qemu/hw/lan9118.c

1099 lines
29 KiB
C

/*
* SMSC LAN9118 Ethernet interface emulation
*
* Copyright (c) 2009 CodeSourcery, LLC.
* Written by Paul Brook
*
* This code is licenced under the GNU GPL v2
*/
#include "sysbus.h"
#include "net.h"
#include "devices.h"
/* For crc32 */
#include <zlib.h>
//#define DEBUG_LAN9118
#ifdef DEBUG_LAN9118
#define DPRINTF(fmt, ...) \
do { printf("lan9118: " fmt , ## __VA_ARGS__); } while (0)
#define BADF(fmt, ...) \
do { hw_error("lan9118: error: " fmt , ## __VA_ARGS__);} while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "lan9118: error: " fmt , ## __VA_ARGS__);} while (0)
#endif
#define CSR_ID_REV 0x50
#define CSR_IRQ_CFG 0x54
#define CSR_INT_STS 0x58
#define CSR_INT_EN 0x5c
#define CSR_BYTE_TEST 0x64
#define CSR_FIFO_INT 0x68
#define CSR_RX_CFG 0x6c
#define CSR_TX_CFG 0x70
#define CSR_HW_CFG 0x74
#define CSR_RX_DP_CTRL 0x78
#define CSR_RX_FIFO_INF 0x7c
#define CSR_TX_FIFO_INF 0x80
#define CSR_PMT_CTRL 0x84
#define CSR_GPIO_CFG 0x88
#define CSR_GPT_CFG 0x8c /* TODO */
#define CSR_GPT_CNT 0x90 /* TODO */
#define CSR_WORD_SWAP 0x98
#define CSR_FREE_RUN 0x9c
#define CSR_RX_DROP 0xa0
#define CSR_MAC_CSR_CMD 0xa4
#define CSR_MAC_CSR_DATA 0xa8
#define CSR_AFC_CFG 0xac
#define CSR_E2P_CMD 0xb0
#define CSR_E2P_DATA 0xb4
/* IRQ_CFG */
#define IRQ_EN 0x00000100
#define IRQ_POL 0x00000010
#define IRQ_TYPE 0x00000001
/* INT_STS/INT_EN */
#define SW_INT 0x80000000
#define TXSTOP_INT 0x02000000
#define RXSTOP_INT 0x01000000
#define RXDFH_INT 0x00800000
#define TX_IOC_INT 0x00200000
#define RXD_INT 0x00100000
#define GPT_INT 0x00080000
#define PHY_INT 0x00040000
#define PME_INT 0x00020000
#define TXSO_INT 0x00010000
#define RWT_INT 0x00008000
#define RXE_INT 0x00004000
#define TXE_INT 0x00002000
#define TDFU_INT 0x00000800
#define TDFO_INT 0x00000400
#define TDFA_INT 0x00000200
#define TSFF_INT 0x00000100
#define TSFL_INT 0x00000080
#define RXDF_INT 0x00000040
#define RDFL_INT 0x00000020
#define RSFF_INT 0x00000010
#define RSFL_INT 0x00000008
#define GPIO2_INT 0x00000004
#define GPIO1_INT 0x00000002
#define GPIO0_INT 0x00000001
#define RESERVED_INT 0x7c001000
#define MAC_CR 1
#define MAC_ADDRH 2
#define MAC_ADDRL 3
#define MAC_HASHH 4
#define MAC_HASHL 5
#define MAC_MII_ACC 6
#define MAC_MII_DATA 7
#define MAC_FLOW 8
#define MAC_VLAN1 9 /* TODO */
#define MAC_VLAN2 10 /* TODO */
#define MAC_WUFF 11 /* TODO */
#define MAC_WUCSR 12 /* TODO */
#define MAC_CR_RXALL 0x80000000
#define MAC_CR_RCVOWN 0x00800000
#define MAC_CR_LOOPBK 0x00200000
#define MAC_CR_FDPX 0x00100000
#define MAC_CR_MCPAS 0x00080000
#define MAC_CR_PRMS 0x00040000
#define MAC_CR_INVFILT 0x00020000
#define MAC_CR_PASSBAD 0x00010000
#define MAC_CR_HO 0x00008000
#define MAC_CR_HPFILT 0x00002000
#define MAC_CR_LCOLL 0x00001000
#define MAC_CR_BCAST 0x00000800
#define MAC_CR_DISRTY 0x00000400
#define MAC_CR_PADSTR 0x00000100
#define MAC_CR_BOLMT 0x000000c0
#define MAC_CR_DFCHK 0x00000020
#define MAC_CR_TXEN 0x00000008
#define MAC_CR_RXEN 0x00000004
#define MAC_CR_RESERVED 0x7f404213
enum tx_state {
TX_IDLE,
TX_B,
TX_DATA
};
typedef struct {
enum tx_state state;
uint32_t cmd_a;
uint32_t cmd_b;
int buffer_size;
int offset;
int pad;
int fifo_used;
int len;
uint8_t data[2048];
} LAN9118Packet;
typedef struct {
SysBusDevice busdev;
NICState *nic;
NICConf conf;
qemu_irq irq;
int mmio_index;
uint32_t irq_cfg;
uint32_t int_sts;
uint32_t int_en;
uint32_t fifo_int;
uint32_t rx_cfg;
uint32_t tx_cfg;
uint32_t hw_cfg;
uint32_t pmt_ctrl;
uint32_t gpio_cfg;
uint32_t word_swap;
uint32_t free_timer_start;
uint32_t mac_cmd;
uint32_t mac_data;
uint32_t afc_cfg;
uint32_t e2p_cmd;
uint32_t e2p_data;
uint32_t mac_cr;
uint32_t mac_hashh;
uint32_t mac_hashl;
uint32_t mac_mii_acc;
uint32_t mac_mii_data;
uint32_t mac_flow;
uint32_t phy_status;
uint32_t phy_control;
uint32_t phy_advertise;
int eeprom_writable;
uint8_t eeprom[8];
int tx_fifo_size;
LAN9118Packet *txp;
LAN9118Packet tx_packet;
int tx_status_fifo_used;
int tx_status_fifo_head;
uint32_t tx_status_fifo[512];
int rx_status_fifo_size;
int rx_status_fifo_used;
int rx_status_fifo_head;
uint32_t rx_status_fifo[896];
int rx_fifo_size;
int rx_fifo_used;
int rx_fifo_head;
uint32_t rx_fifo[3360];
int rx_packet_size_head;
int rx_packet_size_tail;
int rx_packet_size[1024];
int rxp_offset;
int rxp_size;
int rxp_pad;
} lan9118_state;
static void lan9118_update(lan9118_state *s)
{
int level;
/* TODO: Implement FIFO level IRQs. */
level = (s->int_sts & s->int_en) != 0;
if ((s->irq_cfg & IRQ_EN) == 0) {
level = 0;
}
qemu_set_irq(s->irq, level);
}
static void lan9118_mac_changed(lan9118_state *s)
{
qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
}
static void lan9118_reload_eeprom(lan9118_state *s)
{
int i;
if (s->eeprom[0] != 0xa5) {
s->e2p_cmd &= ~0x10;
DPRINTF("MACADDR load failed\n");
return;
}
for (i = 0; i < 6; i++) {
s->conf.macaddr.a[i] = s->eeprom[i + 1];
}
s->e2p_cmd |= 0x10;
DPRINTF("MACADDR loaded from eeprom\n");
lan9118_mac_changed(s);
}
static void phy_update_link(lan9118_state *s)
{
/* Autonegotiation status mirrors link status. */
if (s->nic->nc.link_down) {
s->phy_status &= ~0x0024;
} else {
s->phy_status |= 0x0024;
}
}
static void lan9118_set_link(VLANClientState *nc)
{
phy_update_link(DO_UPCAST(NICState, nc, nc)->opaque);
}
static void phy_reset(lan9118_state *s)
{
s->phy_status = 0x7805;
s->phy_control = 0x3000;
s->phy_advertise = 0x01e1;
phy_update_link(s);
}
static void lan9118_reset(DeviceState *d)
{
lan9118_state *s = FROM_SYSBUS(lan9118_state, sysbus_from_qdev(d));
s->irq_cfg &= ~(IRQ_TYPE | IRQ_POL);
s->int_sts = 0;
s->int_en = 0;
s->fifo_int = 0x48000000;
s->rx_cfg = 0;
s->tx_cfg = 0;
s->hw_cfg = 0x00050000;
s->pmt_ctrl &= 0x45;
s->gpio_cfg = 0;
s->txp->fifo_used = 0;
s->txp->state = TX_IDLE;
s->txp->cmd_a = 0xffffffffu;
s->txp->cmd_b = 0xffffffffu;
s->txp->len = 0;
s->txp->fifo_used = 0;
s->tx_fifo_size = 4608;
s->tx_status_fifo_used = 0;
s->rx_status_fifo_size = 704;
s->rx_fifo_size = 2640;
s->rx_fifo_used = 0;
s->rx_status_fifo_size = 176;
s->rx_status_fifo_used = 0;
s->rxp_offset = 0;
s->rxp_size = 0;
s->rxp_pad = 0;
s->rx_packet_size_tail = s->rx_packet_size_head;
s->rx_packet_size[s->rx_packet_size_head] = 0;
s->mac_cmd = 0;
s->mac_data = 0;
s->afc_cfg = 0;
s->e2p_cmd = 0;
s->e2p_data = 0;
s->free_timer_start = qemu_get_clock(vm_clock) / 40;
s->mac_cr = MAC_CR_PRMS;
s->mac_hashh = 0;
s->mac_hashl = 0;
s->mac_mii_acc = 0;
s->mac_mii_data = 0;
s->mac_flow = 0;
phy_reset(s);
s->eeprom_writable = 0;
lan9118_reload_eeprom(s);
}
static int lan9118_can_receive(VLANClientState *nc)
{
return 1;
}
static void rx_fifo_push(lan9118_state *s, uint32_t val)
{
int fifo_pos;
fifo_pos = s->rx_fifo_head + s->rx_fifo_used;
if (fifo_pos >= s->rx_fifo_size)
fifo_pos -= s->rx_fifo_size;
s->rx_fifo[fifo_pos] = val;
s->rx_fifo_used++;
}
/* Return nonzero if the packet is accepted by the filter. */
static int lan9118_filter(lan9118_state *s, const uint8_t *addr)
{
int multicast;
uint32_t hash;
if (s->mac_cr & MAC_CR_PRMS) {
return 1;
}
if (addr[0] == 0xff && addr[1] == 0xff && addr[2] == 0xff &&
addr[3] == 0xff && addr[4] == 0xff && addr[5] == 0xff) {
return (s->mac_cr & MAC_CR_BCAST) == 0;
}
multicast = addr[0] & 1;
if (multicast &&s->mac_cr & MAC_CR_MCPAS) {
return 1;
}
if (multicast ? (s->mac_cr & MAC_CR_HPFILT) == 0
: (s->mac_cr & MAC_CR_HO) == 0) {
/* Exact matching. */
hash = memcmp(addr, s->conf.macaddr.a, 6);
if (s->mac_cr & MAC_CR_INVFILT) {
return hash != 0;
} else {
return hash == 0;
}
} else {
/* Hash matching */
hash = (crc32(~0, addr, 6) >> 26);
if (hash & 0x20) {
return (s->mac_hashh >> (hash & 0x1f)) & 1;
} else {
return (s->mac_hashl >> (hash & 0x1f)) & 1;
}
}
}
static ssize_t lan9118_receive(VLANClientState *nc, const uint8_t *buf,
size_t size)
{
lan9118_state *s = DO_UPCAST(NICState, nc, nc)->opaque;
int fifo_len;
int offset;
int src_pos;
int n;
int filter;
uint32_t val;
uint32_t crc;
uint32_t status;
if ((s->mac_cr & MAC_CR_RXEN) == 0) {
return -1;
}
if (size >= 2048 || size < 14) {
return -1;
}
/* TODO: Implement FIFO overflow notification. */
if (s->rx_status_fifo_used == s->rx_status_fifo_size) {
return -1;
}
filter = lan9118_filter(s, buf);
if (!filter && (s->mac_cr & MAC_CR_RXALL) == 0) {
return size;
}
offset = (s->rx_cfg >> 8) & 0x1f;
n = offset & 3;
fifo_len = (size + n + 3) >> 2;
/* Add a word for the CRC. */
fifo_len++;
if (s->rx_fifo_size - s->rx_fifo_used < fifo_len) {
return -1;
}
DPRINTF("Got packet len:%d fifo:%d filter:%s\n",
(int)size, fifo_len, filter ? "pass" : "fail");
val = 0;
crc = bswap32(crc32(~0, buf, size));
for (src_pos = 0; src_pos < size; src_pos++) {
val = (val >> 8) | ((uint32_t)buf[src_pos] << 24);
n++;
if (n == 4) {
n = 0;
rx_fifo_push(s, val);
val = 0;
}
}
if (n) {
val >>= ((4 - n) * 8);
val |= crc << (n * 8);
rx_fifo_push(s, val);
val = crc >> ((4 - n) * 8);
rx_fifo_push(s, val);
} else {
rx_fifo_push(s, crc);
}
n = s->rx_status_fifo_head + s->rx_status_fifo_used;
if (n >= s->rx_status_fifo_size) {
n -= s->rx_status_fifo_size;
}
s->rx_packet_size[s->rx_packet_size_tail] = fifo_len;
s->rx_packet_size_tail = (s->rx_packet_size_tail + 1023) & 1023;
s->rx_status_fifo_used++;
status = (size + 4) << 16;
if (buf[0] == 0xff && buf[1] == 0xff && buf[2] == 0xff &&
buf[3] == 0xff && buf[4] == 0xff && buf[5] == 0xff) {
status |= 0x00002000;
} else if (buf[0] & 1) {
status |= 0x00000400;
}
if (!filter) {
status |= 0x40000000;
}
s->rx_status_fifo[n] = status;
if (s->rx_status_fifo_used > (s->fifo_int & 0xff)) {
s->int_sts |= RSFL_INT;
}
lan9118_update(s);
return size;
}
static uint32_t rx_fifo_pop(lan9118_state *s)
{
int n;
uint32_t val;
if (s->rxp_size == 0 && s->rxp_pad == 0) {
s->rxp_size = s->rx_packet_size[s->rx_packet_size_head];
s->rx_packet_size[s->rx_packet_size_head] = 0;
if (s->rxp_size != 0) {
s->rx_packet_size_head = (s->rx_packet_size_head + 1023) & 1023;
s->rxp_offset = (s->rx_cfg >> 10) & 7;
n = s->rxp_offset + s->rxp_size;
switch (s->rx_cfg >> 30) {
case 1:
n = (-n) & 3;
break;
case 2:
n = (-n) & 7;
break;
default:
n = 0;
break;
}
s->rxp_pad = n;
DPRINTF("Pop packet size:%d offset:%d pad: %d\n",
s->rxp_size, s->rxp_offset, s->rxp_pad);
}
}
if (s->rxp_offset > 0) {
s->rxp_offset--;
val = 0;
} else if (s->rxp_size > 0) {
s->rxp_size--;
val = s->rx_fifo[s->rx_fifo_head++];
if (s->rx_fifo_head >= s->rx_fifo_size) {
s->rx_fifo_head -= s->rx_fifo_size;
}
s->rx_fifo_used--;
} else if (s->rxp_pad > 0) {
s->rxp_pad--;
val = 0;
} else {
DPRINTF("RX underflow\n");
s->int_sts |= RXE_INT;
val = 0;
}
lan9118_update(s);
return val;
}
static void do_tx_packet(lan9118_state *s)
{
int n;
uint32_t status;
/* FIXME: Honor TX disable, and allow queueing of packets. */
if (s->phy_control & 0x4000) {
/* This assumes the receive routine doesn't touch the VLANClient. */
lan9118_receive(&s->nic->nc, s->txp->data, s->txp->len);
} else {
qemu_send_packet(&s->nic->nc, s->txp->data, s->txp->len);
}
s->txp->fifo_used = 0;
if (s->tx_status_fifo_used == 512) {
/* Status FIFO full */
return;
}
/* Add entry to status FIFO. */
status = s->txp->cmd_b & 0xffff0000u;
DPRINTF("Sent packet tag:%04x len %d\n", status >> 16, s->txp->len);
n = (s->tx_status_fifo_head + s->tx_status_fifo_used) & 511;
s->tx_status_fifo[n] = status;
s->tx_status_fifo_used++;
if (s->tx_status_fifo_used == 512) {
s->int_sts |= TSFF_INT;
/* TODO: Stop transmission. */
}
}
static uint32_t rx_status_fifo_pop(lan9118_state *s)
{
uint32_t val;
val = s->rx_status_fifo[s->rx_status_fifo_head];
if (s->rx_status_fifo_used != 0) {
s->rx_status_fifo_used--;
s->rx_status_fifo_head++;
if (s->rx_status_fifo_head >= s->rx_status_fifo_size) {
s->rx_status_fifo_head -= s->rx_status_fifo_size;
}
/* ??? What value should be returned when the FIFO is empty? */
DPRINTF("RX status pop 0x%08x\n", val);
}
return val;
}
static uint32_t tx_status_fifo_pop(lan9118_state *s)
{
uint32_t val;
val = s->tx_status_fifo[s->tx_status_fifo_head];
if (s->tx_status_fifo_used != 0) {
s->tx_status_fifo_used--;
s->tx_status_fifo_head = (s->tx_status_fifo_head + 1) & 511;
/* ??? What value should be returned when the FIFO is empty? */
}
return val;
}
static void tx_fifo_push(lan9118_state *s, uint32_t val)
{
int n;
if (s->txp->fifo_used == s->tx_fifo_size) {
s->int_sts |= TDFO_INT;
return;
}
switch (s->txp->state) {
case TX_IDLE:
s->txp->cmd_a = val & 0x831f37ff;
s->txp->fifo_used++;
s->txp->state = TX_B;
break;
case TX_B:
if (s->txp->cmd_a & 0x2000) {
/* First segment */
s->txp->cmd_b = val;
s->txp->fifo_used++;
s->txp->buffer_size = s->txp->cmd_a & 0x7ff;
s->txp->offset = (s->txp->cmd_a >> 16) & 0x1f;
/* End alignment does not include command words. */
n = (s->txp->buffer_size + s->txp->offset + 3) >> 2;
switch ((n >> 24) & 3) {
case 1:
n = (-n) & 3;
break;
case 2:
n = (-n) & 7;
break;
default:
n = 0;
}
s->txp->pad = n;
s->txp->len = 0;
}
DPRINTF("Block len:%d offset:%d pad:%d cmd %08x\n",
s->txp->buffer_size, s->txp->offset, s->txp->pad,
s->txp->cmd_a);
s->txp->state = TX_DATA;
break;
case TX_DATA:
if (s->txp->offset >= 4) {
s->txp->offset -= 4;
break;
}
if (s->txp->buffer_size <= 0 && s->txp->pad != 0) {
s->txp->pad--;
} else {
n = 4;
while (s->txp->offset) {
val >>= 8;
n--;
s->txp->offset--;
}
/* Documentation is somewhat unclear on the ordering of bytes
in FIFO words. Empirical results show it to be little-endian.
*/
/* TODO: FIFO overflow checking. */
while (n--) {
s->txp->data[s->txp->len] = val & 0xff;
s->txp->len++;
val >>= 8;
s->txp->buffer_size--;
}
s->txp->fifo_used++;
}
if (s->txp->buffer_size <= 0 && s->txp->pad == 0) {
if (s->txp->cmd_a & 0x1000) {
do_tx_packet(s);
}
if (s->txp->cmd_a & 0x80000000) {
s->int_sts |= TX_IOC_INT;
}
s->txp->state = TX_IDLE;
}
break;
}
}
static uint32_t do_phy_read(lan9118_state *s, int reg)
{
switch (reg) {
case 0: /* Basic Control */
return s->phy_control;
case 1: /* Basic Status */
return s->phy_status;
case 2: /* ID1 */
return 0x0007;
case 3: /* ID2 */
return 0xc0d1;
case 4: /* Auto-neg advertisment */
return s->phy_advertise;
case 5: /* Auto-neg Link Partner Ability */
return 0x0f71;
case 6: /* Auto-neg Expansion */
return 1;
/* TODO 17, 18, 27, 29, 30, 31 */
default:
BADF("PHY read reg %d\n", reg);
return 0;
}
}
static void do_phy_write(lan9118_state *s, int reg, uint32_t val)
{
switch (reg) {
case 0: /* Basic Control */
if (val & 0x8000) {
phy_reset(s);
break;
}
s->phy_control = val & 0x7980;
/* Complete autonegotiation imediately. */
if (val & 0x1000) {
s->phy_status |= 0x0020;
}
break;
case 4: /* Auto-neg advertisment */
s->phy_advertise = (val & 0x2d7f) | 0x80;
break;
/* TODO 17, 18, 27, 29, 30, 31 */
default:
BADF("PHY write reg %d = 0x%04x\n", reg, val);
}
}
static void do_mac_write(lan9118_state *s, int reg, uint32_t val)
{
switch (reg) {
case MAC_CR:
if ((s->mac_cr & MAC_CR_RXEN) != 0 && (val & MAC_CR_RXEN) == 0) {
s->int_sts |= RXSTOP_INT;
}
s->mac_cr = val & ~MAC_CR_RESERVED;
DPRINTF("MAC_CR: %08x\n", val);
break;
case MAC_ADDRH:
s->conf.macaddr.a[4] = val & 0xff;
s->conf.macaddr.a[5] = (val >> 8) & 0xff;
lan9118_mac_changed(s);
break;
case MAC_ADDRL:
s->conf.macaddr.a[0] = val & 0xff;
s->conf.macaddr.a[1] = (val >> 8) & 0xff;
s->conf.macaddr.a[2] = (val >> 16) & 0xff;
s->conf.macaddr.a[3] = (val >> 24) & 0xff;
lan9118_mac_changed(s);
break;
case MAC_HASHH:
s->mac_hashh = val;
break;
case MAC_HASHL:
s->mac_hashl = val;
break;
case MAC_MII_ACC:
s->mac_mii_acc = val & 0xffc2;
if (val & 2) {
DPRINTF("PHY write %d = 0x%04x\n",
(val >> 6) & 0x1f, s->mac_mii_data);
do_phy_write(s, (val >> 6) & 0x1f, s->mac_mii_data);
} else {
s->mac_mii_data = do_phy_read(s, (val >> 6) & 0x1f);
DPRINTF("PHY read %d = 0x%04x\n",
(val >> 6) & 0x1f, s->mac_mii_data);
}
break;
case MAC_MII_DATA:
s->mac_mii_data = val & 0xffff;
break;
case MAC_FLOW:
s->mac_flow = val & 0xffff0000;
break;
default:
hw_error("lan9118: Unimplemented MAC register write: %d = 0x%x\n",
s->mac_cmd & 0xf, val);
}
}
static uint32_t do_mac_read(lan9118_state *s, int reg)
{
switch (reg) {
case MAC_CR:
return s->mac_cr;
case MAC_ADDRH:
return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8);
case MAC_ADDRL:
return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8)
| (s->conf.macaddr.a[2] << 16) | (s->conf.macaddr.a[3] << 24);
case MAC_HASHH:
return s->mac_hashh;
break;
case MAC_HASHL:
return s->mac_hashl;
break;
case MAC_MII_ACC:
return s->mac_mii_acc;
case MAC_MII_DATA:
return s->mac_mii_data;
case MAC_FLOW:
return s->mac_flow;
default:
hw_error("lan9118: Unimplemented MAC register read: %d\n",
s->mac_cmd & 0xf);
}
}
static void lan9118_eeprom_cmd(lan9118_state *s, int cmd, int addr)
{
s->e2p_cmd = (s->e2p_cmd & 0x10) | (cmd << 28) | addr;
switch (cmd) {
case 0:
s->e2p_data = s->eeprom[addr];
DPRINTF("EEPROM Read %d = 0x%02x\n", addr, s->e2p_data);
break;
case 1:
s->eeprom_writable = 0;
DPRINTF("EEPROM Write Disable\n");
break;
case 2: /* EWEN */
s->eeprom_writable = 1;
DPRINTF("EEPROM Write Enable\n");
break;
case 3: /* WRITE */
if (s->eeprom_writable) {
s->eeprom[addr] &= s->e2p_data;
DPRINTF("EEPROM Write %d = 0x%02x\n", addr, s->e2p_data);
} else {
DPRINTF("EEPROM Write %d (ignored)\n", addr);
}
break;
case 4: /* WRAL */
if (s->eeprom_writable) {
for (addr = 0; addr < 128; addr++) {
s->eeprom[addr] &= s->e2p_data;
}
DPRINTF("EEPROM Write All 0x%02x\n", s->e2p_data);
} else {
DPRINTF("EEPROM Write All (ignored)\n");
}
case 5: /* ERASE */
if (s->eeprom_writable) {
s->eeprom[addr] = 0xff;
DPRINTF("EEPROM Erase %d\n", addr);
} else {
DPRINTF("EEPROM Erase %d (ignored)\n", addr);
}
break;
case 6: /* ERAL */
if (s->eeprom_writable) {
memset(s->eeprom, 0xff, 128);
DPRINTF("EEPROM Erase All\n");
} else {
DPRINTF("EEPROM Erase All (ignored)\n");
}
break;
case 7: /* RELOAD */
lan9118_reload_eeprom(s);
break;
}
}
static void lan9118_writel(void *opaque, target_phys_addr_t offset,
uint32_t val)
{
lan9118_state *s = (lan9118_state *)opaque;
offset &= 0xff;
//DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val);
if (offset >= 0x20 && offset < 0x40) {
/* TX FIFO */
tx_fifo_push(s, val);
return;
}
switch (offset) {
case CSR_IRQ_CFG:
/* TODO: Implement interrupt deassertion intervals. */
s->irq_cfg = (val & IRQ_EN);
break;
case CSR_INT_STS:
s->int_sts &= ~val;
break;
case CSR_INT_EN:
s->int_en = val & ~RESERVED_INT;
s->int_sts |= val & SW_INT;
break;
case CSR_FIFO_INT:
DPRINTF("FIFO INT levels %08x\n", val);
s->fifo_int = val;
break;
case CSR_RX_CFG:
if (val & 0x8000) {
/* RX_DUMP */
s->rx_fifo_used = 0;
s->rx_status_fifo_used = 0;
s->rx_packet_size_tail = s->rx_packet_size_head;
s->rx_packet_size[s->rx_packet_size_head] = 0;
}
s->rx_cfg = val & 0xcfff1ff0;
break;
case CSR_TX_CFG:
if (val & 0x8000) {
s->tx_status_fifo_used = 0;
}
if (val & 0x4000) {
s->txp->state = TX_IDLE;
s->txp->fifo_used = 0;
s->txp->cmd_a = 0xffffffff;
}
s->tx_cfg = val & 6;
break;
case CSR_HW_CFG:
if (val & 1) {
/* SRST */
lan9118_reset(&s->busdev.qdev);
} else {
s->hw_cfg = val & 0x003f300;
}
break;
case CSR_RX_DP_CTRL:
if (val & 0x80000000) {
/* Skip forward to next packet. */
s->rxp_pad = 0;
s->rxp_offset = 0;
if (s->rxp_size == 0) {
/* Pop a word to start the next packet. */
rx_fifo_pop(s);
s->rxp_pad = 0;
s->rxp_offset = 0;
}
s->rx_fifo_head += s->rxp_size;
if (s->rx_fifo_head >= s->rx_fifo_size) {
s->rx_fifo_head -= s->rx_fifo_size;
}
}
break;
case CSR_PMT_CTRL:
if (val & 0x400) {
phy_reset(s);
}
s->pmt_ctrl &= ~0x34e;
s->pmt_ctrl |= (val & 0x34e);
break;
case CSR_GPIO_CFG:
/* Probably just enabling LEDs. */
s->gpio_cfg = val & 0x7777071f;
break;
case CSR_WORD_SWAP:
/* Ignored because we're in 32-bit mode. */
s->word_swap = val;
break;
case CSR_MAC_CSR_CMD:
s->mac_cmd = val & 0x4000000f;
if (val & 0x80000000) {
if (val & 0x40000000) {
s->mac_data = do_mac_read(s, val & 0xf);
DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data);
} else {
DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data);
do_mac_write(s, val & 0xf, s->mac_data);
}
}
break;
case CSR_MAC_CSR_DATA:
s->mac_data = val;
break;
case CSR_AFC_CFG:
s->afc_cfg = val & 0x00ffffff;
break;
case CSR_E2P_CMD:
lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0xff);
break;
case CSR_E2P_DATA:
s->e2p_data = val & 0xff;
break;
default:
hw_error("lan9118_write: Bad reg 0x%x = %x\n", (int)offset, val);
break;
}
lan9118_update(s);
}
static uint32_t lan9118_readl(void *opaque, target_phys_addr_t offset)
{
lan9118_state *s = (lan9118_state *)opaque;
//DPRINTF("Read reg 0x%02x\n", (int)offset);
if (offset < 0x20) {
/* RX FIFO */
return rx_fifo_pop(s);
}
switch (offset) {
case 0x40:
return rx_status_fifo_pop(s);
case 0x44:
return s->rx_status_fifo[s->tx_status_fifo_head];
case 0x48:
return tx_status_fifo_pop(s);
case 0x4c:
return s->tx_status_fifo[s->tx_status_fifo_head];
case CSR_ID_REV:
return 0x01180001;
case CSR_IRQ_CFG:
return s->irq_cfg;
case CSR_INT_STS:
return s->int_sts;
case CSR_INT_EN:
return s->int_en;
case CSR_BYTE_TEST:
return 0x87654321;
case CSR_FIFO_INT:
return s->fifo_int;
case CSR_RX_CFG:
return s->rx_cfg;
case CSR_TX_CFG:
return s->tx_cfg;
case CSR_HW_CFG:
return s->hw_cfg | 0x4;
case CSR_RX_DP_CTRL:
return 0;
case CSR_RX_FIFO_INF:
return (s->rx_status_fifo_used << 16) | (s->rx_fifo_used << 2);
case CSR_TX_FIFO_INF:
return (s->tx_status_fifo_used << 16)
| (s->tx_fifo_size - s->txp->fifo_used);
case CSR_PMT_CTRL:
return s->pmt_ctrl;
case CSR_GPIO_CFG:
return s->gpio_cfg;
case CSR_WORD_SWAP:
return s->word_swap;
case CSR_FREE_RUN:
return (qemu_get_clock(vm_clock) / 40) - s->free_timer_start;
case CSR_RX_DROP:
/* TODO: Implement dropped frames counter. */
return 0;
case CSR_MAC_CSR_CMD:
return s->mac_cmd;
case CSR_MAC_CSR_DATA:
return s->mac_data;
case CSR_AFC_CFG:
return s->afc_cfg;
case CSR_E2P_CMD:
return s->e2p_cmd;
case CSR_E2P_DATA:
return s->e2p_data;
}
hw_error("lan9118_read: Bad reg 0x%x\n", (int)offset);
return 0;
}
static CPUReadMemoryFunc * const lan9118_readfn[] = {
lan9118_readl,
lan9118_readl,
lan9118_readl
};
static CPUWriteMemoryFunc * const lan9118_writefn[] = {
lan9118_writel,
lan9118_writel,
lan9118_writel
};
static void lan9118_cleanup(VLANClientState *nc)
{
lan9118_state *s = DO_UPCAST(NICState, nc, nc)->opaque;
s->nic = NULL;
}
static NetClientInfo net_lan9118_info = {
.type = NET_CLIENT_TYPE_NIC,
.size = sizeof(NICState),
.can_receive = lan9118_can_receive,
.receive = lan9118_receive,
.cleanup = lan9118_cleanup,
.link_status_changed = lan9118_set_link,
};
static int lan9118_init1(SysBusDevice *dev)
{
lan9118_state *s = FROM_SYSBUS(lan9118_state, dev);
int i;
s->mmio_index = cpu_register_io_memory(lan9118_readfn,
lan9118_writefn, s);
sysbus_init_mmio(dev, 0x100, s->mmio_index);
sysbus_init_irq(dev, &s->irq);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_lan9118_info, &s->conf,
dev->qdev.info->name, dev->qdev.id, s);
qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
s->eeprom[0] = 0xa5;
for (i = 0; i < 6; i++) {
s->eeprom[i + 1] = s->conf.macaddr.a[i];
}
s->pmt_ctrl = 1;
s->txp = &s->tx_packet;
/* ??? Save/restore. */
return 0;
}
static SysBusDeviceInfo lan9118_info = {
.init = lan9118_init1,
.qdev.name = "lan9118",
.qdev.size = sizeof(lan9118_state),
.qdev.reset = lan9118_reset,
.qdev.props = (Property[]) {
DEFINE_NIC_PROPERTIES(lan9118_state, conf),
DEFINE_PROP_END_OF_LIST(),
}
};
static void lan9118_register_devices(void)
{
sysbus_register_withprop(&lan9118_info);
}
/* Legacy helper function. Should go away when machine config files are
implemented. */
void lan9118_init(NICInfo *nd, uint32_t base, qemu_irq irq)
{
DeviceState *dev;
SysBusDevice *s;
qemu_check_nic_model(nd, "lan9118");
dev = qdev_create(NULL, "lan9118");
qdev_set_nic_properties(dev, nd);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_mmio_map(s, 0, base);
sysbus_connect_irq(s, 0, irq);
}
device_init(lan9118_register_devices)