mirror of https://gitee.com/openkylin/quarkai.git
129 lines
5.2 KiB
C++
129 lines
5.2 KiB
C++
/*
|
||
* 参考代码原属主:公孙二狗
|
||
* 链接地址:http://www.qtdebug.com/qtbook-paint-smooth-curve/
|
||
* https://www.codeproject.com/Articles/31859/Draw-a-Smooth-Curve-through-a-Set-of-D-Points-wit%EF%BC%8C%E6%A0%B8%E5%BF%83%E6%98%AF%E4%BD%BF%E7%94%A8%E6%9B%B2%E7%BA%BF%E4%B8%8A%E7%9A%84%E7%82%B9%E8%AE%A1%E7%AE%97%E5%87%BA%E8%B4%9D%E5%A1%9E%E5%B0%94%E6%9B%B2%E7%BA%BF%E7%9A%84%E4%B8%A4%E4%B8%AA%E6%8E%A7%E5%88%B6%E7%82%B9%EF%BC%8C%E7%84%B6%E5%90%8E%E4%BD%BF%E7%94%A8%E8%B4%9D%E5%A1%9E%E5%B0%94%E6%9B%B2%E7%BA%BF%E7%94%9F%E6%88%90%E5%B9%B3%E6%BB%91%E6%9B%B2%E7%BA%BF%EF%BC%8C%E5%BE%88%E6%83%AD%E6%84%A7%E7%9A%84%E6%98%AF%E7%94%9F%E6%88%90%E6%8E%A7%E5%88%B6%E7%82%B9%E7%9A%84%E7%AE%97%E6%B3%95%E7%BB%86%E8%8A%82%E6%88%91%E6%B2%A1%E7%9C%8B%E6%87%82%EF%BC%8C%E5%8F%AA%E4%B8%8D%E8%BF%87%E6%98%AF%E4%BD%9C%E4%BA%86%E4%B8%80%E6%AC%A1%E6%90%AC%E8%BF%90%E5%B7%A5%EF%BC%8C%E6%8A%8A%E7%A8%8B%E5%BA%8F%E7%A7%BB%E6%A4%8D%E5%88%B0%E4%BA%86
|
||
*/
|
||
|
||
#include "smoothcurvegenerator.h"
|
||
|
||
QPainterPath SmoothCurveGenerator::generateSmoothCurve1(const QList<QPointF> &points) {
|
||
if (points.size() == 0) {
|
||
return QPainterPath();
|
||
}
|
||
QPainterPath path(points[0]);
|
||
for (int i = 0; i < points.size() - 1; ++i) {
|
||
// 控制点的 x 坐标为 sp 与 ep 的 x 坐标和的一半
|
||
// 第一个控制点 c1 的 y 坐标为起始点 sp 的 y 坐标
|
||
// 第二个控制点 c2 的 y 坐标为结束点 ep 的 y 坐标
|
||
QPointF sp = points[i];
|
||
QPointF ep = points[i+1];
|
||
QPointF c1 = QPointF((sp.x() + ep.x()) / 2, sp.y());
|
||
QPointF c2 = QPointF((sp.x() + ep.x()) / 2, ep.y());
|
||
path.cubicTo(c1, c2, ep);
|
||
}
|
||
return path;
|
||
}
|
||
|
||
//使用QPainterPath画贝塞尔曲线
|
||
QPainterPath SmoothCurveGenerator::generateSmoothCurve(const QList<QPointF> &points)
|
||
{
|
||
QPainterPath path;
|
||
int len = points.size();
|
||
if (len < 2) {
|
||
return path;
|
||
}
|
||
|
||
QList<QPointF> firstControlPoints;
|
||
QList<QPointF> secondControlPoints;
|
||
|
||
calculateControlPoints(points, &firstControlPoints, &secondControlPoints);
|
||
path.moveTo(points[0].x(), points[0].y());//默认是从原点(0,0)开始绘图,使用moveTo()改变绘图的开始位置
|
||
|
||
// Using bezier curve to generate a smooth curve.
|
||
for (int i = 0; i < len - 1; ++i) {
|
||
path.cubicTo(firstControlPoints[i], secondControlPoints[i], points[i+1]);//三阶贝赛尔曲线函数cubicto()绘图,传入点1 firstControlPoints[i],点2 secondControlPoints[i],endPoint(points[i+1])
|
||
}
|
||
return path;
|
||
}
|
||
|
||
void SmoothCurveGenerator::calculateFirstControlPoints(double *&result, const double *rhs, int n)
|
||
{
|
||
double *tmp = new double[n];
|
||
double b = 2.0;
|
||
result[0] = rhs[0] / b;
|
||
|
||
// Decomposition and forward substitution.
|
||
for (int i = 1; i < n; i++) {
|
||
tmp[i] = 1 / b;
|
||
b = (i < n - 1 ? 4.0 : 3.5) - tmp[i];
|
||
result[i] = (rhs[i] - result[i - 1]) / b;
|
||
}
|
||
|
||
for (int i = 1; i < n; i++) {
|
||
result[n - i - 1] -= tmp[n - i] * result[n - i]; // Backsubstitution.
|
||
}
|
||
|
||
delete[] tmp;
|
||
}
|
||
|
||
void SmoothCurveGenerator::calculateControlPoints(const QList<QPointF> &knots, QList<QPointF> *firstControlPoints, QList<QPointF> *secondControlPoints)
|
||
{
|
||
int n = knots.size() - 1;
|
||
|
||
for (int i = 0; i < n; ++i) {
|
||
firstControlPoints->append(QPointF());
|
||
secondControlPoints->append(QPointF());
|
||
}
|
||
|
||
if (n == 1) {
|
||
// Special case: Bezier curve should be a straight line.
|
||
// P1 = (2P0 + P3) / 3
|
||
(*firstControlPoints)[0].rx() = (2 * knots[0].x() + knots[1].x()) / 3;
|
||
(*firstControlPoints)[0].ry() = (2 * knots[0].y() + knots[1].y()) / 3;
|
||
|
||
// P2 = 2P1 – P0
|
||
(*secondControlPoints)[0].rx() = 2 * (*firstControlPoints)[0].x() - knots[0].x();
|
||
(*secondControlPoints)[0].ry() = 2 * (*firstControlPoints)[0].y() - knots[0].y();
|
||
return;
|
||
}
|
||
|
||
// Calculate first Bezier control points
|
||
double *xs = new double[n];
|
||
double *ys = new double[n];
|
||
double *rhsx = new double[n]; // Right hand side vector
|
||
double *rhsy = new double[n]; // Right hand side vector
|
||
|
||
// Set right hand side values
|
||
for (int i = 1; i < n - 1; ++i) {
|
||
rhsx[i] = 4 * knots[i].x() + 2 * knots[i + 1].x();
|
||
rhsy[i] = 4 * knots[i].y() + 2 * knots[i + 1].y();
|
||
}
|
||
rhsx[0] = knots[0].x() + 2 * knots[1].x();
|
||
rhsx[n - 1] = (8 * knots[n - 1].x() + knots[n].x()) / 2.0;
|
||
rhsy[0] = knots[0].y() + 2 * knots[1].y();
|
||
rhsy[n - 1] = (8 * knots[n - 1].y() + knots[n].y()) / 2.0;
|
||
|
||
// Calculate first control points coordinates
|
||
calculateFirstControlPoints(xs, rhsx, n);
|
||
calculateFirstControlPoints(ys, rhsy, n);
|
||
|
||
// Fill output control points.
|
||
for (int i = 0; i < n; ++i) {
|
||
(*firstControlPoints)[i].rx() = xs[i];
|
||
(*firstControlPoints)[i].ry() = ys[i];
|
||
|
||
if (i < n - 1) {
|
||
(*secondControlPoints)[i].rx() = 2 * knots[i + 1].x() - xs[i + 1];
|
||
(*secondControlPoints)[i].ry() = 2 * knots[i + 1].y() - ys[i + 1];
|
||
} else {
|
||
(*secondControlPoints)[i].rx() = (knots[n].x() + xs[n - 1]) / 2;
|
||
(*secondControlPoints)[i].ry() = (knots[n].y() + ys[n - 1]) / 2;
|
||
}
|
||
}
|
||
|
||
delete[] xs;
|
||
delete[] ys;
|
||
delete[] rhsx;
|
||
delete[] rhsy;
|
||
}
|