
|
} else {
|
|
env->spr[SPR_DSISR] = 0x04000000;
|
|
}
|
|
return false;
|
|
case ACCESS_CACHE:
|
|
/*
|
|
* dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi
|
|
*
|
|
* Should make the instruction do no-op. As it already do
|
|
* no-op, it's quite easy :-)
|
|
*/
|
|
*raddr = eaddr;
|
|
return true;
|
|
case ACCESS_EXT:
|
|
/* eciwx or ecowx */
|
|
cs->exception_index = POWERPC_EXCP_DSI;
|
|
env->error_code = 0;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
if (access_type == MMU_DATA_STORE) {
|
|
env->spr[SPR_DSISR] = 0x06100000;
|
|
} else {
|
|
env->spr[SPR_DSISR] = 0x04100000;
|
|
}
|
|
return false;
|
|
default:
|
|
cpu_abort(cs, "ERROR: insn should not need address translation\n");
|
|
}
|
|
|
|
*prot = key ? PAGE_READ | PAGE_WRITE : PAGE_READ;
|
|
if (*prot & prot_for_access_type(access_type)) {
|
|
*raddr = eaddr;
|
|
return true;
|
|
}
|
|
|
|
if (guest_visible) {
|
|
cs->exception_index = POWERPC_EXCP_DSI;
|
|
env->error_code = 0;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
if (access_type == MMU_DATA_STORE) {
|
|
env->spr[SPR_DSISR] = 0x0a000000;
|
|
} else {
|
|
env->spr[SPR_DSISR] = 0x08000000;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash)
|
|
{
|
|
target_ulong mask = ppc_hash32_hpt_mask(cpu);
|
|
|
|
return (hash * HASH_PTEG_SIZE_32) & mask;
|
|
}
|
|
|
|
static hwaddr ppc_hash32_pteg_search(PowerPCCPU *cpu, hwaddr pteg_off,
|
|
bool secondary, target_ulong ptem,
|
|
ppc_hash_pte32_t *pte)
|
|
{
|
|
hwaddr pte_offset = pteg_off;
|
|
target_ulong pte0, pte1;
|
|
int i;
|
|
|
|
for (i = 0; i < HPTES_PER_GROUP; i++) {
|
|
pte0 = ppc_hash32_load_hpte0(cpu, pte_offset);
|
|
/*
|
|
* pte0 contains the valid bit and must be read before pte1,
|
|
* otherwise we might see an old pte1 with a new valid bit and
|
|
* thus an inconsistent hpte value
|
|
*/
|
|
smp_rmb();
|
|
pte1 = ppc_hash32_load_hpte1(cpu, pte_offset);
|
|
|
|
if ((pte0 & HPTE32_V_VALID)
|
|
&& (secondary == !!(pte0 & HPTE32_V_SECONDARY))
|
|
&& HPTE32_V_COMPARE(pte0, ptem)) {
|
|
pte->pte0 = pte0;
|
|
pte->pte1 = pte1;
|
|
return pte_offset;
|
|
}
|
|
|
|
pte_offset += HASH_PTE_SIZE_32;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void ppc_hash32_set_r(PowerPCCPU *cpu, hwaddr pte_offset, uint32_t pte1)
|
|
{
|
|
target_ulong base = ppc_hash32_hpt_base(cpu);
|
|
hwaddr offset = pte_offset + 6;
|
|
|
|
/* The HW performs a non-atomic byte update */
|
|
stb_phys(CPU(cpu)->as, base + offset, ((pte1 >> 8) & 0xff) | 0x01);
|
|
}
|
|
|
|
static void ppc_hash32_set_c(PowerPCCPU *cpu, hwaddr pte_offset, uint64_t pte1)
|
|
{
|
|
target_ulong base = ppc_hash32_hpt_base(cpu);
|
|
hwaddr offset = pte_offset + 7;
|
|
|
|
/* The HW performs a non-atomic byte update */
|
|
stb_phys(CPU(cpu)->as, base + offset, (pte1 & 0xff) | 0x80);
|
|
}
|
|
|
|
static hwaddr ppc_hash32_htab_lookup(PowerPCCPU *cpu,
|
|
target_ulong sr, target_ulong eaddr,
|
|
ppc_hash_pte32_t *pte)
|
|
{
|
|
hwaddr pteg_off, pte_offset;
|
|
hwaddr hash;
|
|
uint32_t vsid, pgidx, ptem;
|
|
|
|
vsid = sr & SR32_VSID;
|
|
pgidx = (eaddr & ~SEGMENT_MASK_256M) >> TARGET_PAGE_BITS;
|
|
hash = vsid ^ pgidx;
|
|
ptem = (vsid << 7) | (pgidx >> 10);
|
|
|
|
/* Page address translation */
|
|
qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx
|
|
" htab_mask " TARGET_FMT_plx
|
|
" hash " TARGET_FMT_plx "\n",
|
|
ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu), hash);
|
|
|
|
/* Primary PTEG lookup */
|
|
qemu_log_mask(CPU_LOG_MMU, "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
|
|
" vsid=%" PRIx32 " ptem=%" PRIx32
|
|
" hash=" TARGET_FMT_plx "\n",
|
|
ppc_hash32_hpt_base(cpu), ppc_hash32_hpt_mask(cpu),
|
|
vsid, ptem, hash);
|
|
pteg_off = get_pteg_offset32(cpu, hash);
|
|
pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 0, ptem, pte);
|
|
if (pte_offset == -1) {
|
|
/* Secondary PTEG lookup */
|
|
qemu_log_mask(CPU_LOG_MMU, "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
|
|
" vsid=%" PRIx32 " api=%" PRIx32
|
|
" hash=" TARGET_FMT_plx "\n", ppc_hash32_hpt_base(cpu),
|
|
ppc_hash32_hpt_mask(cpu), vsid, ptem, ~hash);
|
|
pteg_off = get_pteg_offset32(cpu, ~hash);
|
|
pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 1, ptem, pte);
|
|
}
|
|
|
|
return pte_offset;
|
|
}
|
|
|
|
static hwaddr ppc_hash32_pte_raddr(target_ulong sr, ppc_hash_pte32_t pte,
|
|
target_ulong eaddr)
|
|
{
|
|
hwaddr rpn = pte.pte1 & HPTE32_R_RPN;
|
|
hwaddr mask = ~TARGET_PAGE_MASK;
|
|
|
|
return (rpn & ~mask) | (eaddr & mask);
|
|
}
|
|
|
|
bool ppc_hash32_xlate(PowerPCCPU *cpu, vaddr eaddr, MMUAccessType access_type,
|
|
hwaddr *raddrp, int *psizep, int *protp, int mmu_idx,
|
|
bool guest_visible)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong sr;
|
|
hwaddr pte_offset;
|
|
ppc_hash_pte32_t pte;
|
|
int prot;
|
|
int need_prot;
|
|
hwaddr raddr;
|
|
|
|
/* There are no hash32 large pages. */
|
|
*psizep = TARGET_PAGE_BITS;
|
|
|
|
/* 1. Handle real mode accesses */
|
|
if (mmuidx_real(mmu_idx)) {
|
|
/* Translation is off */
|
|
*raddrp = eaddr;
|
|
*protp = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return true;
|
|
}
|
|
|
|
need_prot = prot_for_access_type(access_type);
|
|
|
|
/* 2. Check Block Address Translation entries (BATs) */
|
|
if (env->nb_BATs != 0) {
|
|
raddr = ppc_hash32_bat_lookup(cpu, eaddr, access_type, protp, mmu_idx);
|
|
if (raddr != -1) {
|
|
if (need_prot & ~*protp) {
|
|
if (guest_visible) {
|
|
if (access_type == MMU_INST_FETCH) {
|
|
cs->exception_index = POWERPC_EXCP_ISI;
|
|
env->error_code = 0x08000000;
|
|
} else {
|
|
cs->exception_index = POWERPC_EXCP_DSI;
|
|
env->error_code = 0;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
if (access_type == MMU_DATA_STORE) {
|
|
env->spr[SPR_DSISR] = 0x0a000000;
|
|
} else {
|
|
env->spr[SPR_DSISR] = 0x08000000;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
*raddrp = raddr;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* 3. Look up the Segment Register */
|
|
sr = env->sr[eaddr >> 28];
|
|
|
|
/* 4. Handle direct store segments */
|
|
if (sr & SR32_T) {
|
|
return ppc_hash32_direct_store(cpu, sr, eaddr, access_type,
|
|
raddrp, protp, mmu_idx, guest_visible);
|
|
}
|
|
|
|
/* 5. Check for segment level no-execute violation */
|
|
if (access_type == MMU_INST_FETCH && (sr & SR32_NX)) {
|
|
if (guest_visible) {
|
|
cs->exception_index = POWERPC_EXCP_ISI;
|
|
env->error_code = 0x10000000;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* 6. Locate the PTE in the hash table */
|
|
pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
|
|
if (pte_offset == -1) {
|
|
if (guest_visible) {
|
|
if (access_type == MMU_INST_FETCH) {
|
|
cs->exception_index = POWERPC_EXCP_ISI;
|
|
env->error_code = 0x40000000;
|
|
} else {
|
|
cs->exception_index = POWERPC_EXCP_DSI;
|
|
env->error_code = 0;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
if (access_type == MMU_DATA_STORE) {
|
|
env->spr[SPR_DSISR] = 0x42000000;
|
|
} else {
|
|
env->spr[SPR_DSISR] = 0x40000000;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
|
|
|
|
/* 7. Check access permissions */
|
|
|
|
prot = ppc_hash32_pte_prot(mmu_idx, sr, pte);
|
|
|
|
if (need_prot & ~prot) {
|
|
/* Access right violation */
|
|
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
|
|
if (guest_visible) {
|
|
if (access_type == MMU_INST_FETCH) {
|
|
cs->exception_index = POWERPC_EXCP_ISI;
|
|
env->error_code = 0x08000000;
|
|
} else {
|
|
cs->exception_index = POWERPC_EXCP_DSI;
|
|
env->error_code = 0;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
if (access_type == MMU_DATA_STORE) {
|
|
env->spr[SPR_DSISR] = 0x0a000000;
|
|
} else {
|
|
env->spr[SPR_DSISR] = 0x08000000;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
|
|
|
|
/* 8. Update PTE referenced and changed bits if necessary */
|
|
|
|
if (!(pte.pte1 & HPTE32_R_R)) {
|
|
ppc_hash32_set_r(cpu, pte_offset, pte.pte1);
|
|
}
|
|
if (!(pte.pte1 & HPTE32_R_C)) {
|
|
if (access_type == MMU_DATA_STORE) {
|
|
ppc_hash32_set_c(cpu, pte_offset, pte.pte1);
|
|
} else {
|
|
/*
|
|
* Treat the page as read-only for now, so that a later write
|
|
* will pass through this function again to set the C bit
|
|
*/
|
|
prot &= ~PAGE_WRITE;
|
|
}
|
|
}
|
|
|
|
/* 9. Determine the real address from the PTE */
|
|
|
|
*raddrp = ppc_hash32_pte_raddr(sr, pte, eaddr);
|
|
*protp = prot;
|
|
return true;
|
|
}
|