qemu/hw/ppc/spapr_irq.c

597 lines
16 KiB
C

/*
* QEMU PowerPC sPAPR IRQ interface
*
* Copyright (c) 2018, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/ppc/spapr_xive.h"
#include "hw/ppc/xics.h"
#include "hw/ppc/xics_spapr.h"
#include "hw/qdev-properties.h"
#include "cpu-models.h"
#include "sysemu/kvm.h"
#include "trace.h"
static const TypeInfo spapr_intc_info = {
.name = TYPE_SPAPR_INTC,
.parent = TYPE_INTERFACE,
.class_size = sizeof(SpaprInterruptControllerClass),
};
static void spapr_irq_msi_init(SpaprMachineState *spapr)
{
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
/* Legacy mode doesn't use this allocator */
return;
}
spapr->irq_map_nr = spapr_irq_nr_msis(spapr);
spapr->irq_map = bitmap_new(spapr->irq_map_nr);
}
int spapr_irq_msi_alloc(SpaprMachineState *spapr, uint32_t num, bool align,
Error **errp)
{
int irq;
/*
* The 'align_mask' parameter of bitmap_find_next_zero_area()
* should be one less than a power of 2; 0 means no
* alignment. Adapt the 'align' value of the former allocator
* to fit the requirements of bitmap_find_next_zero_area()
*/
align -= 1;
irq = bitmap_find_next_zero_area(spapr->irq_map, spapr->irq_map_nr, 0, num,
align);
if (irq == spapr->irq_map_nr) {
error_setg(errp, "can't find a free %d-IRQ block", num);
return -1;
}
bitmap_set(spapr->irq_map, irq, num);
return irq + SPAPR_IRQ_MSI;
}
void spapr_irq_msi_free(SpaprMachineState *spapr, int irq, uint32_t num)
{
bitmap_clear(spapr->irq_map, irq - SPAPR_IRQ_MSI, num);
}
int spapr_irq_init_kvm(SpaprInterruptControllerInitKvm fn,
SpaprInterruptController *intc,
uint32_t nr_servers,
Error **errp)
{
Error *local_err = NULL;
if (kvm_enabled() && kvm_kernel_irqchip_allowed()) {
if (fn(intc, nr_servers, &local_err) < 0) {
if (kvm_kernel_irqchip_required()) {
error_prepend(&local_err,
"kernel_irqchip requested but unavailable: ");
error_propagate(errp, local_err);
return -1;
}
/*
* We failed to initialize the KVM device, fallback to
* emulated mode
*/
error_prepend(&local_err,
"kernel_irqchip allowed but unavailable: ");
error_append_hint(&local_err,
"Falling back to kernel-irqchip=off\n");
warn_report_err(local_err);
}
}
return 0;
}
/*
* XICS IRQ backend.
*/
SpaprIrq spapr_irq_xics = {
.xics = true,
.xive = false,
};
/*
* XIVE IRQ backend.
*/
SpaprIrq spapr_irq_xive = {
.xics = false,
.xive = true,
};
/*
* Dual XIVE and XICS IRQ backend.
*
* Both interrupt mode, XIVE and XICS, objects are created but the
* machine starts in legacy interrupt mode (XICS). It can be changed
* by the CAS negotiation process and, in that case, the new mode is
* activated after an extra machine reset.
*/
/*
* Define values in sync with the XIVE and XICS backend
*/
SpaprIrq spapr_irq_dual = {
.xics = true,
.xive = true,
};
static int spapr_irq_check(SpaprMachineState *spapr, Error **errp)
{
MachineState *machine = MACHINE(spapr);
/*
* Sanity checks on non-P9 machines. On these, XIVE is not
* advertised, see spapr_dt_ov5_platform_support()
*/
if (!ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
0, spapr->max_compat_pvr)) {
/*
* If the 'dual' interrupt mode is selected, force XICS as CAS
* negotiation is useless.
*/
if (spapr->irq == &spapr_irq_dual) {
spapr->irq = &spapr_irq_xics;
return 0;
}
/*
* Non-P9 machines using only XIVE is a bogus setup. We have two
* scenarios to take into account because of the compat mode:
*
* 1. POWER7/8 machines should fail to init later on when creating
* the XIVE interrupt presenters because a POWER9 exception
* model is required.
* 2. POWER9 machines using the POWER8 compat mode won't fail and
* will let the OS boot with a partial XIVE setup : DT
* properties but no hcalls.
*
* To cover both and not confuse the OS, add an early failure in
* QEMU.
*/
if (spapr->irq == &spapr_irq_xive) {
error_setg(errp, "XIVE-only machines require a POWER9 CPU");
return -1;
}
}
/*
* On a POWER9 host, some older KVM XICS devices cannot be destroyed and
* re-created. Detect that early to avoid QEMU to exit later when the
* guest reboots.
*/
if (kvm_enabled() &&
spapr->irq == &spapr_irq_dual &&
kvm_kernel_irqchip_required() &&
xics_kvm_has_broken_disconnect(spapr)) {
error_setg(errp, "KVM is too old to support ic-mode=dual,kernel-irqchip=on");
return -1;
}
return 0;
}
/*
* sPAPR IRQ frontend routines for devices
*/
#define ALL_INTCS(spapr_) \
{ SPAPR_INTC((spapr_)->ics), SPAPR_INTC((spapr_)->xive), }
int spapr_irq_cpu_intc_create(SpaprMachineState *spapr,
PowerPCCPU *cpu, Error **errp)
{
SpaprInterruptController *intcs[] = ALL_INTCS(spapr);
int i;
int rc;
for (i = 0; i < ARRAY_SIZE(intcs); i++) {
SpaprInterruptController *intc = intcs[i];
if (intc) {
SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc);
rc = sicc->cpu_intc_create(intc, cpu, errp);
if (rc < 0) {
return rc;
}
}
}
return 0;
}
void spapr_irq_cpu_intc_reset(SpaprMachineState *spapr, PowerPCCPU *cpu)
{
SpaprInterruptController *intcs[] = ALL_INTCS(spapr);
int i;
for (i = 0; i < ARRAY_SIZE(intcs); i++) {
SpaprInterruptController *intc = intcs[i];
if (intc) {
SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc);
sicc->cpu_intc_reset(intc, cpu);
}
}
}
void spapr_irq_cpu_intc_destroy(SpaprMachineState *spapr, PowerPCCPU *cpu)
{
SpaprInterruptController *intcs[] = ALL_INTCS(spapr);
int i;
for (i = 0; i < ARRAY_SIZE(intcs); i++) {
SpaprInterruptController *intc = intcs[i];
if (intc) {
SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc);
sicc->cpu_intc_destroy(intc, cpu);
}
}
}
static void spapr_set_irq(void *opaque, int irq, int level)
{
SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
SpaprInterruptControllerClass *sicc
= SPAPR_INTC_GET_CLASS(spapr->active_intc);
sicc->set_irq(spapr->active_intc, irq, level);
}
void spapr_irq_print_info(SpaprMachineState *spapr, Monitor *mon)
{
SpaprInterruptControllerClass *sicc
= SPAPR_INTC_GET_CLASS(spapr->active_intc);
sicc->print_info(spapr->active_intc, mon);
}
void spapr_irq_dt(SpaprMachineState *spapr, uint32_t nr_servers,
void *fdt, uint32_t phandle)
{
SpaprInterruptControllerClass *sicc
= SPAPR_INTC_GET_CLASS(spapr->active_intc);
sicc->dt(spapr->active_intc, nr_servers, fdt, phandle);
}
uint32_t spapr_irq_nr_msis(SpaprMachineState *spapr)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
if (smc->legacy_irq_allocation) {
return smc->nr_xirqs;
} else {
return SPAPR_XIRQ_BASE + smc->nr_xirqs - SPAPR_IRQ_MSI;
}
}
void spapr_irq_init(SpaprMachineState *spapr, Error **errp)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
if (kvm_enabled() && kvm_kernel_irqchip_split()) {
error_setg(errp, "kernel_irqchip split mode not supported on pseries");
return;
}
if (spapr_irq_check(spapr, errp) < 0) {
return;
}
/* Initialize the MSI IRQ allocator. */
spapr_irq_msi_init(spapr);
if (spapr->irq->xics) {
Error *local_err = NULL;
Object *obj;
obj = object_new(TYPE_ICS_SPAPR);
object_property_add_child(OBJECT(spapr), "ics", obj);
object_property_set_link(obj, OBJECT(spapr), ICS_PROP_XICS,
&error_abort);
object_property_set_int(obj, smc->nr_xirqs, "nr-irqs", &error_abort);
object_property_set_bool(obj, true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr->ics = ICS_SPAPR(obj);
}
if (spapr->irq->xive) {
uint32_t nr_servers = spapr_max_server_number(spapr);
DeviceState *dev;
int i;
dev = qdev_create(NULL, TYPE_SPAPR_XIVE);
qdev_prop_set_uint32(dev, "nr-irqs", smc->nr_xirqs + SPAPR_XIRQ_BASE);
/*
* 8 XIVE END structures per CPU. One for each available
* priority
*/
qdev_prop_set_uint32(dev, "nr-ends", nr_servers << 3);
object_property_set_link(OBJECT(dev), OBJECT(spapr), "xive-fabric",
&error_abort);
qdev_init_nofail(dev);
spapr->xive = SPAPR_XIVE(dev);
/* Enable the CPU IPIs */
for (i = 0; i < nr_servers; ++i) {
SpaprInterruptControllerClass *sicc
= SPAPR_INTC_GET_CLASS(spapr->xive);
if (sicc->claim_irq(SPAPR_INTC(spapr->xive), SPAPR_IRQ_IPI + i,
false, errp) < 0) {
return;
}
}
spapr_xive_hcall_init(spapr);
}
spapr->qirqs = qemu_allocate_irqs(spapr_set_irq, spapr,
smc->nr_xirqs + SPAPR_XIRQ_BASE);
/*
* Mostly we don't actually need this until reset, except that not
* having this set up can cause VFIO devices to issue a
* false-positive warning during realize(), because they don't yet
* have an in-kernel irq chip.
*/
spapr_irq_update_active_intc(spapr);
}
int spapr_irq_claim(SpaprMachineState *spapr, int irq, bool lsi, Error **errp)
{
SpaprInterruptController *intcs[] = ALL_INTCS(spapr);
int i;
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
int rc;
assert(irq >= SPAPR_XIRQ_BASE);
assert(irq < (smc->nr_xirqs + SPAPR_XIRQ_BASE));
for (i = 0; i < ARRAY_SIZE(intcs); i++) {
SpaprInterruptController *intc = intcs[i];
if (intc) {
SpaprInterruptControllerClass *sicc = SPAPR_INTC_GET_CLASS(intc);
rc = sicc->claim_irq(intc, irq, lsi, errp);
if (rc < 0) {
return rc;
}
}
}
return 0;
}
void spapr_irq_free(SpaprMachineState *spapr, int irq, int num)
{
SpaprInterruptController *intcs[] = ALL_INTCS(spapr);
int i, j;
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
assert(irq >= SPAPR_XIRQ_BASE);
assert((irq + num) <= (smc->nr_xirqs + SPAPR_XIRQ_BASE));
for (i = irq; i < (irq + num); i++) {
for (j = 0; j < ARRAY_SIZE(intcs); j++) {
SpaprInterruptController *intc = intcs[j];
if (intc) {
SpaprInterruptControllerClass *sicc
= SPAPR_INTC_GET_CLASS(intc);
sicc->free_irq(intc, i);
}
}
}
}
qemu_irq spapr_qirq(SpaprMachineState *spapr, int irq)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
/*
* This interface is basically for VIO and PHB devices to find the
* right qemu_irq to manipulate, so we only allow access to the
* external irqs for now. Currently anything which needs to
* access the IPIs most naturally gets there via the guest side
* interfaces, we can change this if we need to in future.
*/
assert(irq >= SPAPR_XIRQ_BASE);
assert(irq < (smc->nr_xirqs + SPAPR_XIRQ_BASE));
if (spapr->ics) {
assert(ics_valid_irq(spapr->ics, irq));
}
if (spapr->xive) {
assert(irq < spapr->xive->nr_irqs);
assert(xive_eas_is_valid(&spapr->xive->eat[irq]));
}
return spapr->qirqs[irq];
}
int spapr_irq_post_load(SpaprMachineState *spapr, int version_id)
{
SpaprInterruptControllerClass *sicc;
spapr_irq_update_active_intc(spapr);
sicc = SPAPR_INTC_GET_CLASS(spapr->active_intc);
return sicc->post_load(spapr->active_intc, version_id);
}
void spapr_irq_reset(SpaprMachineState *spapr, Error **errp)
{
assert(!spapr->irq_map || bitmap_empty(spapr->irq_map, spapr->irq_map_nr));
spapr_irq_update_active_intc(spapr);
}
int spapr_irq_get_phandle(SpaprMachineState *spapr, void *fdt, Error **errp)
{
const char *nodename = "interrupt-controller";
int offset, phandle;
offset = fdt_subnode_offset(fdt, 0, nodename);
if (offset < 0) {
error_setg(errp, "Can't find node \"%s\": %s",
nodename, fdt_strerror(offset));
return -1;
}
phandle = fdt_get_phandle(fdt, offset);
if (!phandle) {
error_setg(errp, "Can't get phandle of node \"%s\"", nodename);
return -1;
}
return phandle;
}
static void set_active_intc(SpaprMachineState *spapr,
SpaprInterruptController *new_intc)
{
SpaprInterruptControllerClass *sicc;
uint32_t nr_servers = spapr_max_server_number(spapr);
assert(new_intc);
if (new_intc == spapr->active_intc) {
/* Nothing to do */
return;
}
if (spapr->active_intc) {
sicc = SPAPR_INTC_GET_CLASS(spapr->active_intc);
if (sicc->deactivate) {
sicc->deactivate(spapr->active_intc);
}
}
sicc = SPAPR_INTC_GET_CLASS(new_intc);
if (sicc->activate) {
sicc->activate(new_intc, nr_servers, &error_fatal);
}
spapr->active_intc = new_intc;
/*
* We've changed the kernel irqchip, let VFIO devices know they
* need to readjust.
*/
kvm_irqchip_change_notify();
}
void spapr_irq_update_active_intc(SpaprMachineState *spapr)
{
SpaprInterruptController *new_intc;
if (!spapr->ics) {
/*
* XXX before we run CAS, ov5_cas is initialized empty, which
* indicates XICS, even if we have ic-mode=xive. TODO: clean
* up the CAS path so that we have a clearer way of handling
* this.
*/
new_intc = SPAPR_INTC(spapr->xive);
} else if (spapr->ov5_cas
&& spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
new_intc = SPAPR_INTC(spapr->xive);
} else {
new_intc = SPAPR_INTC(spapr->ics);
}
set_active_intc(spapr, new_intc);
}
/*
* XICS legacy routines - to deprecate one day
*/
static int ics_find_free_block(ICSState *ics, int num, int alignnum)
{
int first, i;
for (first = 0; first < ics->nr_irqs; first += alignnum) {
if (num > (ics->nr_irqs - first)) {
return -1;
}
for (i = first; i < first + num; ++i) {
if (!ics_irq_free(ics, i)) {
break;
}
}
if (i == (first + num)) {
return first;
}
}
return -1;
}
int spapr_irq_find(SpaprMachineState *spapr, int num, bool align, Error **errp)
{
ICSState *ics = spapr->ics;
int first = -1;
assert(ics);
/*
* MSIMesage::data is used for storing VIRQ so
* it has to be aligned to num to support multiple
* MSI vectors. MSI-X is not affected by this.
* The hint is used for the first IRQ, the rest should
* be allocated continuously.
*/
if (align) {
assert((num == 1) || (num == 2) || (num == 4) ||
(num == 8) || (num == 16) || (num == 32));
first = ics_find_free_block(ics, num, num);
} else {
first = ics_find_free_block(ics, num, 1);
}
if (first < 0) {
error_setg(errp, "can't find a free %d-IRQ block", num);
return -1;
}
return first + ics->offset;
}
SpaprIrq spapr_irq_xics_legacy = {
.xics = true,
.xive = false,
};
static void spapr_irq_register_types(void)
{
type_register_static(&spapr_intc_info);
}
type_init(spapr_irq_register_types)