qemu/hw/sparc32_dma.c

266 lines
7.1 KiB
C

/*
* QEMU Sparc32 DMA controller emulation
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sparc32_dma.h"
#include "sun4m.h"
/* debug DMA */
//#define DEBUG_DMA
/*
* This is the DMA controller part of chip STP2000 (Master I/O), also
* produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
*/
#ifdef DEBUG_DMA
#define DPRINTF(fmt, args...) \
do { printf("DMA: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
#define DMA_REGS 4
#define DMA_SIZE (4 * sizeof(uint32_t))
/* We need the mask, because one instance of the device is not page
aligned (ledma, start address 0x0010) */
#define DMA_MASK (DMA_SIZE - 1)
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_WRITE_MEM 0x100
#define DMA_LOADED 0x04000000
#define DMA_DRAIN_FIFO 0x40
#define DMA_RESET 0x80
typedef struct DMAState DMAState;
struct DMAState {
uint32_t dmaregs[DMA_REGS];
qemu_irq irq;
void *iommu;
qemu_irq dev_reset;
};
/* Note: on sparc, the lance 16 bit bus is swapped */
void ledma_memory_read(void *opaque, target_phys_addr_t addr,
uint8_t *buf, int len, int do_bswap)
{
DMAState *s = opaque;
int i;
DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
addr |= s->dmaregs[3];
if (do_bswap) {
sparc_iommu_memory_read(s->iommu, addr, buf, len);
} else {
addr &= ~1;
len &= ~1;
sparc_iommu_memory_read(s->iommu, addr, buf, len);
for(i = 0; i < len; i += 2) {
bswap16s((uint16_t *)(buf + i));
}
}
}
void ledma_memory_write(void *opaque, target_phys_addr_t addr,
uint8_t *buf, int len, int do_bswap)
{
DMAState *s = opaque;
int l, i;
uint16_t tmp_buf[32];
DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
addr |= s->dmaregs[3];
if (do_bswap) {
sparc_iommu_memory_write(s->iommu, addr, buf, len);
} else {
addr &= ~1;
len &= ~1;
while (len > 0) {
l = len;
if (l > sizeof(tmp_buf))
l = sizeof(tmp_buf);
for(i = 0; i < l; i += 2) {
tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
}
sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
len -= l;
buf += l;
addr += l;
}
}
}
static void dma_set_irq(void *opaque, int irq, int level)
{
DMAState *s = opaque;
if (level) {
DPRINTF("Raise IRQ\n");
s->dmaregs[0] |= DMA_INTR;
qemu_irq_raise(s->irq);
} else {
s->dmaregs[0] &= ~DMA_INTR;
DPRINTF("Lower IRQ\n");
qemu_irq_lower(s->irq);
}
}
void espdma_memory_read(void *opaque, uint8_t *buf, int len)
{
DMAState *s = opaque;
DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
s->dmaregs[0] |= DMA_INTR;
s->dmaregs[1] += len;
}
void espdma_memory_write(void *opaque, uint8_t *buf, int len)
{
DMAState *s = opaque;
DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
s->dmaregs[0] |= DMA_INTR;
s->dmaregs[1] += len;
}
static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
{
DMAState *s = opaque;
uint32_t saddr;
saddr = (addr & DMA_MASK) >> 2;
DPRINTF("read dmareg " TARGET_FMT_plx ": 0x%8.8x\n", addr,
s->dmaregs[saddr]);
return s->dmaregs[saddr];
}
static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
DMAState *s = opaque;
uint32_t saddr;
saddr = (addr & DMA_MASK) >> 2;
DPRINTF("write dmareg " TARGET_FMT_plx ": 0x%8.8x -> 0x%8.8x\n", addr,
s->dmaregs[saddr], val);
switch (saddr) {
case 0:
if (!(val & DMA_INTREN)) {
DPRINTF("Lower IRQ\n");
qemu_irq_lower(s->irq);
}
if (val & DMA_RESET) {
qemu_irq_raise(s->dev_reset);
qemu_irq_lower(s->dev_reset);
} else if (val & DMA_DRAIN_FIFO) {
val &= ~DMA_DRAIN_FIFO;
} else if (val == 0)
val = DMA_DRAIN_FIFO;
val &= 0x0fffffff;
val |= DMA_VER;
break;
case 1:
s->dmaregs[0] |= DMA_LOADED;
break;
default:
break;
}
s->dmaregs[saddr] = val;
}
static CPUReadMemoryFunc *dma_mem_read[3] = {
NULL,
NULL,
dma_mem_readl,
};
static CPUWriteMemoryFunc *dma_mem_write[3] = {
NULL,
NULL,
dma_mem_writel,
};
static void dma_reset(void *opaque)
{
DMAState *s = opaque;
memset(s->dmaregs, 0, DMA_SIZE);
s->dmaregs[0] = DMA_VER;
}
static void dma_save(QEMUFile *f, void *opaque)
{
DMAState *s = opaque;
unsigned int i;
for (i = 0; i < DMA_REGS; i++)
qemu_put_be32s(f, &s->dmaregs[i]);
}
static int dma_load(QEMUFile *f, void *opaque, int version_id)
{
DMAState *s = opaque;
unsigned int i;
if (version_id != 2)
return -EINVAL;
for (i = 0; i < DMA_REGS; i++)
qemu_get_be32s(f, &s->dmaregs[i]);
return 0;
}
void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
void *iommu, qemu_irq **dev_irq, qemu_irq **reset)
{
DMAState *s;
int dma_io_memory;
s = qemu_mallocz(sizeof(DMAState));
s->irq = parent_irq;
s->iommu = iommu;
dma_io_memory = cpu_register_io_memory(0, dma_mem_read, dma_mem_write, s);
cpu_register_physical_memory(daddr, DMA_SIZE, dma_io_memory);
register_savevm("sparc32_dma", daddr, 2, dma_save, dma_load, s);
qemu_register_reset(dma_reset, s);
*dev_irq = qemu_allocate_irqs(dma_set_irq, s, 1);
*reset = &s->dev_reset;
return s;
}