sysstat/sa_common.c

3386 lines
99 KiB
C

/*
* sar and sadf common routines.
* (C) 1999-2022 by Sebastien GODARD (sysstat <at> orange.fr)
*
***************************************************************************
* This program is free software; you can redistribute it and/or modify it *
* under the terms of the GNU General Public License as published by the *
* Free Software Foundation; either version 2 of the License, or (at your *
* option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without the implied warranty of MERCHANTABILITY *
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. *
* *
* You should have received a copy of the GNU General Public License along *
* with this program; if not, write to the Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *
***************************************************************************
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <time.h>
#include <errno.h>
#include <unistd.h> /* For STDOUT_FILENO, among others */
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <libgen.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <ctype.h>
#include "version.h"
#include "sa.h"
#include "ioconf.h"
#ifdef USE_NLS
#include <locale.h>
#include <libintl.h>
#define _(string) gettext(string)
#else
#define _(string) (string)
#endif
int default_file_used = FALSE;
extern struct act_bitmap cpu_bitmap;
extern unsigned int dm_major;
unsigned int hdr_types_nr[] = {FILE_HEADER_ULL_NR, FILE_HEADER_UL_NR, FILE_HEADER_U_NR};
unsigned int act_types_nr[] = {FILE_ACTIVITY_ULL_NR, FILE_ACTIVITY_UL_NR, FILE_ACTIVITY_U_NR};
unsigned int rec_types_nr[] = {RECORD_HEADER_ULL_NR, RECORD_HEADER_UL_NR, RECORD_HEADER_U_NR};
unsigned int extra_desc_types_nr[] = {EXTRA_DESC_ULL_NR, EXTRA_DESC_UL_NR, EXTRA_DESC_U_NR};
/*
***************************************************************************
* Look for activity in array.
*
* IN:
* @act Array of activities.
* @act_flag Activity flag to look for.
* @stop TRUE if sysstat should exit when activity is not found.
*
* RETURNS:
* Position of activity in array, or -1 if not found (this may happen when
* reading data from a system activity file created by another version of
* sysstat).
***************************************************************************
*/
int get_activity_position(struct activity *act[], unsigned int act_flag, int stop)
{
int i;
for (i = 0; i < NR_ACT; i++) {
if (act[i]->id == act_flag)
return i;
}
if (stop) {
PANIC((int) act_flag);
}
return -1;
}
/*
***************************************************************************
* Count number of activities with given option.
*
* IN:
* @act Array of activities.
* @option Option that activities should have to be counted
* (eg. AO_COLLECTED...)
* @count_outputs TRUE if each output should be counted for activities with
* multiple outputs.
*
* RETURNS:
* Number of selected activities
***************************************************************************
*/
int get_activity_nr(struct activity *act[], unsigned int option, int count_outputs)
{
int i, n = 0;
unsigned int msk;
for (i = 0; i < NR_ACT; i++) {
if ((act[i]->options & option) == option) {
if (HAS_MULTIPLE_OUTPUTS(act[i]->options) && count_outputs) {
for (msk = 1; msk < 0x100; msk <<= 1) {
if ((act[i]->opt_flags & 0xff) & msk) {
n++;
}
}
}
else {
n++;
}
}
}
return n;
}
/*
***************************************************************************
* Look for the most recent of saDD and saYYYYMMDD to decide which one to
* use. If neither exists then use saDD by default.
*
* IN:
* @sa_dir Directory where standard daily data files are saved.
* @rectime Structure containing the current date.
*
* OUT:
* @sa_name 0 to use saDD data files,
* 1 to use saYYYYMMDD data files.
***************************************************************************
*/
void guess_sa_name(char *sa_dir, struct tm *rectime, int *sa_name)
{
char filename[MAX_FILE_LEN];
struct stat sb;
time_t sa_mtime;
long nsec;
/* Use saDD by default */
*sa_name = 0;
/* Look for saYYYYMMDD */
snprintf(filename, sizeof(filename),
"%s/sa%04d%02d%02d", sa_dir,
rectime->tm_year + 1900,
rectime->tm_mon + 1,
rectime->tm_mday);
filename[sizeof(filename) - 1] = '\0';
if (stat(filename, &sb) < 0)
/* Cannot find or access saYYYYMMDD, so use saDD */
return;
sa_mtime = sb.st_mtime;
nsec = sb.st_mtim.tv_nsec;
/* Look for saDD */
snprintf(filename, sizeof(filename),
"%s/sa%02d", sa_dir,
rectime->tm_mday);
filename[sizeof(filename) - 1] = '\0';
if (stat(filename, &sb) < 0) {
/* Cannot find or access saDD, so use saYYYYMMDD */
*sa_name = 1;
return;
}
if ((sa_mtime > sb.st_mtime) ||
((sa_mtime == sb.st_mtime) && (nsec > sb.st_mtim.tv_nsec))) {
/* saYYYYMMDD is more recent than saDD, so use it */
*sa_name = 1;
}
}
/*
***************************************************************************
* Set current daily data file name.
*
* IN:
* @datafile If not an empty string then this is the alternate directory
* location where daily data files will be saved.
* @d_off Day offset (number of days to go back in the past).
* @sa_name 0 for saDD data files,
* 1 for saYYYYMMDD data files,
* -1 if unknown. In this case, will look for the most recent
* of saDD and saYYYYMMDD and use it.
*
* OUT:
* @datafile Name of daily data file.
***************************************************************************
*/
void set_default_file(char *datafile, int d_off, int sa_name)
{
char sa_dir[MAX_FILE_LEN];
struct tm rectime = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL};
int err = 0;
/* Set directory where daily data files will be saved */
if (datafile[0]) {
strncpy(sa_dir, datafile, sizeof(sa_dir));
}
else {
strncpy(sa_dir, SA_DIR, sizeof(sa_dir));
}
sa_dir[sizeof(sa_dir) - 1] = '\0';
get_time(&rectime, d_off);
if (sa_name < 0) {
/*
* Look for the most recent of saDD and saYYYYMMDD
* and use it. If neither exists then use saDD.
* sa_name is set accordingly.
*/
guess_sa_name(sa_dir, &rectime, &sa_name);
}
if (sa_name) {
/* Using saYYYYMMDD data files */
err = snprintf(datafile, MAX_FILE_LEN,
"%s/sa%04d%02d%02d", sa_dir,
rectime.tm_year + 1900,
rectime.tm_mon + 1,
rectime.tm_mday);
}
else {
/* Using saDD data files */
err = snprintf(datafile, MAX_FILE_LEN,
"%s/sa%02d", sa_dir,
rectime.tm_mday);
}
datafile[MAX_FILE_LEN - 1] = '\0';
if ((err < 0) || (err >= MAX_FILE_LEN)) {
fprintf(stderr, "%s: %s\n", __FUNCTION__, datafile);
exit(1);
}
default_file_used = TRUE;
#ifdef DEBUG
fprintf(stderr, "%s: Datafile: %s\n", __FUNCTION__, datafile);
#endif
}
/*
***************************************************************************
* Check data file type. If it is a directory then this is the alternate
* location where daily data files will be saved.
*
* IN:
* @datafile Name of the daily data file. May be a directory.
* @d_off Day offset (number of days to go back in the past).
* @sa_name 0 for saDD data files,
* 1 for saYYYYMMDD data files,
* -1 if unknown. In this case, will look for the most recent
* of saDD and saYYYYMMDD and use it.
*
*
* OUT:
* @datafile Name of the daily data file. This is now a plain file, not
* a directory.
*
* RETURNS:
* 1 if @datafile was a directory, and 0 otherwise.
***************************************************************************
*/
int check_alt_sa_dir(char *datafile, int d_off, int sa_name)
{
if (check_dir(datafile)) {
/*
* This is a directory: So append
* the default file name to it.
*/
set_default_file(datafile, d_off, sa_name);
return 1;
}
return 0;
}
/*
***************************************************************************
* Display sysstat version used to create system activity data file.
*
* IN:
* @st Output stream (stderr or stdout).
* @file_magic File magic header.
***************************************************************************
*/
void display_sa_file_version(FILE *st, struct file_magic *file_magic)
{
fprintf(st, _("File created by sar/sadc from sysstat version %d.%d.%d"),
file_magic->sysstat_version,
file_magic->sysstat_patchlevel,
file_magic->sysstat_sublevel);
if (file_magic->sysstat_extraversion) {
fprintf(st, ".%d", file_magic->sysstat_extraversion);
}
fprintf(st, "\n");
}
/*
***************************************************************************
* An invalid system activity file has been opened for reading.
* If this file was created by an old version of sysstat, tell it to the
* user...
*
* IN:
* @fd Descriptor of the file that has been opened.
* @file_magic file_magic structure filled with file magic header data.
* May contain invalid data.
* @file Name of the file being read.
* @n Number of bytes read while reading file magic header.
* This function may also be called after failing to read file
* standard header, or if CPU activity has not been found in
* file. In this case, n is set to 0.
***************************************************************************
*/
void handle_invalid_sa_file(int fd, struct file_magic *file_magic, char *file,
int n)
{
unsigned short fmt_magic;
fprintf(stderr, _("Invalid system activity file: %s\n"), file);
if (n == FILE_MAGIC_SIZE) {
if ((file_magic->sysstat_magic == SYSSTAT_MAGIC) || (file_magic->sysstat_magic == SYSSTAT_MAGIC_SWAPPED)) {
/* This is a sysstat file, but this file has an old format */
display_sa_file_version(stderr, file_magic);
fmt_magic = file_magic->sysstat_magic == SYSSTAT_MAGIC ?
file_magic->format_magic : __builtin_bswap16(file_magic->format_magic);
fprintf(stderr,
_("Current sysstat version cannot read the format of this file (%#x)\n"),
fmt_magic);
if (fmt_magic >= FORMAT_MAGIC_2171) {
fprintf(stderr,
_("Try to convert it to current format. Enter:\n\n"));
fprintf(stderr, "sadf -c %s > %s.new\n\n", file, file);
fprintf(stderr,
_("You should then be able to read the new file created (%s.new)\n"),
file);
}
}
}
close (fd);
exit(3);
}
/*
***************************************************************************
* Display an error message then exit.
***************************************************************************
*/
void print_collect_error(void)
{
fprintf(stderr, _("Requested activities not available\n"));
exit(1);
}
/*
***************************************************************************
* Fill system activity file magic header.
*
* IN:
* @file_magic System activity file magic header.
***************************************************************************
*/
void enum_version_nr(struct file_magic *fm)
{
char *v;
char version[16];
fm->sysstat_extraversion = 0;
strcpy(version, VERSION);
/* Get version number */
if ((v = strtok(version, ".")) == NULL)
return;
fm->sysstat_version = atoi(v) & 0xff;
/* Get patchlevel number */
if ((v = strtok(NULL, ".")) == NULL)
return;
fm->sysstat_patchlevel = atoi(v) & 0xff;
/* Get sublevel number */
if ((v = strtok(NULL, ".")) == NULL)
return;
fm->sysstat_sublevel = atoi(v) & 0xff;
/* Get extraversion number. Don't necessarily exist */
if ((v = strtok(NULL, ".")) == NULL)
return;
fm->sysstat_extraversion = atoi(v) & 0xff;
}
/*
***************************************************************************
* Write data to file. If the write() call was interrupted by a signal, try
* again so that the whole buffer can be written.
*
* IN:
* @fd Output file descriptor.
* @buf Data buffer.
* @nr_bytes Number of bytes to write.
*
* RETURNS:
* Number of bytes written to file, or -1 on error.
***************************************************************************
*/
int write_all(int fd, const void *buf, int nr_bytes)
{
int block, offset = 0;
char *buffer = (char *) buf;
while (nr_bytes > 0) {
block = write(fd, &buffer[offset], nr_bytes);
if (block < 0) {
if (errno == EINTR)
continue;
return block;
}
if (block == 0)
return offset;
offset += block;
nr_bytes -= block;
}
return offset;
}
#ifndef SOURCE_SADC
/*
***************************************************************************
* Allocate structures.
*
* IN:
* @act Array of activities.
***************************************************************************
*/
void allocate_structures(struct activity *act[])
{
int i, j;
for (i = 0; i < NR_ACT; i++) {
if (act[i]->nr_ini > 0) {
/* Look for a possible overflow */
check_overflow((unsigned int) act[i]->msize,
(unsigned int) act[i]->nr_ini,
(unsigned int) act[i]->nr2);
for (j = 0; j < 3; j++) {
SREALLOC(act[i]->buf[j], void,
(size_t) act[i]->msize * (size_t) act[i]->nr_ini * (size_t) act[i]->nr2);
}
act[i]->nr_allocated = act[i]->nr_ini;
}
}
}
/*
***************************************************************************
* Free structures.
*
* IN:
* @act Array of activities.
***************************************************************************
*/
void free_structures(struct activity *act[])
{
int i, j;
for (i = 0; i < NR_ACT; i++) {
if (act[i]->nr_allocated > 0) {
for (j = 0; j < 3; j++) {
if (act[i]->buf[j]) {
free(act[i]->buf[j]);
act[i]->buf[j] = NULL;
}
}
act[i]->nr_allocated = 0;
}
}
}
/*
***************************************************************************
* Reallocate all the buffers for a given activity.
*
* IN:
* @a Activity whose buffers need to be reallocated.
* @nr_min Minimum number of items that the new buffers should be able
* to receive.
***************************************************************************
*/
void reallocate_all_buffers(struct activity *a, __nr_t nr_min)
{
int j;
size_t nr_realloc;
if (nr_min <= 0) {
nr_min = 1;
}
if (!a->nr_allocated) {
nr_realloc = nr_min;
}
else {
nr_realloc = a->nr_allocated;
do {
nr_realloc = nr_realloc * 2;
}
while (nr_realloc < nr_min);
}
/* Look for a possible overflow */
check_overflow((unsigned int) a->msize, (unsigned int) nr_realloc,
(unsigned int) a->nr2);
for (j = 0; j < 3; j++) {
SREALLOC(a->buf[j], void,
(size_t) a->msize * nr_realloc * (size_t) a->nr2);
/* Init additional space which has been allocated */
if (a->nr_allocated) {
memset(a->buf[j] + a->msize * a->nr_allocated * a->nr2, 0,
(size_t) a->msize * (size_t) (nr_realloc - a->nr_allocated) * (size_t) a->nr2);
}
}
a->nr_allocated = nr_realloc;
}
/*
***************************************************************************
* Check if we are close enough to desired interval.
*
* IN:
* @uptime_ref Uptime used as reference. This is the system uptime for the
* first sample statistics, or the first system uptime after a
* LINUX RESTART (in 1/100th of a second).
* @uptime Current system uptime (in 1/100th of a second).
* @reset TRUE if @last_uptime should be reset with @uptime_ref.
* @interval Interval of time.
*
* RETURNS:
* TRUE if we are actually close enough to desired interval, FALSE otherwise.
***************************************************************************
*/
int next_slice(unsigned long long uptime_ref, unsigned long long uptime,
int reset, long interval)
{
unsigned long file_interval, entry;
static unsigned long long last_uptime = 0;
int min, max, pt1, pt2;
double f;
/* uptime is expressed in 1/100th of a second */
if (!last_uptime || reset) {
last_uptime = uptime_ref;
}
/* Interval cannot be greater than 0xffffffff here */
f = ((double) ((uptime - last_uptime) & 0xffffffff)) / 100;
file_interval = (unsigned long) f;
if ((f * 10) - (file_interval * 10) >= 5) {
file_interval++; /* Rounding to correct value */
}
last_uptime = uptime;
if (interval == 1)
/* Smallest time interval: Always close enough to desired interval */
return TRUE;
/*
* A few notes about the "algorithm" used here to display selected entries
* from the system activity file (option -f with -i flag):
* Let Iu be the interval value given by the user on the command line,
* In the interval between current and previous sample,
* and En the current sample (identified by its time stamp) in the file.
* En will ne displayed if there is an integer p so that:
* p * Iu belongs to [En - In/2, En + In/2[.
*/
f = ((double) ((uptime - uptime_ref) & 0xffffffff)) / 100;
entry = (unsigned long) f;
if ((f * 10) - (entry * 10) >= 5) {
entry++;
}
min = entry - (file_interval / 2);
max = entry + (file_interval / 2) + (file_interval & 0x1);
pt1 = (entry / interval) * interval;
pt2 = ((entry / interval) + 1) * interval;
return (((pt1 >= min) && (pt1 < max)) || ((pt2 >= min) && (pt2 < max)));
}
/*
***************************************************************************
* Use time stamp to fill tstamp structure.
*
* IN:
* @timestamp Timestamp to decode (format: HH:MM:SS).
*
* OUT:
* @tse Structure containing the decoded timestamp.
*
* RETURNS:
* 0 if the timestamp has been successfully decoded, 1 otherwise.
***************************************************************************
*/
int decode_timestamp(char timestamp[], struct tstamp *tse)
{
timestamp[2] = timestamp[5] = '\0';
tse->tm_sec = atoi(&timestamp[6]);
tse->tm_min = atoi(&timestamp[3]);
tse->tm_hour = atoi(timestamp);
if ((tse->tm_sec < 0) || (tse->tm_sec > 59) ||
(tse->tm_min < 0) || (tse->tm_min > 59) ||
(tse->tm_hour < 0) || (tse->tm_hour > 23))
return 1;
tse->use = TRUE;
return 0;
}
/*
***************************************************************************
* Compare two timestamps.
*
* IN:
* @rectime Date and time for current sample.
* @tse Timestamp used as reference.
* @cross_day TRUE if a new day has been started.
*
* RETURNS:
* A positive value if @rectime is greater than @tse,
* a negative one otherwise.
***************************************************************************
*/
int datecmp(struct tm *rectime, struct tstamp *tse, int cross_day)
{
int tm_hour = rectime->tm_hour;
if (cross_day) {
/*
* This is necessary if we want to properly handle something like:
* sar -s time_start -e time_end with
* time_start(day D) > time_end(day D+1)
*/
tm_hour += 24;
}
if (tm_hour == tse->tm_hour) {
if (rectime->tm_min == tse->tm_min)
return (rectime->tm_sec - tse->tm_sec);
else
return (rectime->tm_min - tse->tm_min);
}
else
return (tm_hour - tse->tm_hour);
}
/*
***************************************************************************
* Parse a timestamp entered on the command line (hh:mm[:ss]) and decode it.
*
* IN:
* @argv Arguments list.
* @opt Index in the arguments list.
* @def_timestamp Default timestamp to use.
*
* OUT:
* @tse Structure containing the decoded timestamp.
*
* RETURNS:
* 0 if the timestamp has been successfully decoded, 1 otherwise.
***************************************************************************
*/
int parse_timestamp(char *argv[], int *opt, struct tstamp *tse,
const char *def_timestamp)
{
char timestamp[9];
if (argv[++(*opt)]) {
switch (strlen(argv[*opt])) {
case 5:
strncpy(timestamp, argv[(*opt)++], 5);
timestamp[5] = '\0';
strcat(timestamp, ":00");
break;
case 8:
strncpy(timestamp, argv[(*opt)++], 8);
break;
default:
strncpy(timestamp, def_timestamp, 8);
break;
}
} else {
strncpy(timestamp, def_timestamp, 8);
}
timestamp[8] = '\0';
return decode_timestamp(timestamp, tse);
}
/*
***************************************************************************
* Set interval value.
*
* IN:
* @record_hdr_curr Record with current sample statistics.
* @record_hdr_prev Record with previous sample statistics.
*
* OUT:
* @itv Interval of time in 1/100th of a second.
***************************************************************************
*/
void get_itv_value(struct record_header *record_hdr_curr,
struct record_header *record_hdr_prev,
unsigned long long *itv)
{
/* Interval value in jiffies */
*itv = get_interval(record_hdr_prev->uptime_cs,
record_hdr_curr->uptime_cs);
}
/*
***************************************************************************
* Fill the rectime structure with the file's creation date, based on file's
* time data saved in file header.
* The resulting timestamp is expressed in the locale of the file creator or
* in the user's own locale, depending on whether option -t has been used
* or not.
*
* IN:
* @flags Flags for common options and system state.
* @file_hdr System activity file standard header.
*
* OUT:
* @rectime Date (and possibly time) from file header. Only the date,
* not the time, should be used by the caller.
***************************************************************************
*/
void get_file_timestamp_struct(uint64_t flags, struct tm *rectime,
struct file_header *file_hdr)
{
time_t t = file_hdr->sa_ust_time;
if (PRINT_TRUE_TIME(flags)) {
/* Get local time. This is just to fill fields with a default value. */
get_time(rectime, 0);
rectime->tm_mday = file_hdr->sa_day;
rectime->tm_mon = file_hdr->sa_month;
rectime->tm_year = file_hdr->sa_year;
/*
* Call mktime() to set DST (Daylight Saving Time) flag.
* Has anyone a better way to do it?
*/
rectime->tm_hour = rectime->tm_min = rectime->tm_sec = 0;
mktime(rectime);
}
else {
localtime_r(&t, rectime);
}
}
/*
***************************************************************************
* Print report header.
*
* IN:
* @flags Flags for common options and system state.
* @file_hdr System activity file standard header.
*
* OUT:
* @rectime Date and time from file header.
***************************************************************************
*/
void print_report_hdr(uint64_t flags, struct tm *rectime,
struct file_header *file_hdr)
{
/* Get date of file creation */
get_file_timestamp_struct(flags, rectime, file_hdr);
/*
* Display the header.
* NB: Number of CPU (value in [1, NR_CPUS + 1]).
* 1 means that there is only one proc and non SMP kernel.
* 2 means one proc and SMP kernel. Etc.
*/
print_gal_header(rectime, file_hdr->sa_sysname, file_hdr->sa_release,
file_hdr->sa_nodename, file_hdr->sa_machine,
file_hdr->sa_cpu_nr > 1 ? file_hdr->sa_cpu_nr - 1 : 1,
PLAIN_OUTPUT);
}
/*
***************************************************************************
* Network interfaces may now be registered (and unregistered) dynamically.
* This is what we try to guess here.
*
* IN:
* @a Activity structure with statistics.
* @curr Index in array for current sample statistics.
* @ref Index in array for sample statistics used as reference.
* @pos Index on current network interface.
*
* RETURNS:
* Position of current network interface in array of sample statistics used
* as reference.
* -1 if it is a new interface (it was not present in array of stats used
* as reference).
* -2 if it is a known interface but which has been unregistered then
* registered again on the interval.
***************************************************************************
*/
int check_net_dev_reg(struct activity *a, int curr, int ref, int pos)
{
struct stats_net_dev *sndc, *sndp;
int j0, j = pos;
if (!a->nr[ref])
/*
* No items found in previous iteration:
* Current interface is necessarily new.
*/
return -1;
if (j >= a->nr[ref]) {
j = a->nr[ref] - 1;
}
j0 = j;
sndc = (struct stats_net_dev *) ((char *) a->buf[curr] + pos * a->msize);
do {
sndp = (struct stats_net_dev *) ((char *) a->buf[ref] + j * a->msize);
if (!strcmp(sndc->interface, sndp->interface)) {
/*
* Network interface found.
* If a counter has decreased, then we may assume that the
* corresponding interface was unregistered, then registered again.
*/
if ((sndc->rx_packets < sndp->rx_packets) ||
(sndc->tx_packets < sndp->tx_packets) ||
(sndc->rx_bytes < sndp->rx_bytes) ||
(sndc->tx_bytes < sndp->tx_bytes) ||
(sndc->rx_compressed < sndp->rx_compressed) ||
(sndc->tx_compressed < sndp->tx_compressed) ||
(sndc->multicast < sndp->multicast)) {
/*
* Special processing for rx_bytes (_packets) and
* tx_bytes (_packets) counters: If the number of
* bytes (packets) has decreased, whereas the number of
* packets (bytes) has increased, then assume that the
* relevant counter has met an overflow condition, and that
* the interface was not unregistered, which is all the
* more plausible that the previous value for the counter
* was > ULLONG_MAX/2.
* NB: the average value displayed will be wrong in this case...
*
* If such an overflow is detected, just set the flag. There is no
* need to handle this in a special way: the difference is still
* properly calculated if the result is of the same type (i.e.
* unsigned long) as the two values.
*/
int ovfw = FALSE;
if ((sndc->rx_bytes < sndp->rx_bytes) &&
(sndc->rx_packets > sndp->rx_packets) &&
(sndp->rx_bytes > (~0ULL >> 1))) {
ovfw = TRUE;
}
if ((sndc->tx_bytes < sndp->tx_bytes) &&
(sndc->tx_packets > sndp->tx_packets) &&
(sndp->tx_bytes > (~0ULL >> 1))) {
ovfw = TRUE;
}
if ((sndc->rx_packets < sndp->rx_packets) &&
(sndc->rx_bytes > sndp->rx_bytes) &&
(sndp->rx_packets > (~0ULL >> 1))) {
ovfw = TRUE;
}
if ((sndc->tx_packets < sndp->tx_packets) &&
(sndc->tx_bytes > sndp->tx_bytes) &&
(sndp->tx_packets > (~0ULL >> 1))) {
ovfw = TRUE;
}
if (!ovfw)
/*
* OK: Assume here that the device was
* actually unregistered.
*/
return -2;
}
return j;
}
if (++j >= a->nr[ref]) {
j = 0;
}
}
while (j != j0);
/* This is a newly registered interface */
return -1;
}
/*
***************************************************************************
* Network interfaces may now be registered (and unregistered) dynamically.
* This is what we try to guess here.
*
* IN:
* @a Activity structure with statistics.
* @curr Index in array for current sample statistics.
* @ref Index in array for sample statistics used as reference.
* @pos Index on current network interface.
*
* RETURNS:
* Position of current network interface in array of sample statistics used
* as reference.
* -1 if it is a newly registered interface.
* -2 if it is a known interface but which has been unregistered then
* registered again on the interval.
***************************************************************************
*/
int check_net_edev_reg(struct activity *a, int curr, int ref, int pos)
{
struct stats_net_edev *snedc, *snedp;
int j0, j = pos;
if (!a->nr[ref])
/*
* No items found in previous iteration:
* Current interface is necessarily new.
*/
return -1;
if (j >= a->nr[ref]) {
j = a->nr[ref] - 1;
}
j0 = j;
snedc = (struct stats_net_edev *) ((char *) a->buf[curr] + pos * a->msize);
do {
snedp = (struct stats_net_edev *) ((char *) a->buf[ref] + j * a->msize);
if (!strcmp(snedc->interface, snedp->interface)) {
/*
* Network interface found.
* If a counter has decreased, then we may assume that the
* corresponding interface was unregistered, then registered again.
*/
if ((snedc->tx_errors < snedp->tx_errors) ||
(snedc->collisions < snedp->collisions) ||
(snedc->rx_dropped < snedp->rx_dropped) ||
(snedc->tx_dropped < snedp->tx_dropped) ||
(snedc->tx_carrier_errors < snedp->tx_carrier_errors) ||
(snedc->rx_frame_errors < snedp->rx_frame_errors) ||
(snedc->rx_fifo_errors < snedp->rx_fifo_errors) ||
(snedc->tx_fifo_errors < snedp->tx_fifo_errors))
/*
* OK: assume here that the device was
* actually unregistered.
*/
return -2;
return j;
}
if (++j >= a->nr[ref]) {
j = 0;
}
}
while (j != j0);
/* This is a newly registered interface */
return -1;
}
/*
***************************************************************************
* Disks may be registered dynamically (true in /proc/diskstats file).
* This is what we try to guess here.
*
* IN:
* @a Activity structure with statistics.
* @curr Index in array for current sample statistics.
* @ref Index in array for sample statistics used as reference.
* @pos Index on current disk.
*
* RETURNS:
* Position of current disk in array of sample statistics used as reference
* -1 if it is a newly registered device.
* -2 if it is a known device but which has been unregistered then registered
* again on the interval.
***************************************************************************
*/
int check_disk_reg(struct activity *a, int curr, int ref, int pos)
{
struct stats_disk *sdc, *sdp;
int j0, j = pos;
if (!a->nr[ref])
/*
* No items found in previous iteration:
* Current interface is necessarily new.
*/
return -1;
if (j >= a->nr[ref]) {
j = a->nr[ref] - 1;
}
j0 = j;
sdc = (struct stats_disk *) ((char *) a->buf[curr] + pos * a->msize);
do {
sdp = (struct stats_disk *) ((char *) a->buf[ref] + j * a->msize);
if ((sdc->major == sdp->major) &&
(sdc->minor == sdp->minor)) {
/*
* Disk found.
* If all the counters have decreased then the likelyhood
* is that the disk has been unregistered and a new disk inserted.
* If only one or two have decreased then the likelyhood
* is that the counter has simply wrapped.
* Don't take into account a counter if its previous value was 0
* (this may be a read-only device, or a kernel that doesn't
* support discard stats yet...)
*/
if ((sdc->nr_ios < sdp->nr_ios) &&
(!sdp->rd_sect || (sdc->rd_sect < sdp->rd_sect)) &&
(!sdp->wr_sect || (sdc->wr_sect < sdp->wr_sect)) &&
(!sdp->dc_sect || (sdc->dc_sect < sdp->dc_sect)))
/* Same device registered again */
return -2;
return j;
}
if (++j >= a->nr[ref]) {
j = 0;
}
}
while (j != j0);
/* This is a newly registered device */
return -1;
}
/*
***************************************************************************
* Allocate bitmaps for activities that have one.
*
* IN:
* @act Array of activities.
***************************************************************************
*/
void allocate_bitmaps(struct activity *act[])
{
int i;
for (i = 0; i < NR_ACT; i++) {
/*
* If current activity has a bitmap which has not already
* been allocated, then allocate it.
* Note that a same bitmap may be used by several activities.
*/
if (act[i]->bitmap && !act[i]->bitmap->b_array) {
SREALLOC(act[i]->bitmap->b_array, unsigned char,
BITMAP_SIZE(act[i]->bitmap->b_size));
}
}
}
/*
***************************************************************************
* Free bitmaps for activities that have one.
*
* IN:
* @act Array of activities.
***************************************************************************
*/
void free_bitmaps(struct activity *act[])
{
int i;
for (i = 0; i < NR_ACT; i++) {
if (act[i]->bitmap && act[i]->bitmap->b_array) {
free(act[i]->bitmap->b_array);
/* Set pointer to NULL to prevent it from being freed again */
act[i]->bitmap->b_array = NULL;
}
}
}
/*
***************************************************************************
* Select all activities, even if they have no associated items.
*
* IN:
* @act Array of activities.
*
* OUT:
* @act Array of activities, all of the being selected.
***************************************************************************
*/
void select_all_activities(struct activity *act[])
{
int i;
for (i = 0; i < NR_ACT; i++) {
act[i]->options |= AO_SELECTED;
}
}
/*
***************************************************************************
* Select CPU activity if no other activities have been explicitly selected.
* Also select CPU "all" if no other CPU has been selected.
*
* IN:
* @act Array of activities.
*
* OUT:
* @act Array of activities with CPU activity selected if needed.
***************************************************************************
*/
void select_default_activity(struct activity *act[])
{
int p;
p = get_activity_position(act, A_CPU, EXIT_IF_NOT_FOUND);
/* Default is CPU activity... */
if (!get_activity_nr(act, AO_SELECTED, COUNT_ACTIVITIES)) {
/*
* Yet A_CPU activity may not be available in file
* since the user can choose not to collect it.
*/
act[p]->options |= AO_SELECTED;
}
/*
* If no CPU's have been selected then select CPU "all".
* cpu_bitmap bitmap may be used by several activities (A_CPU, A_PWR_CPU...)
*/
if (!count_bits(cpu_bitmap.b_array, BITMAP_SIZE(cpu_bitmap.b_size))) {
cpu_bitmap.b_array[0] |= 0x01;
}
}
/*
***************************************************************************
* Swap bytes for every numerical field in structure. Used to convert from
* one endianness type (big-endian or little-endian) to the other.
*
* IN:
* @types_nr Number of fields in structure for each following types:
* unsigned long long, unsigned long and int.
* @ps Pointer on structure.
* @is64bit TRUE if data come from a 64-bit machine.
***************************************************************************
*/
void swap_struct(unsigned int types_nr[], void *ps, int is64bit)
{
int i;
uint64_t *x;
uint32_t *y;
x = (uint64_t *) ps;
/* For each field of type long long (or double) */
for (i = 0; i < types_nr[0]; i++) {
*x = __builtin_bswap64(*x);
x = (uint64_t *) ((char *) x + ULL_ALIGNMENT_WIDTH);
}
y = (uint32_t *) x;
/* For each field of type long */
for (i = 0; i < types_nr[1]; i++) {
if (is64bit) {
*x = __builtin_bswap64(*x);
x = (uint64_t *) ((char *) x + UL_ALIGNMENT_WIDTH);
}
else {
*y = __builtin_bswap32(*y);
y = (uint32_t *) ((char *) y + UL_ALIGNMENT_WIDTH);
}
}
if (is64bit) {
y = (uint32_t *) x;
}
/* For each field of type int */
for (i = 0; i < types_nr[2]; i++) {
*y = __builtin_bswap32(*y);
y = (uint32_t *) ((char *) y + U_ALIGNMENT_WIDTH);
}
}
/*
***************************************************************************
* Map the fields of a structure containing statistics read from a file to
* those of the structure known by current sysstat version.
* Each structure (either read from file or from current sysstat version)
* is described by 3 values: The number of [unsigned] long long integers,
* the number of [unsigned] long integers following in the structure, and
* last the number of [unsigned] integers.
* We assume that those numbers will *never* decrease with newer sysstat
* versions.
*
* IN:
* @gtypes_nr Structure description as expected for current sysstat version.
* @ftypes_nr Structure description as read from file.
* @ps Pointer on structure containing statistics.
* @f_size Size of the structure containing statistics. This is the
* size of the structure *read from file*.
* @g_size Size of the structure expected by current sysstat version.
* @b_size Size of the buffer pointed by @ps.
*
* RETURNS:
* -1 if an error has been encountered, or 0 otherwise.
***************************************************************************
*/
int remap_struct(unsigned int gtypes_nr[], unsigned int ftypes_nr[],
void *ps, unsigned int f_size, unsigned int g_size, size_t b_size)
{
int d;
size_t n;
/* Sanity check */
if (MAP_SIZE(ftypes_nr) > f_size)
return -1;
/* Remap [unsigned] long fields */
d = gtypes_nr[0] - ftypes_nr[0];
if (d) {
if (ftypes_nr[0] * ULL_ALIGNMENT_WIDTH < ftypes_nr[0])
/* Overflow */
return -1;
n = MINIMUM(f_size - ftypes_nr[0] * ULL_ALIGNMENT_WIDTH,
g_size - gtypes_nr[0] * ULL_ALIGNMENT_WIDTH);
if ((ftypes_nr[0] * ULL_ALIGNMENT_WIDTH >= b_size) ||
(gtypes_nr[0] * ULL_ALIGNMENT_WIDTH + n > b_size) ||
(ftypes_nr[0] * ULL_ALIGNMENT_WIDTH + n > b_size))
return -1;
memmove(((char *) ps) + gtypes_nr[0] * ULL_ALIGNMENT_WIDTH,
((char *) ps) + ftypes_nr[0] * ULL_ALIGNMENT_WIDTH, n);
if (d > 0) {
memset(((char *) ps) + ftypes_nr[0] * ULL_ALIGNMENT_WIDTH,
0, d * ULL_ALIGNMENT_WIDTH);
}
}
/* Remap [unsigned] int fields */
d = gtypes_nr[1] - ftypes_nr[1];
if (d) {
if (gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
ftypes_nr[1] * UL_ALIGNMENT_WIDTH < ftypes_nr[1])
/* Overflow */
return -1;
n = MINIMUM(f_size - ftypes_nr[0] * ULL_ALIGNMENT_WIDTH
- ftypes_nr[1] * UL_ALIGNMENT_WIDTH,
g_size - gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
- gtypes_nr[1] * UL_ALIGNMENT_WIDTH);
if ((gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
ftypes_nr[1] * UL_ALIGNMENT_WIDTH >= b_size) ||
(gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
gtypes_nr[1] * UL_ALIGNMENT_WIDTH + n > b_size) ||
(gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
ftypes_nr[1] * UL_ALIGNMENT_WIDTH + n > b_size))
return -1;
memmove(((char *) ps) + gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
+ gtypes_nr[1] * UL_ALIGNMENT_WIDTH,
((char *) ps) + gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
+ ftypes_nr[1] * UL_ALIGNMENT_WIDTH, n);
if (d > 0) {
memset(((char *) ps) + gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
+ ftypes_nr[1] * UL_ALIGNMENT_WIDTH,
0, d * UL_ALIGNMENT_WIDTH);
}
}
/* Remap possible fields (like strings of chars) following int fields */
d = gtypes_nr[2] - ftypes_nr[2];
if (d) {
if (gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
gtypes_nr[1] * UL_ALIGNMENT_WIDTH +
ftypes_nr[2] * U_ALIGNMENT_WIDTH < ftypes_nr[2])
/* Overflow */
return -1;
n = MINIMUM(f_size - ftypes_nr[0] * ULL_ALIGNMENT_WIDTH
- ftypes_nr[1] * UL_ALIGNMENT_WIDTH
- ftypes_nr[2] * U_ALIGNMENT_WIDTH,
g_size - gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
- gtypes_nr[1] * UL_ALIGNMENT_WIDTH
- gtypes_nr[2] * U_ALIGNMENT_WIDTH);
if ((gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
gtypes_nr[1] * UL_ALIGNMENT_WIDTH +
ftypes_nr[2] * U_ALIGNMENT_WIDTH >= b_size) ||
(gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
gtypes_nr[1] * UL_ALIGNMENT_WIDTH +
gtypes_nr[2] * U_ALIGNMENT_WIDTH + n > b_size) ||
(gtypes_nr[0] * ULL_ALIGNMENT_WIDTH +
gtypes_nr[1] * UL_ALIGNMENT_WIDTH +
ftypes_nr[2] * U_ALIGNMENT_WIDTH + n > b_size))
return -1;
memmove(((char *) ps) + gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
+ gtypes_nr[1] * UL_ALIGNMENT_WIDTH
+ gtypes_nr[2] * U_ALIGNMENT_WIDTH,
((char *) ps) + gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
+ gtypes_nr[1] * UL_ALIGNMENT_WIDTH
+ ftypes_nr[2] * U_ALIGNMENT_WIDTH, n);
if (d > 0) {
memset(((char *) ps) + gtypes_nr[0] * ULL_ALIGNMENT_WIDTH
+ gtypes_nr[1] * UL_ALIGNMENT_WIDTH
+ ftypes_nr[2] * U_ALIGNMENT_WIDTH,
0, d * U_ALIGNMENT_WIDTH);
}
}
return 0;
}
/*
***************************************************************************
* Read data from a system activity data file.
*
* IN:
* @ifd Input file descriptor.
* @buffer Buffer where data are read.
* @size Number of bytes to read.
* @mode If set to HARD_SIZE, indicate that an EOF should be considered
* as an error.
* @oneof Set to UEOF_CONT if an unexpected end of file should not make
* sadf stop. Default behavior is to stop on unexpected EOF.
*
* RETURNS:
* 1 if EOF has been reached,
* 2 if an unexpected EOF has been reached (and sadf was told to continue),
* 0 otherwise.
***************************************************************************
*/
int sa_fread(int ifd, void *buffer, size_t size, int mode, int oneof)
{
ssize_t n;
if ((n = read(ifd, buffer, size)) < 0) {
fprintf(stderr, _("Error while reading system activity file: %s\n"),
strerror(errno));
close(ifd);
exit(2);
}
if (!n && (mode == SOFT_SIZE))
return 1; /* EOF */
if (n < size) {
fprintf(stderr, _("End of system activity file unexpected\n"));
if (oneof == UEOF_CONT)
return 2;
close(ifd);
exit(2);
}
return 0;
}
/*
***************************************************************************
* Skip unknown extra structures present in file.
*
* IN:
* @ifd System activity data file descriptor.
* @endian_mismatch
* TRUE if file's data don't match current machine's endianness.
* @arch_64 TRUE if file's data come from a 64 bit machine.
*
* RETURNS:
* -1 on error, 0 otherwise.
***************************************************************************
*/
int skip_extra_struct(int ifd, int endian_mismatch, int arch_64)
{
int i;
struct extra_desc xtra_d;
do {
/* Read extra structure description */
sa_fread(ifd, &xtra_d, EXTRA_DESC_SIZE, HARD_SIZE, UEOF_STOP);
/*
* We don't need to remap as the extra_desc structure won't change,
* but we may need to normalize endianness anyway.
*/
if (endian_mismatch) {
swap_struct(extra_desc_types_nr, &xtra_d, arch_64);
}
/* Check values consistency */
if (MAP_SIZE(xtra_d.extra_types_nr) > xtra_d.extra_size) {
#ifdef DEBUG
fprintf(stderr, "%s: extra_size=%u types=%d,%d,%d\n",
__FUNCTION__, xtra_d.extra_size,
xtra_d.extra_types_nr[0], xtra_d.extra_types_nr[1], xtra_d.extra_types_nr[2]);
#endif
return -1;
}
if ((xtra_d.extra_nr > MAX_EXTRA_NR) || (xtra_d.extra_size > MAX_EXTRA_SIZE)) {
#ifdef DEBUG
fprintf(stderr, "%s: extra_size=%u extra_nr=%u\n",
__FUNCTION__, xtra_d.extra_size, xtra_d.extra_size);
#endif
return -1;
}
/* Ignore current unknown extra structures */
for (i = 0; i < xtra_d.extra_nr; i++) {
if (lseek(ifd, xtra_d.extra_size, SEEK_CUR) < xtra_d.extra_size)
return -1;
}
}
while (xtra_d.extra_next);
return 0;
}
/*
***************************************************************************
* Read the record header of current sample and process it.
*
* IN:
* @ifd Input file descriptor.
* @buffer Buffer where data will be read.
* @record_hdr Structure where record header will be saved.
* @file_hdr file_hdr structure containing data read from file standard
* header.
* @arch_64 TRUE if file's data come from a 64-bit machine.
* @endian_mismatch
* TRUE if data read from file don't match current machine's
* endianness.
* @oneof Set to EOF_CONT if an unexpected end of file should not make
* sadf stop. Default behavior is to stop on unexpected EOF.
* @b_size @buffer size.
* @flags Flags for common options and system state.
* @ofmt Pointer on report output format structure.
*
* OUT:
* @record_hdr Record header for current sample.
*
* RETURNS:
* 1 if EOF has been reached,
* 2 if an error has been encountered (e.g. unexpected EOF),
* 0 otherwise.
***************************************************************************
*/
int read_record_hdr(int ifd, void *buffer, struct record_header *record_hdr,
struct file_header *file_hdr, int arch_64, int endian_mismatch,
int oneof, size_t b_size, uint64_t flags, struct report_format *ofmt)
{
int rc;
do {
if ((rc = sa_fread(ifd, buffer, (size_t) file_hdr->rec_size, SOFT_SIZE, oneof)) != 0)
/* End of sa data file */
return rc;
/* Remap record header structure to that expected by current version */
if (remap_struct(rec_types_nr, file_hdr->rec_types_nr, buffer,
file_hdr->rec_size, RECORD_HEADER_SIZE, b_size) < 0)
return 2;
memcpy(record_hdr, buffer, RECORD_HEADER_SIZE);
/* Normalize endianness */
if (endian_mismatch) {
swap_struct(rec_types_nr, record_hdr, arch_64);
}
/* Raw output in debug mode */
if (DISPLAY_DEBUG_MODE(flags) && (ofmt->id == F_RAW_OUTPUT)) {
char out[128];
sprintf(out, "# uptime_cs; %llu; ust_time; %llu; extra_next; %u; record_type; %d; HH:MM:SS; %02d:%02d:%02d\n",
record_hdr->uptime_cs, record_hdr->ust_time,
record_hdr->extra_next, record_hdr->record_type,
record_hdr->hour, record_hdr->minute, record_hdr->second);
cprintf_s(IS_COMMENT, "%s", out);
}
/* Sanity checks */
if ((record_hdr->record_type <= 0) || (record_hdr->record_type > R_EXTRA_MAX) ||
(record_hdr->hour > 23) || (record_hdr->minute > 59) || (record_hdr->second > 60)) {
#ifdef DEBUG
fprintf(stderr, "%s: record_type=%d HH:MM:SS=%02d:%02d:%02d\n",
__FUNCTION__, record_hdr->record_type,
record_hdr->hour, record_hdr->minute, record_hdr->second);
#endif
return 2;
}
/*
* Skip unknown extra structures if present.
* This will be done later for R_COMMENT and R_RESTART records, as extra structures
* are saved after the comment or the number of CPU.
*/
if ((record_hdr->record_type != R_COMMENT) && (record_hdr->record_type != R_RESTART) &&
record_hdr->extra_next && (skip_extra_struct(ifd, endian_mismatch, arch_64) < 0))
return 2;
}
while ((record_hdr->record_type >= R_EXTRA_MIN) && (record_hdr->record_type <= R_EXTRA_MAX)) ;
return 0;
}
/*
***************************************************************************
* Move structures data.
*
* IN:
* @act Array of activities.
* @id_seq Activity sequence in file.
* @record_hdr Current record header.
* @dest Index in array where stats have to be copied to.
* @src Index in array where stats to copy are.
***************************************************************************
*/
void copy_structures(struct activity *act[], unsigned int id_seq[],
struct record_header record_hdr[], int dest, int src)
{
int i, p;
memcpy(&record_hdr[dest], &record_hdr[src], RECORD_HEADER_SIZE);
for (i = 0; i < NR_ACT; i++) {
if (!id_seq[i])
continue;
p = get_activity_position(act, id_seq[i], EXIT_IF_NOT_FOUND);
memcpy(act[p]->buf[dest], act[p]->buf[src],
(size_t) act[p]->msize * (size_t) act[p]->nr_allocated * (size_t) act[p]->nr2);
act[p]->nr[dest] = act[p]->nr[src];
}
}
/*
***************************************************************************
* Read an __nr_t value from file.
* Such a value can be the new number of CPU saved after a RESTART record,
* or the number of structures to read saved before the structures containing
* statistics for an activity with a varying number of items in file.
*
* IN:
* @ifd Input file descriptor.
* @file Name of file being read.
* @file_magic file_magic structure filled with file magic header data.
* @endian_mismatch
* TRUE if file's data don't match current machine's endianness.
* @arch_64 TRUE if file's data come from a 64 bit machine.
* @non_zero TRUE if value should not be zero.
*
* RETURNS:
* __nr_t value, as read from file.
***************************************************************************
*/
__nr_t read_nr_value(int ifd, char *file, struct file_magic *file_magic,
int endian_mismatch, int arch_64, int non_zero)
{
__nr_t value;
unsigned int nr_types_nr[] = {0, 0, 1};
sa_fread(ifd, &value, sizeof(__nr_t), HARD_SIZE, UEOF_STOP);
/* Normalize endianness for file_activity structures */
if (endian_mismatch) {
swap_struct(nr_types_nr, &value, arch_64);
}
if ((non_zero && !value) || (value < 0)) {
#ifdef DEBUG
fprintf(stderr, "%s: Value=%d\n",
__FUNCTION__, value);
#endif
/* Value number cannot be zero or negative */
handle_invalid_sa_file(ifd, file_magic, file, 0);
}
return value;
}
/*
***************************************************************************
* Read varying part of the statistics from a daily data file.
*
* IN:
* @act Array of activities.
* @curr Index in array for current sample statistics.
* @ifd Input file descriptor.
* @act_nr Number of activities in file.
* @file_actlst Activity list in file.
* @endian_mismatch
* TRUE if file's data don't match current machine's endianness.
* @arch_64 TRUE if file's data come from a 64 bit machine.
* @dfile Name of system activity data file.
* @file_magic file_magic structure containing data read from file magic
* header.
* @oneof Set to UEOF_CONT if an unexpected end of file should not make
* sadf stop. Default behavior is to stop on unexpected EOF.
*
* RETURNS:
* 2 if an error has been encountered (e.g. unexpected EOF),
* 0 otherwise.
***************************************************************************
*/
int read_file_stat_bunch(struct activity *act[], int curr, int ifd, int act_nr,
struct file_activity *file_actlst, int endian_mismatch,
int arch_64, char *dfile, struct file_magic *file_magic,
int oneof)
{
int i, j, p;
struct file_activity *fal = file_actlst;
off_t offset;
__nr_t nr_value;
for (i = 0; i < act_nr; i++, fal++) {
/* Read __nr_t value preceding statistics structures if it exists */
if (fal->has_nr) {
nr_value = read_nr_value(ifd, dfile, file_magic,
endian_mismatch, arch_64, FALSE);
}
else {
nr_value = fal->nr;
}
if (nr_value > NR_MAX) {
#ifdef DEBUG
fprintf(stderr, "%s: Value=%d Max=%d\n", __FUNCTION__, nr_value, NR_MAX);
#endif
handle_invalid_sa_file(ifd, file_magic, dfile, 0);
}
if (((p = get_activity_position(act, fal->id, RESUME_IF_NOT_FOUND)) < 0) ||
(act[p]->magic != fal->magic)) {
/*
* Ignore current activity in file, which is unknown to
* current sysstat version or has an unknown format.
*/
if (nr_value) {
offset = (off_t) fal->size * (off_t) nr_value * (off_t) fal->nr2;
if (lseek(ifd, offset, SEEK_CUR) < offset) {
close(ifd);
perror("lseek");
if (oneof == UEOF_CONT)
return 2;
exit(2);
}
}
continue;
}
if (nr_value > act[p]->nr_max) {
#ifdef DEBUG
fprintf(stderr, "%s: %s: Value=%d Max=%d\n",
__FUNCTION__, act[p]->name, nr_value, act[p]->nr_max);
#endif
handle_invalid_sa_file(ifd, file_magic, dfile, 0);
}
act[p]->nr[curr] = nr_value;
/* Reallocate buffers if needed */
if (nr_value > act[p]->nr_allocated) {
reallocate_all_buffers(act[p], nr_value);
}
/*
* For persistent activities, we must make sure that no statistics
* from a previous iteration remain, especially if the number
* of structures read is smaller than @nr_ini.
*/
if (HAS_PERSISTENT_VALUES(act[p]->options)) {
memset(act[p]->buf[curr], 0,
(size_t) act[p]->msize * (size_t) act[p]->nr_ini * (size_t) act[p]->nr2);
}
/* OK, this is a known activity: Read the stats structures */
if ((nr_value > 0) &&
((nr_value > 1) || (act[p]->nr2 > 1)) &&
(act[p]->msize > act[p]->fsize)) {
for (j = 0; j < (nr_value * act[p]->nr2); j++) {
if (sa_fread(ifd, (char *) act[p]->buf[curr] + j * act[p]->msize,
(size_t) act[p]->fsize, HARD_SIZE, oneof) > 0)
/* Unexpected EOF */
return 2;
}
}
else if (nr_value > 0) {
/*
* Note: If msize was smaller than fsize,
* then it has been set to fsize in check_file_actlst().
*/
if (sa_fread(ifd, act[p]->buf[curr],
(size_t) act[p]->fsize * (size_t) nr_value * (size_t) act[p]->nr2,
HARD_SIZE, oneof) > 0)
/* Unexpected EOF */
return 2;
}
else {
/* nr_value == 0: Nothing to read */
continue;
}
/* Normalize endianness for current activity's structures */
if (endian_mismatch) {
for (j = 0; j < (nr_value * act[p]->nr2); j++) {
swap_struct(act[p]->ftypes_nr, (char *) act[p]->buf[curr] + j * act[p]->msize,
arch_64);
}
}
/* Remap structure's fields to those known by current sysstat version */
for (j = 0; j < (nr_value * act[p]->nr2); j++) {
if (remap_struct(act[p]->gtypes_nr, act[p]->ftypes_nr,
(char *) act[p]->buf[curr] + j * act[p]->msize,
act[p]->fsize, act[p]->msize, act[p]->msize) < 0)
return 2;
}
}
return 0;
}
/*
***************************************************************************
* Open a sysstat activity data file and read its magic structure.
*
* IN:
* @dfile Name of system activity data file.
* @ignore Set to 1 if a true sysstat activity file but with a bad
* format should not yield an error message. Useful with
* sadf -H and sadf -c.
*
* OUT:
* @fd System activity data file descriptor.
* @file_magic file_magic structure containing data read from file magic
* header.
* @endian_mismatch
* TRUE if file's data don't match current machine's endianness.
* @do_swap TRUE if endianness should be normalized for sysstat_magic
* and format_magic numbers.
*
* RETURNS:
* -1 if data file is a sysstat file with an old format (which we cannot
* read), 0 otherwise.
***************************************************************************
*/
int sa_open_read_magic(int *fd, char *dfile, struct file_magic *file_magic,
int ignore, int *endian_mismatch, int do_swap)
{
int n;
unsigned int fm_types_nr[] = {FILE_MAGIC_ULL_NR, FILE_MAGIC_UL_NR, FILE_MAGIC_U_NR};
/* Open sa data file */
if ((*fd = open(dfile, O_RDONLY)) < 0) {
int saved_errno = errno;
fprintf(stderr, _("Cannot open %s: %s\n"), dfile, strerror(errno));
if ((saved_errno == ENOENT) && default_file_used) {
fprintf(stderr, _("Please check if data collecting is enabled\n"));
}
exit(2);
}
/* Read file magic data */
n = read(*fd, file_magic, FILE_MAGIC_SIZE);
if ((n != FILE_MAGIC_SIZE) ||
((file_magic->sysstat_magic != SYSSTAT_MAGIC) && (file_magic->sysstat_magic != SYSSTAT_MAGIC_SWAPPED)) ||
((file_magic->format_magic != FORMAT_MAGIC) && (file_magic->format_magic != FORMAT_MAGIC_SWAPPED) && !ignore)) {
#ifdef DEBUG
fprintf(stderr, "%s: Bytes read=%d sysstat_magic=%x format_magic=%x\n",
__FUNCTION__, n, file_magic->sysstat_magic, file_magic->format_magic);
#endif
/* Display error message and exit */
handle_invalid_sa_file(*fd, file_magic, dfile, n);
}
*endian_mismatch = (file_magic->sysstat_magic != SYSSTAT_MAGIC);
if (*endian_mismatch) {
if (do_swap) {
/* Swap bytes for file_magic fields */
file_magic->sysstat_magic = SYSSTAT_MAGIC;
file_magic->format_magic = __builtin_bswap16(file_magic->format_magic);
}
/*
* Start swapping at field "header_size" position.
* May not exist for older versions but in this case, it won't be used.
*/
swap_struct(fm_types_nr, &file_magic->header_size, 0);
}
if ((file_magic->sysstat_version > 10) ||
((file_magic->sysstat_version == 10) && (file_magic->sysstat_patchlevel >= 3))) {
/* header_size field exists only for sysstat versions 10.3.1 and later */
if ((file_magic->header_size <= MIN_FILE_HEADER_SIZE) ||
(file_magic->header_size > MAX_FILE_HEADER_SIZE)) {
#ifdef DEBUG
fprintf(stderr, "%s: header_size=%u\n",
__FUNCTION__, file_magic->header_size);
#endif
/* Display error message and exit */
handle_invalid_sa_file(*fd, file_magic, dfile, n);
}
}
if ((file_magic->sysstat_version > 11) ||
((file_magic->sysstat_version == 11) && (file_magic->sysstat_patchlevel >= 7))) {
/* hdr_types_nr field exists only for sysstat versions 11.7.1 and later */
if (MAP_SIZE(file_magic->hdr_types_nr) > file_magic->header_size) {
#ifdef DEBUG
fprintf(stderr, "%s: map_size=%u header_size=%u\n",
__FUNCTION__, MAP_SIZE(file_magic->hdr_types_nr), file_magic->header_size);
#endif
handle_invalid_sa_file(*fd, file_magic, dfile, n);
}
}
if ((file_magic->format_magic != FORMAT_MAGIC) &&
(file_magic->format_magic != FORMAT_MAGIC_SWAPPED))
/*
* This is an old (or new) sa datafile format to
* be read by sadf (since @ignore was set to TRUE).
*/
return -1;
return 0;
}
/*
***************************************************************************
* Open a data file, and perform various checks before reading.
* NB: This is called only when reading a datafile (sar and sadf), never
* when writing or appending data to a datafile.
*
* IN:
* @dfile Name of system activity data file.
* @act Array of activities.
* @flags Flags for common options and system state.
*
* OUT:
* @ifd System activity data file descriptor.
* @file_magic file_magic structure containing data read from file magic
* header.
* @file_hdr file_hdr structure containing data read from file standard
* header.
* @file_actlst Acvtivity list in file.
* @id_seq Activity sequence.
* @endian_mismatch
* TRUE if file's data don't match current machine's endianness.
* @arch_64 TRUE if file's data come from a 64 bit machine.
***************************************************************************
*/
void check_file_actlst(int *ifd, char *dfile, struct activity *act[], uint64_t flags,
struct file_magic *file_magic, struct file_header *file_hdr,
struct file_activity **file_actlst, unsigned int id_seq[],
int *endian_mismatch, int *arch_64)
{
int i, j, k, p, skip;
struct file_activity *fal;
void *buffer = NULL;
size_t bh_size = FILE_HEADER_SIZE;
size_t ba_size = FILE_ACTIVITY_SIZE;
/* Open sa data file and read its magic structure */
if (sa_open_read_magic(ifd, dfile, file_magic,
DISPLAY_HDR_ONLY(flags), endian_mismatch, TRUE) < 0)
/*
* Not current sysstat's format.
* Return now so that sadf -H can display at least
* file's version and magic number.
*/
return;
/*
* We know now that we have a *compatible* sysstat datafile format
* (correct FORMAT_MAGIC value), and in this case, we should have
* checked header_size value. Anyway, with a corrupted datafile,
* this may not be the case. So check again.
*/
if ((file_magic->header_size <= MIN_FILE_HEADER_SIZE) ||
(file_magic->header_size > MAX_FILE_HEADER_SIZE)) {
#ifdef DEBUG
fprintf(stderr, "%s: header_size=%u\n",
__FUNCTION__, file_magic->header_size);
#endif
goto format_error;
}
/* Allocate buffer for file_header structure */
if (file_magic->header_size > FILE_HEADER_SIZE) {
bh_size = file_magic->header_size;
}
SREALLOC(buffer, char, bh_size);
/* Read sa data file standard header and allocate activity list */
sa_fread(*ifd, buffer, (size_t) file_magic->header_size, HARD_SIZE, UEOF_STOP);
/*
* Data file header size (file_magic->header_size) may be greater or
* smaller than FILE_HEADER_SIZE. Remap the fields of the file header
* then copy its contents to the expected structure.
*/
if (remap_struct(hdr_types_nr, file_magic->hdr_types_nr, buffer,
file_magic->header_size, FILE_HEADER_SIZE, bh_size) < 0)
goto format_error;
memcpy(file_hdr, buffer, FILE_HEADER_SIZE);
free(buffer);
buffer = NULL;
/* Tell that data come from a 64 bit machine */
*arch_64 = (file_hdr->sa_sizeof_long == SIZEOF_LONG_64BIT);
/* Normalize endianness for file_hdr structure */
if (*endian_mismatch) {
swap_struct(hdr_types_nr, file_hdr, *arch_64);
}
/*
* Sanity checks.
* NB: Compare against MAX_NR_ACT and not NR_ACT because
* we are maybe reading a datafile from a future sysstat version
* with more activities than known today.
*/
if ((file_hdr->sa_act_nr > MAX_NR_ACT) ||
(file_hdr->act_size > MAX_FILE_ACTIVITY_SIZE) ||
(file_hdr->rec_size > MAX_RECORD_HEADER_SIZE) ||
(MAP_SIZE(file_hdr->act_types_nr) > file_hdr->act_size) ||
(MAP_SIZE(file_hdr->rec_types_nr) > file_hdr->rec_size)) {
#ifdef DEBUG
fprintf(stderr, "%s: sa_act_nr=%d act_size=%u rec_size=%u map_size(act)=%u map_size(rec)=%u\n",
__FUNCTION__, file_hdr->sa_act_nr, file_hdr->act_size, file_hdr->rec_size,
MAP_SIZE(file_hdr->act_types_nr), MAP_SIZE(file_hdr->rec_types_nr));
#endif
/* Maybe a "false positive" sysstat datafile? */
goto format_error;
}
/* Allocate buffer for file_activity structures */
if (file_hdr->act_size > FILE_ACTIVITY_SIZE) {
ba_size = file_hdr->act_size;
}
SREALLOC(buffer, char, ba_size);
SREALLOC(*file_actlst, struct file_activity, FILE_ACTIVITY_SIZE * file_hdr->sa_act_nr);
fal = *file_actlst;
/* Read activity list */
j = 0;
for (i = 0; i < file_hdr->sa_act_nr; i++, fal++) {
/* Read current file_activity structure from file */
sa_fread(*ifd, buffer, (size_t) file_hdr->act_size, HARD_SIZE, UEOF_STOP);
/*
* Data file_activity size (file_hdr->act_size) may be greater or
* smaller than FILE_ACTIVITY_SIZE. Remap the fields of the file's structure
* then copy its contents to the expected structure.
*/
if (remap_struct(act_types_nr, file_hdr->act_types_nr, buffer,
file_hdr->act_size, FILE_ACTIVITY_SIZE, ba_size) < 0)
goto format_error;
memcpy(fal, buffer, FILE_ACTIVITY_SIZE);
/* Normalize endianness for file_activity structures */
if (*endian_mismatch) {
swap_struct(act_types_nr, fal, *arch_64);
}
/*
* Every activity, known or unknown, should have
* at least one item and sub-item, and a size value in
* a defined range.
* Also check that the number of items and sub-items
* doesn't exceed a max value. This is necessary
* because we will use @nr and @nr2 to
* allocate memory to read the file contents. So we
* must make sure the file is not corrupted.
* NB: Another check will be made below for known
* activities which have each a specific max value.
*/
if ((fal->nr < 1) || (fal->nr2 < 1) ||
(fal->nr > NR_MAX) || (fal->nr2 > NR2_MAX) ||
(fal->size <= 0) || (fal->size > MAX_ITEM_STRUCT_SIZE)) {
#ifdef DEBUG
fprintf(stderr, "%s: id=%d nr=%d nr2=%d size=%d\n",
__FUNCTION__, fal->id, fal->nr, fal->nr2, fal->size);
#endif
goto format_error;
}
if ((p = get_activity_position(act, fal->id, RESUME_IF_NOT_FOUND)) < 0)
/* Unknown activity */
continue;
if ((fal->magic != act[p]->magic) && !DISPLAY_HDR_ONLY(flags)) {
skip = TRUE;
}
else {
skip = FALSE;
}
/* Check max value for known activities */
if (fal->nr > act[p]->nr_max) {
#ifdef DEBUG
fprintf(stderr, "%s: id=%d nr=%d nr_max=%d\n",
__FUNCTION__, fal->id, fal->nr, act[p]->nr_max);
#endif
goto format_error;
}
/*
* Number of fields of each type ("long long", or "long"
* or "int") composing the structure with statistics may
* only increase with new sysstat versions, unless we change
* the activity's magic number. Here, we may
* be reading a file created by current sysstat version,
* or by an older or a newer version.
*/
if (!(((fal->types_nr[0] >= act[p]->gtypes_nr[0]) &&
(fal->types_nr[1] >= act[p]->gtypes_nr[1]) &&
(fal->types_nr[2] >= act[p]->gtypes_nr[2]))
||
((fal->types_nr[0] <= act[p]->gtypes_nr[0]) &&
(fal->types_nr[1] <= act[p]->gtypes_nr[1]) &&
(fal->types_nr[2] <= act[p]->gtypes_nr[2]))) &&
(fal->magic == act[p]->magic) && !DISPLAY_HDR_ONLY(flags)) {
#ifdef DEBUG
fprintf(stderr, "%s: id=%d file=%d,%d,%d activity=%d,%d,%d\n",
__FUNCTION__, fal->id, fal->types_nr[0], fal->types_nr[1], fal->types_nr[2],
act[p]->gtypes_nr[0], act[p]->gtypes_nr[1], act[p]->gtypes_nr[2]);
#endif
goto format_error;
}
if (MAP_SIZE(fal->types_nr) > fal->size) {
#ifdef DEBUG
fprintf(stderr, "%s: id=%d size=%u map_size=%u\n",
__FUNCTION__, fal->id, fal->size, MAP_SIZE(fal->types_nr));
#endif
goto format_error;
}
for (k = 0; k < 3; k++) {
act[p]->ftypes_nr[k] = fal->types_nr[k];
}
if (fal->size > act[p]->msize) {
act[p]->msize = fal->size;
}
act[p]->nr_ini = fal->nr;
act[p]->nr2 = fal->nr2;
act[p]->fsize = fal->size;
/*
* This is a known activity with a known format
* (magical number). Only such activities will be displayed.
* (Well, this may also be an unknown format if we have entered sadf -H.)
*/
if (!skip) {
id_seq[j++] = fal->id;
}
}
while (j < NR_ACT) {
id_seq[j++] = 0;
}
free(buffer);
buffer = NULL;
/* Check that at least one activity selected by the user is available in file */
for (i = 0; i < NR_ACT; i++) {
if (!IS_SELECTED(act[i]->options))
continue;
/* Here is a selected activity: Does it exist in file? */
fal = *file_actlst;
for (j = 0; j < file_hdr->sa_act_nr; j++, fal++) {
if (act[i]->id == fal->id)
break;
}
if (j == file_hdr->sa_act_nr) {
/* No: Unselect it */
act[i]->options &= ~AO_SELECTED;
}
}
/*
* None of selected activities exist in file: Abort.
* NB: Error is ignored if we only want to display
* datafile header (sadf -H).
*/
if (!get_activity_nr(act, AO_SELECTED, COUNT_ACTIVITIES) && !DISPLAY_HDR_ONLY(flags)) {
fprintf(stderr, _("Requested activities not available in file %s\n"),
dfile);
close(*ifd);
exit(1);
}
/*
* Check if there are some extra structures.
* We will just skip them as they are unknown for now.
*/
if (file_hdr->extra_next && (skip_extra_struct(*ifd, *endian_mismatch, *arch_64) < 0))
goto format_error;
return;
format_error:
if (buffer) {
free(buffer);
}
handle_invalid_sa_file(*ifd, file_magic, dfile, 0);
}
/*
***************************************************************************
* Look for item in list.
*
* IN:
* @list Pointer on the start of the linked list.
* @item_name Item name to look for.
*
* RETURNS:
* 1 if item found in list, 0 otherwise.
***************************************************************************
*/
int search_list_item(struct sa_item *list, char *item_name)
{
while (list != NULL) {
if (!strcmp(list->item_name, item_name))
return 1; /* Item found in list */
list = list->next;
}
/* Item not found */
return 0;
}
/*
***************************************************************************
* Add item to the list.
*
* IN:
* @list Address of pointer on the start of the linked list.
* @item_name Name of the item.
* @max_len Max length of an item.
*
* RETURNS:
* 1 if item has been added to the list (since it was not previously there),
* and 0 otherwise (item already in list or item name too long).
***************************************************************************
*/
int add_list_item(struct sa_item **list, char *item_name, int max_len)
{
struct sa_item *e;
int len;
if ((len = strnlen(item_name, max_len)) == max_len)
/* Item too long */
return 0;
while (*list != NULL) {
e = *list;
if (!strcmp(e->item_name, item_name))
return 0; /* Item found in list */
list = &(e->next);
}
/* Item not found: Add it to the list */
SREALLOC(*list, struct sa_item, sizeof(struct sa_item));
e = *list;
if ((e->item_name = (char *) malloc(len + 1)) == NULL) {
perror("malloc");
exit(4);
}
strcpy(e->item_name, item_name);
return 1;
}
/*
***************************************************************************
* Parse sar activities options (also used by sadf).
*
* IN:
* @argv Arguments list.
* @opt Index in list of arguments.
* @caller Indicate whether it's sar or sadf that called this function.
*
* OUT:
* @act Array of selected activities.
* @flags Common flags and system state.
*
* RETURNS:
* 0 on success.
***************************************************************************
*/
int parse_sar_opt(char *argv[], int *opt, struct activity *act[],
uint64_t *flags, int caller)
{
int i, p;
for (i = 1; *(argv[*opt] + i); i++) {
/*
* Note: argv[*opt] contains something like "-BruW"
* *(argv[*opt] + i) will contain 'B', 'r', etc.
*/
switch (*(argv[*opt] + i)) {
case 'A':
select_all_activities(act);
*flags |= S_F_OPTION_A;
/*
* Force '-r ALL -u ALL -F'.
* Setting -F is compulsory because corresponding activity
* has AO_MULTIPLE_OUTPUTS flag set.
* -P ALL will be set only if corresponding option has
* not been exlicitly entered on the command line.
*/
p = get_activity_position(act, A_MEMORY, EXIT_IF_NOT_FOUND);
act[p]->opt_flags |= AO_F_MEMORY + AO_F_SWAP + AO_F_MEM_ALL;
p = get_activity_position(act, A_CPU, EXIT_IF_NOT_FOUND);
act[p]->opt_flags = AO_F_CPU_ALL;
p = get_activity_position(act, A_FS, EXIT_IF_NOT_FOUND);
act[p]->opt_flags = AO_F_FILESYSTEM;
break;
case 'B':
SELECT_ACTIVITY(A_PAGE);
break;
case 'b':
SELECT_ACTIVITY(A_IO);
break;
case 'C':
*flags |= S_F_COMMENT;
break;
case 'd':
SELECT_ACTIVITY(A_DISK);
break;
case 'F':
p = get_activity_position(act, A_FS, EXIT_IF_NOT_FOUND);
act[p]->options |= AO_SELECTED;
if (!*(argv[*opt] + i + 1) && argv[*opt + 1] && !strcmp(argv[*opt + 1], K_MOUNT)) {
(*opt)++;
act[p]->opt_flags |= AO_F_MOUNT;
return 0;
}
else {
act[p]->opt_flags |= AO_F_FILESYSTEM;
}
break;
case 'H':
SELECT_ACTIVITY(A_HUGE);
break;
case 'h':
/* Option -h is equivalent to --pretty --human */
*flags |= S_F_PRETTY + S_F_UNIT;
break;
case 'I':
p = get_activity_position(act, A_IRQ, EXIT_IF_NOT_FOUND);
act[p]->options |= AO_SELECTED;
if (!*(argv[*opt] + i + 1) && argv[*opt + 1] &&
(!strcmp(argv[*opt + 1], K_ALL) || !strcmp(argv[*opt + 1], K_SUM))) {
(*opt)++;
/* Select int "sum". Keyword ALL is ignored */
if (!strcmp(argv[*opt], K_SUM)) {
act[p]->item_list_sz += add_list_item(&(act[p]->item_list), K_LOWERSUM, MAX_SA_IRQ_LEN);
act[p]->options |= AO_LIST_ON_CMDLINE;
}
return 0;
}
break;
case 'j':
if (!argv[*opt + 1]) {
return 1;
}
(*opt)++;
if (!strcmp(argv[*opt], K_SID)) {
*flags |= S_F_DEV_SID + S_F_PRETTY;
return 0;
}
if (strnlen(argv[*opt], sizeof(persistent_name_type)) >= sizeof(persistent_name_type) - 1)
return 1;
strncpy(persistent_name_type, argv[*opt], sizeof(persistent_name_type) - 1);
persistent_name_type[sizeof(persistent_name_type) - 1] = '\0';
strtolower(persistent_name_type);
if (!get_persistent_type_dir(persistent_name_type)) {
fprintf(stderr, _("Invalid type of persistent device name\n"));
return 2;
}
/* Pretty print report (option -j implies option -p) */
*flags |= S_F_PERSIST_NAME + S_F_PRETTY;
return 0;
break;
case 'p':
*flags |= S_F_PRETTY;
break;
case 'q':
/* Option -q grouped with other ones */
SELECT_ACTIVITY(A_QUEUE);
break;
case 'r':
p = get_activity_position(act, A_MEMORY, EXIT_IF_NOT_FOUND);
act[p]->options |= AO_SELECTED;
act[p]->opt_flags |= AO_F_MEMORY;
if (!*(argv[*opt] + i + 1) && argv[*opt + 1] && !strcmp(argv[*opt + 1], K_ALL)) {
(*opt)++;
act[p]->opt_flags |= AO_F_MEM_ALL;
return 0;
}
break;
case 'S':
p = get_activity_position(act, A_MEMORY, EXIT_IF_NOT_FOUND);
act[p]->options |= AO_SELECTED;
act[p]->opt_flags |= AO_F_SWAP;
break;
case 't':
/*
* Check sar option -t here (as it can be combined
* with other ones, eg. "sar -rtu ..."
* But sadf option -t is checked in sadf.c as it won't
* be entered as a sar option after "--".
*/
if (caller != C_SAR) {
return 1;
}
*flags |= S_F_TRUE_TIME;
break;
case 'u':
p = get_activity_position(act, A_CPU, EXIT_IF_NOT_FOUND);
act[p]->options |= AO_SELECTED;
if (!*(argv[*opt] + i + 1) && argv[*opt + 1] && !strcmp(argv[*opt + 1], K_ALL)) {
(*opt)++;
act[p]->opt_flags = AO_F_CPU_ALL;
return 0;
}
else {
act[p]->opt_flags = AO_F_CPU_DEF;
}
break;
case 'v':
SELECT_ACTIVITY(A_KTABLES);
break;
case 'w':
SELECT_ACTIVITY(A_PCSW);
break;
case 'W':
SELECT_ACTIVITY(A_SWAP);
break;
case 'y':
SELECT_ACTIVITY(A_SERIAL);
break;
case 'z':
*flags |= S_F_ZERO_OMIT;
break;
case 'V':
print_version();
break;
default:
return 1;
}
}
return 0;
}
/*
***************************************************************************
* Parse sar "-m" option.
*
* IN:
* @argv Arguments list.
* @opt Index in list of arguments.
*
* OUT:
* @act Array of selected activities.
*
* RETURNS:
* 0 on success, 1 otherwise.
***************************************************************************
*/
int parse_sar_m_opt(char *argv[], int *opt, struct activity *act[])
{
char *t;
for (t = strtok(argv[*opt], ","); t; t = strtok(NULL, ",")) {
if (!strcmp(t, K_CPU)) {
SELECT_ACTIVITY(A_PWR_CPU);
}
else if (!strcmp(t, K_FAN)) {
SELECT_ACTIVITY(A_PWR_FAN);
}
else if (!strcmp(t, K_IN)) {
SELECT_ACTIVITY(A_PWR_IN);
}
else if (!strcmp(t, K_TEMP)) {
SELECT_ACTIVITY(A_PWR_TEMP);
}
else if (!strcmp(t, K_FREQ)) {
SELECT_ACTIVITY(A_PWR_FREQ);
}
else if (!strcmp(t, K_USB)) {
SELECT_ACTIVITY(A_PWR_USB);
}
else if (!strcmp(t, K_ALL)) {
SELECT_ACTIVITY(A_PWR_CPU);
SELECT_ACTIVITY(A_PWR_FAN);
SELECT_ACTIVITY(A_PWR_IN);
SELECT_ACTIVITY(A_PWR_TEMP);
SELECT_ACTIVITY(A_PWR_FREQ);
SELECT_ACTIVITY(A_PWR_USB);
}
else
return 1;
}
(*opt)++;
return 0;
}
/*
***************************************************************************
* Parse sar "-n" option.
*
* IN:
* @argv Arguments list.
* @opt Index in list of arguments.
*
* OUT:
* @act Array of selected activities.
*
* RETURNS:
* 0 on success, 1 otherwise.
***************************************************************************
*/
int parse_sar_n_opt(char *argv[], int *opt, struct activity *act[])
{
char *t;
for (t = strtok(argv[*opt], ","); t; t = strtok(NULL, ",")) {
if (!strcmp(t, K_DEV)) {
SELECT_ACTIVITY(A_NET_DEV);
}
else if (!strcmp(t, K_EDEV)) {
SELECT_ACTIVITY(A_NET_EDEV);
}
else if (!strcmp(t, K_SOCK)) {
SELECT_ACTIVITY(A_NET_SOCK);
}
else if (!strcmp(t, K_NFS)) {
SELECT_ACTIVITY(A_NET_NFS);
}
else if (!strcmp(t, K_NFSD)) {
SELECT_ACTIVITY(A_NET_NFSD);
}
else if (!strcmp(t, K_IP)) {
SELECT_ACTIVITY(A_NET_IP);
}
else if (!strcmp(t, K_EIP)) {
SELECT_ACTIVITY(A_NET_EIP);
}
else if (!strcmp(t, K_ICMP)) {
SELECT_ACTIVITY(A_NET_ICMP);
}
else if (!strcmp(t, K_EICMP)) {
SELECT_ACTIVITY(A_NET_EICMP);
}
else if (!strcmp(t, K_TCP)) {
SELECT_ACTIVITY(A_NET_TCP);
}
else if (!strcmp(t, K_ETCP)) {
SELECT_ACTIVITY(A_NET_ETCP);
}
else if (!strcmp(t, K_UDP)) {
SELECT_ACTIVITY(A_NET_UDP);
}
else if (!strcmp(t, K_SOCK6)) {
SELECT_ACTIVITY(A_NET_SOCK6);
}
else if (!strcmp(t, K_IP6)) {
SELECT_ACTIVITY(A_NET_IP6);
}
else if (!strcmp(t, K_EIP6)) {
SELECT_ACTIVITY(A_NET_EIP6);
}
else if (!strcmp(t, K_ICMP6)) {
SELECT_ACTIVITY(A_NET_ICMP6);
}
else if (!strcmp(t, K_EICMP6)) {
SELECT_ACTIVITY(A_NET_EICMP6);
}
else if (!strcmp(t, K_UDP6)) {
SELECT_ACTIVITY(A_NET_UDP6);
}
else if (!strcmp(t, K_FC)) {
SELECT_ACTIVITY(A_NET_FC);
}
else if (!strcmp(t, K_SOFT)) {
SELECT_ACTIVITY(A_NET_SOFT);
}
else if (!strcmp(t, K_ALL)) {
SELECT_ACTIVITY(A_NET_DEV);
SELECT_ACTIVITY(A_NET_EDEV);
SELECT_ACTIVITY(A_NET_SOCK);
SELECT_ACTIVITY(A_NET_NFS);
SELECT_ACTIVITY(A_NET_NFSD);
SELECT_ACTIVITY(A_NET_IP);
SELECT_ACTIVITY(A_NET_EIP);
SELECT_ACTIVITY(A_NET_ICMP);
SELECT_ACTIVITY(A_NET_EICMP);
SELECT_ACTIVITY(A_NET_TCP);
SELECT_ACTIVITY(A_NET_ETCP);
SELECT_ACTIVITY(A_NET_UDP);
SELECT_ACTIVITY(A_NET_SOCK6);
SELECT_ACTIVITY(A_NET_IP6);
SELECT_ACTIVITY(A_NET_EIP6);
SELECT_ACTIVITY(A_NET_ICMP6);
SELECT_ACTIVITY(A_NET_EICMP6);
SELECT_ACTIVITY(A_NET_UDP6);
SELECT_ACTIVITY(A_NET_FC);
SELECT_ACTIVITY(A_NET_SOFT);
}
else
return 1;
}
(*opt)++;
return 0;
}
/*
***************************************************************************
* Parse sar "-q" option.
*
* IN:
* @argv Arguments list.
* @opt Index in list of arguments.
*
* OUT:
* @act Array of selected activities.
*
* RETURNS:
* 0 on success, 1 otherwise.
***************************************************************************
*/
int parse_sar_q_opt(char *argv[], int *opt, struct activity *act[])
{
char *t;
for (t = strtok(argv[*opt], ","); t; t = strtok(NULL, ",")) {
if (!strcmp(t, K_LOAD)) {
SELECT_ACTIVITY(A_QUEUE);
}
else if (!strcmp(t, K_PSI_CPU)) {
SELECT_ACTIVITY(A_PSI_CPU);
}
else if (!strcmp(t, K_PSI_IO)) {
SELECT_ACTIVITY(A_PSI_IO);
}
else if (!strcmp(t, K_PSI_MEM)) {
SELECT_ACTIVITY(A_PSI_MEM);
}
else if (!strcmp(t, K_PSI)) {
SELECT_ACTIVITY(A_PSI_CPU);
SELECT_ACTIVITY(A_PSI_IO);
SELECT_ACTIVITY(A_PSI_MEM);
}
else if (!strcmp(t, K_ALL)) {
SELECT_ACTIVITY(A_QUEUE);
SELECT_ACTIVITY(A_PSI_CPU);
SELECT_ACTIVITY(A_PSI_IO);
SELECT_ACTIVITY(A_PSI_MEM);
}
else
return 1;
}
(*opt)++;
return 0;
}
/*
***************************************************************************
* Parse sar and sadf "-P" option.
*
* IN:
* @argv Arguments list.
* @opt Index in list of arguments.
* @act Array of activities.
*
* OUT:
* @flags Common flags and system state.
* @act Array of activities, with CPUs selected.
*
* RETURNS:
* 0 on success, 1 otherwise.
***************************************************************************
*/
int parse_sa_P_opt(char *argv[], int *opt, uint64_t *flags, struct activity *act[])
{
int p;
p = get_activity_position(act, A_CPU, EXIT_IF_NOT_FOUND);
if (argv[++(*opt)]) {
if (parse_values(argv[*opt], act[p]->bitmap->b_array,
act[p]->bitmap->b_size, K_LOWERALL))
return 1;
(*opt)++;
*flags |= S_F_OPTION_P;
return 0;
}
return 1;
}
/*
***************************************************************************
* If option -A has been used, force -P ALL only if corresponding
* option has not been explicitly entered on the command line.
*
* IN:
* @flags Common flags and system state.
*
* OUT:
* @act Array of selected activities.
***************************************************************************
*/
void set_bitmaps(struct activity *act[], uint64_t *flags)
{
int p;
if (!USE_OPTION_P(*flags)) {
/* Force -P ALL */
p = get_activity_position(act, A_CPU, EXIT_IF_NOT_FOUND);
memset(act[p]->bitmap->b_array, ~0,
BITMAP_SIZE(act[p]->bitmap->b_size));
}
}
/*
***************************************************************************
* Parse devices entered on the command line and save them in activity's
* list.
*
* IN:
* @argv Argument with list of devices.
* @a Activity for which devices are entered on the command line.
* @max_len Max length of a device name.
* @opt Index in list of arguments.
* @pos Position is string where is located the first device.
* @max_val If > 0 then ranges of values are allowed (e.g. 3-5,9-, etc.)
* Values are in range [0..@max_val].
*
* OUT:
* @opt Index on next argument.
***************************************************************************
*/
void parse_sa_devices(char *argv, struct activity *a, int max_len, int *opt, int pos,
int max_val)
{
int i, val_low, val;
char *t;
char svalue[9];
for (t = strtok(argv + pos, ","); t; t = strtok(NULL, ",")) {
/* Test ranges of values, if allowed */
if ((max_val > 0) && (strlen(t) <= 16) && (strspn(t, XDIGITS) == strlen(t))) {
if (parse_range_values(t, max_val, &val_low, &val) == 0) {
/* This is a real range of values: Save each if its values */
for (i = val_low; i <= val; i++) {
snprintf(svalue, sizeof(svalue), "%d", i);
svalue[sizeof(svalue) - 1] = '\0';
a->item_list_sz += add_list_item(&(a->item_list), svalue, max_len);
}
continue;
}
}
a->item_list_sz += add_list_item(&(a->item_list), t, max_len);
}
if (a->item_list_sz) {
a->options |= AO_LIST_ON_CMDLINE;
}
(*opt)++;
}
/*
***************************************************************************
* Compute network interface utilization.
*
* IN:
* @st_net_dev Structure with network interface stats.
* @rx Number of bytes received per second.
* @tx Number of bytes transmitted per second.
*
* RETURNS:
* NIC utilization (0-100%).
***************************************************************************
*/
double compute_ifutil(struct stats_net_dev *st_net_dev, double rx, double tx)
{
unsigned long long speed;
if (st_net_dev->speed) {
speed = (unsigned long long) st_net_dev->speed * 1000000;
if (st_net_dev->duplex == C_DUPLEX_FULL) {
/* Full duplex */
if (rx > tx) {
return (rx * 800 / speed);
}
else {
return (tx * 800 / speed);
}
}
else {
/* Half duplex */
return ((rx + tx) * 800 / speed);
}
}
return 0;
}
/*
***************************************************************************
* Read and replace unprintable characters in comment with ".".
*
* IN:
* @ifd Input file descriptor.
* @comment Comment.
***************************************************************************
*/
void replace_nonprintable_char(int ifd, char *comment)
{
int i;
/* Read comment */
sa_fread(ifd, comment, MAX_COMMENT_LEN, HARD_SIZE, UEOF_STOP);
comment[MAX_COMMENT_LEN - 1] = '\0';
/* Replace non printable chars */
for (i = 0; i < strlen(comment); i++) {
if (!isprint(comment[i]))
comment[i] = '.';
}
}
/*
***************************************************************************
* Fill the rectime and loctime structures with current record's date and
* time, based on current record's "number of seconds since the epoch" saved
* in file.
* For loctime (if given): The timestamp is expressed in local time.
* For rectime: The timestamp is expressed in UTC, in local time, or in the
* time of the file's creator depending on options entered by the user on the
* command line.
*
* IN:
* @l_flags Flags indicating the type of time expected by the user.
* S_F_LOCAL_TIME means time should be expressed in local time.
* S_F_TRUE_TIME means time should be expressed in time of
* file's creator.
* Default is time expressed in UTC (except for sar, where it
* is local time).
* @record_hdr Record header containing the number of seconds since the
* epoch, and the HH:MM:SS of the file's creator.
*
* OUT:
* @rectime Structure where timestamp for current record has been saved
* (in local time, in UTC or in time of file's creator
* depending on options used).
*
* RETURNS:
* 1 if an error was detected, or 0 otherwise.
***************************************************************************
*/
int sa_get_record_timestamp_struct(uint64_t l_flags, struct record_header *record_hdr,
struct tm *rectime)
{
struct tm *ltm;
time_t t = record_hdr->ust_time;
int rc = 0;
/*
* Fill generic rectime structure in local time.
* Done so that we have some default values.
*/
ltm = localtime_r(&t, rectime);
if (!PRINT_LOCAL_TIME(l_flags) && !PRINT_TRUE_TIME(l_flags)) {
/*
* Get time in UTC
* (the user doesn't want local time nor time of file's creator).
*/
ltm = gmtime_r(&t, rectime);
}
if (!ltm) {
rc = 1;
}
if (PRINT_TRUE_TIME(l_flags)) {
/* Time of file's creator */
rectime->tm_hour = record_hdr->hour;
rectime->tm_min = record_hdr->minute;
rectime->tm_sec = record_hdr->second;
}
return rc;
}
/*
***************************************************************************
* Set current record's timestamp strings (date and time) using the time
* data saved in @rectime structure. The string may be the number of seconds
* since the epoch if flag S_F_SEC_EPOCH has been set.
*
* IN:
* @l_flags Flags indicating the type of time expected by the user.
* S_F_SEC_EPOCH means the time should be expressed in seconds
* since the epoch (01/01/1970).
* @record_hdr Record header containing the number of seconds since the
* epoch.
* @cur_date String where timestamp's date will be saved. May be NULL.
* @cur_time String where timestamp's time will be saved.
* @len Maximum length of timestamp strings.
* @rectime Structure with current timestamp (expressed in local time or
* in UTC depending on whether options -T or -t have been used
* or not) that should be broken down in date and time strings.
*
* OUT:
* @cur_date Timestamp's date string (if expected).
* @cur_time Timestamp's time string. May contain the number of seconds
* since the epoch (01-01-1970) if corresponding option has
* been used.
***************************************************************************
*/
void set_record_timestamp_string(uint64_t l_flags, struct record_header *record_hdr,
char *cur_date, char *cur_time, int len, struct tm *rectime)
{
/* Set cur_time date value */
if (PRINT_SEC_EPOCH(l_flags) && cur_date) {
sprintf(cur_time, "%llu", record_hdr->ust_time);
strcpy(cur_date, "");
}
else {
/*
* If options -T or -t have been used then cur_time is
* expressed in local time. Else it is expressed in UTC.
*/
if (cur_date) {
strftime(cur_date, len, "%Y-%m-%d", rectime);
}
if (USE_PREFD_TIME_OUTPUT(l_flags)) {
strftime(cur_time, len, "%X", rectime);
}
else {
strftime(cur_time, len, "%H:%M:%S", rectime);
}
}
}
/*
***************************************************************************
* Print contents of a special (RESTART or COMMENT) record.
* Note: This function is called only when reading a file.
*
* IN:
* @record_hdr Current record header.
* @l_flags Flags for common options.
* @tm_start Structure filled when option -s has been used.
* @tm_end Structure filled when option -e has been used.
* @rtype Record type (R_RESTART or R_COMMENT).
* @ifd Input file descriptor.
* @rectime Structure where timestamp (expressed in local time or in UTC
* depending on whether options -T/-t have been used or not) can
* be saved for current record.
* @file Name of file being read.
* @tab Number of tabulations to print.
* @file_magic file_magic structure filled with file magic header data.
* @file_hdr System activity file standard header.
* @act Array of activities.
* @ofmt Pointer on report output format structure.
* @endian_mismatch
* TRUE if file's data don't match current machine's endianness.
* @arch_64 TRUE if file's data come from a 64 bit machine.
*
* OUT:
* @rectime Structure where timestamp (expressed in local time or in UTC)
* has been saved.
*
* RETURNS:
* 1 if the record has been successfully displayed, and 0 otherwise.
***************************************************************************
*/
int print_special_record(struct record_header *record_hdr, uint64_t l_flags,
struct tstamp *tm_start, struct tstamp *tm_end, int rtype, int ifd,
struct tm *rectime, char *file, int tab,
struct file_magic *file_magic, struct file_header *file_hdr,
struct activity *act[], struct report_format *ofmt,
int endian_mismatch, int arch_64)
{
char cur_date[TIMESTAMP_LEN], cur_time[TIMESTAMP_LEN];
int dp = 1;
int p;
/* Fill timestamp structure (rectime) for current record */
if (sa_get_record_timestamp_struct(l_flags, record_hdr, rectime))
return 0;
/* The record must be in the interval specified by -s/-e options */
if ((tm_start->use && (datecmp(rectime, tm_start, FALSE) < 0)) ||
(tm_end->use && (datecmp(rectime, tm_end, FALSE) > 0))) {
/* Will not display the special record */
dp = 0;
}
else {
/* Set date and time strings to be displayed for current record */
set_record_timestamp_string(l_flags, record_hdr,
cur_date, cur_time, TIMESTAMP_LEN, rectime);
}
if (rtype == R_RESTART) {
/* Read new cpu number following RESTART record */
file_hdr->sa_cpu_nr = read_nr_value(ifd, file, file_magic,
endian_mismatch, arch_64, TRUE);
/*
* We don't know if CPU related activities will be displayed or not.
* But if it is the case, @nr_ini will be used in the loop
* to process all CPUs. So update their value here and
* reallocate buffers if needed.
* NB: We may have nr_allocated=0 here if the activity has
* not been collected in file (or if it has an unknown format).
*/
for (p = 0; p < NR_ACT; p++) {
if (HAS_PERSISTENT_VALUES(act[p]->options) && (act[p]->nr_ini > 0)) {
act[p]->nr_ini = file_hdr->sa_cpu_nr;
if (act[p]->nr_ini > act[p]->nr_allocated) {
reallocate_all_buffers(act[p], act[p]->nr_ini);
}
}
}
/* Ignore unknown extra structures if present */
if (record_hdr->extra_next && (skip_extra_struct(ifd, endian_mismatch, arch_64) < 0))
return 0;
if (!dp)
return 0;
if (*ofmt->f_restart) {
(*ofmt->f_restart)(&tab, F_MAIN, cur_date, cur_time,
!PRINT_LOCAL_TIME(l_flags) &&
!PRINT_TRUE_TIME(l_flags), file_hdr, record_hdr);
}
}
else if (rtype == R_COMMENT) {
char file_comment[MAX_COMMENT_LEN];
/* Read and replace non printable chars in comment */
replace_nonprintable_char(ifd, file_comment);
/* Ignore unknown extra structures if present */
if (record_hdr->extra_next && (skip_extra_struct(ifd, endian_mismatch, arch_64) < 0))
return 0;
if (!dp || !DISPLAY_COMMENT(l_flags))
return 0;
if (*ofmt->f_comment) {
(*ofmt->f_comment)(&tab, F_MAIN, cur_date, cur_time,
!PRINT_LOCAL_TIME(l_flags) &&
!PRINT_TRUE_TIME(l_flags), file_comment,
file_hdr, record_hdr);
}
}
return 1;
}
/*
***************************************************************************
* Compute global CPU statistics as the sum of individual CPU ones, and
* calculate interval for global CPU.
* Also identify offline CPU.
*
* IN:
* @a Activity structure with statistics.
* @prev Index in array where stats used as reference are.
* @curr Index in array for current sample statistics.
* @flags Flags for common options and system state.
* @offline_cpu_bitmap
* CPU bitmap for offline CPU.
*
* OUT:
* @a Activity structure with updated statistics (those for global
* CPU, and also those for offline CPU).
* @offline_cpu_bitmap
* CPU bitmap with offline CPU.
*
* RETURNS:
* Interval for global CPU.
***************************************************************************
*/
unsigned long long get_global_cpu_statistics(struct activity *a, int prev, int curr,
uint64_t flags, unsigned char offline_cpu_bitmap[])
{
int i;
unsigned long long tot_jiffies_c, tot_jiffies_p;
unsigned long long deltot_jiffies = 0;
struct stats_cpu *scc, *scp;
struct stats_cpu *scc_all = (struct stats_cpu *) ((char *) a->buf[curr]);
struct stats_cpu *scp_all = (struct stats_cpu *) ((char *) a->buf[prev]);
/*
* Initial processing.
* Compute CPU "all" as sum of all individual CPU. Done only on SMP machines (a->nr_ini > 1).
* For UP machines we keep the values read from global CPU line in /proc/stat.
* Also look for offline CPU: They won't be displayed, and some of their values may
* have to be modified.
*/
if (a->nr_ini > 1) {
memset(scc_all, 0, sizeof(struct stats_cpu));
memset(scp_all, 0, sizeof(struct stats_cpu));
}
for (i = 1; (i < a->nr_ini) && (i < a->bitmap->b_size + 1); i++) {
/*
* The size of a->buf[...] CPU structure may be different from the default
* sizeof(struct stats_cpu) value if data have been read from a file!
* That's why we don't use a syntax like:
* scc = (struct stats_cpu *) a->buf[...] + i;
*/
scc = (struct stats_cpu *) ((char *) a->buf[curr] + i * a->msize);
scp = (struct stats_cpu *) ((char *) a->buf[prev] + i * a->msize);
/*
* Compute the total number of jiffies spent by current processor.
* NB: Don't add cpu_guest/cpu_guest_nice because cpu_user/cpu_nice
* already include them.
*/
tot_jiffies_c = scc->cpu_user + scc->cpu_nice +
scc->cpu_sys + scc->cpu_idle +
scc->cpu_iowait + scc->cpu_hardirq +
scc->cpu_steal + scc->cpu_softirq;
tot_jiffies_p = scp->cpu_user + scp->cpu_nice +
scp->cpu_sys + scp->cpu_idle +
scp->cpu_iowait + scp->cpu_hardirq +
scp->cpu_steal + scp->cpu_softirq;
/*
* If the CPU is offline then it is omited from /proc/stat:
* All the fields couldn't have been read and the sum of them is zero.
*/
if (tot_jiffies_c == 0) {
/*
* CPU is currently offline.
* Set current struct fields (which have been set to zero)
* to values from previous iteration. Hence their values won't
* jump from zero when the CPU comes back online.
* Note that this workaround no longer fully applies with recent kernels,
* as I have noticed that when a CPU comes back online, some fields
* restart from their previous value (e.g. user, nice, system)
* whereas others restart from zero (idle, iowait)! To deal with this,
* the get_per_cpu_interval() function will set these previous values
* to zero if necessary.
*/
*scc = *scp;
/*
* Mark CPU as offline to not display it
* (and thus it will not be confused with a tickless CPU).
*/
offline_cpu_bitmap[i >> 3] |= 1 << (i & 0x07);
}
if ((tot_jiffies_p == 0) && !WANT_SINCE_BOOT(flags)) {
/*
* CPU has just come back online.
* Unfortunately, no reference values are available
* from a previous iteration, probably because it was
* already offline when the first sample has been taken.
* So don't display that CPU to prevent "jump-from-zero"
* output syndrome, and don't take it into account for CPU "all".
*/
offline_cpu_bitmap[i >> 3] |= 1 << (i & 0x07);
continue;
}
/*
* Get interval for current CPU and add it to global CPU.
* Note: Previous idle and iowait values (saved in scp) may be modified here.
*/
deltot_jiffies += get_per_cpu_interval(scc, scp);
scc_all->cpu_user += scc->cpu_user;
scp_all->cpu_user += scp->cpu_user;
scc_all->cpu_nice += scc->cpu_nice;
scp_all->cpu_nice += scp->cpu_nice;
scc_all->cpu_sys += scc->cpu_sys;
scp_all->cpu_sys += scp->cpu_sys;
scc_all->cpu_idle += scc->cpu_idle;
scp_all->cpu_idle += scp->cpu_idle;
scc_all->cpu_iowait += scc->cpu_iowait;
scp_all->cpu_iowait += scp->cpu_iowait;
scc_all->cpu_hardirq += scc->cpu_hardirq;
scp_all->cpu_hardirq += scp->cpu_hardirq;
scc_all->cpu_steal += scc->cpu_steal;
scp_all->cpu_steal += scp->cpu_steal;
scc_all->cpu_softirq += scc->cpu_softirq;
scp_all->cpu_softirq += scp->cpu_softirq;
scc_all->cpu_guest += scc->cpu_guest;
scp_all->cpu_guest += scp->cpu_guest;
scc_all->cpu_guest_nice += scc->cpu_guest_nice;
scp_all->cpu_guest_nice += scp->cpu_guest_nice;
}
return deltot_jiffies;
}
/*
***************************************************************************
* Compute softnet statistics for CPU "all" as the sum of individual CPU
* ones.
* Also identify offline CPU.
*
* IN:
* @a Activity structure with statistics.
* @prev Index in array where stats used as reference are.
* @curr Index in array for current sample statistics.
* @flags Flags for common options and system state.
* @offline_cpu_bitmap
* CPU bitmap for offline CPU.
*
* OUT:
* @a Activity structure with updated statistics (those for global
* CPU, and also those for offline CPU).
* @offline_cpu_bitmap
* CPU bitmap with offline CPU.
***************************************************************************
*/
void get_global_soft_statistics(struct activity *a, int prev, int curr,
uint64_t flags, unsigned char offline_cpu_bitmap[])
{
int i;
struct stats_softnet *ssnc, *ssnp;
struct stats_softnet *ssnc_all = (struct stats_softnet *) ((char *) a->buf[curr]);
struct stats_softnet *ssnp_all = (struct stats_softnet *) ((char *) a->buf[prev]);
/*
* Init structures that will contain values for CPU "all".
* CPU "all" doesn't exist in /proc/net/softnet_stat file, so
* we compute its values as the sum of the values of each CPU.
*/
memset(ssnc_all, 0, sizeof(struct stats_softnet));
memset(ssnp_all, 0, sizeof(struct stats_softnet));
for (i = 1; (i < a->nr_ini) && (i < a->bitmap->b_size + 1); i++) {
/*
* The size of a->buf[...] CPU structure may be different from the default
* sizeof(struct stats_softnet) value if data have been read from a file!
* That's why we don't use a syntax like:
* ssnc = (struct stats_softnet *) a->buf[...] + i;
*/
ssnc = (struct stats_softnet *) ((char *) a->buf[curr] + i * a->msize);
ssnp = (struct stats_softnet *) ((char *) a->buf[prev] + i * a->msize);
if ((ssnp->processed + ssnp->dropped + ssnp->time_squeeze +
ssnp->received_rps + ssnp->flow_limit + ssnp->backlog_len == 0) &&
!WANT_SINCE_BOOT(flags)) {
/*
* No previous sample for current CPU: Don't display it unless
* we want stats since last boot time.
* (CPU may be online but we don't display it because all
* its counters would appear to jump from zero...)
*/
offline_cpu_bitmap[i >> 3] |= 1 << (i & 0x07);
continue;
}
if (ssnc->processed + ssnc->dropped + ssnc->time_squeeze +
ssnc->received_rps + ssnc->flow_limit + ssnc->backlog_len == 0) {
/* Assume current CPU is offline */
*ssnc = *ssnp;
offline_cpu_bitmap[i >> 3] |= 1 << (i & 0x07);
}
ssnc_all->processed += ssnc->processed;
ssnc_all->dropped += ssnc->dropped;
ssnc_all->time_squeeze += ssnc->time_squeeze;
ssnc_all->received_rps += ssnc->received_rps;
ssnc_all->flow_limit += ssnc->flow_limit;
ssnc_all->backlog_len += ssnc->backlog_len;
ssnp_all->processed += ssnp->processed;
ssnp_all->dropped += ssnp->dropped;
ssnp_all->time_squeeze += ssnp->time_squeeze;
ssnp_all->received_rps += ssnp->received_rps;
ssnp_all->flow_limit += ssnp->flow_limit;
ssnp_all->backlog_len += ssnp->backlog_len;
}
}
/*
***************************************************************************
* Identify offline CPU (those for which all interrupts are 0) and keep
* interrupts statistics (their values are persistent). Include also CPU
* which have not been selected (this is necessary so that the header of the
* interrupts statistics report can be displayed).
*
* IN:
* @a Activity structure with statistics.
* @prev Index in array where stats used as reference are.
* @curr Index in array for current sample statistics.
* @flags Flags for common options and system state.
* @masked_cpu_bitmap
* CPU bitmap for offline and unselected CPU.
*
* OUT:
* @a Activity structure with updated statistics (those for global
* CPU, and also those for offline CPU).
* @masked_cpu_bitmap
* CPU bitmap with offline and unselected CPU.
***************************************************************************
*/
void get_global_int_statistics(struct activity *a, int prev, int curr,
uint64_t flags, unsigned char masked_cpu_bitmap[])
{
int i;
struct stats_irq *stc_cpu_sum, *stp_cpu_sum;
for (i = 0; (i < a->nr_ini) && (i < a->bitmap->b_size + 1); i++) {
/*
* The size of a->buf[...] CPU structure may be different from the default
* sizeof(struct stats_irq) value if data have been read from a file!
* That's why we don't use a syntax like:
* stc_cpu_sum = (struct stats_irq *) a->buf[...] + i;
*/
stc_cpu_sum = (struct stats_irq *) ((char *) a->buf[curr] + i * a->msize * a->nr2);
stp_cpu_sum = (struct stats_irq *) ((char *) a->buf[prev] + i * a->msize * a->nr2);
/*
* Check if current CPU is back online but with no previous sample for it,
* or if it has not been selected.
*/
if (((stp_cpu_sum->irq_nr == 0) && !WANT_SINCE_BOOT(flags)) ||
(!(a->bitmap->b_array[i >> 3] & (1 << (i & 0x07))))) {
/* CPU should not be displayed */
masked_cpu_bitmap[i >> 3] |= 1 << (i & 0x07);
continue;
}
if (stc_cpu_sum->irq_nr == 0) {
/* Assume current CPU is offline */
masked_cpu_bitmap[i >> 3] |= 1 << (i & 0x07);
memcpy(stc_cpu_sum, stp_cpu_sum, (size_t) a->msize * a->nr2);
}
}
}
/*
***************************************************************************
* Get filesystem name to display. This may be either the persistent name
* if requested by the user, the standard filesystem name (e.g. /dev/sda1,
* /dev/sdb3, etc.) or the mount point. This is used when displaying
* filesystem statistics: sar -F or sadf -- -F).
*
* IN:
* @a Activity structure.
* @flags Flags for common options and system state.
* @st_fs Statistics for current filesystem.
*
* RETURNS:
* Filesystem name to display.
***************************************************************************
*/
char *get_fs_name_to_display(struct activity *a, uint64_t flags, struct stats_filesystem *st_fs)
{
char *pname = NULL, *persist_dev_name;
char fname[MAX_FS_LEN];
if (DISPLAY_PERSIST_NAME_S(flags) && !DISPLAY_MOUNT(a->opt_flags)) {
strncpy(fname, st_fs->fs_name, sizeof(fname));
fname[sizeof(fname) - 1] = '\0';
if ((persist_dev_name = get_persistent_name_from_pretty(basename(fname))) != NULL) {
pname = persist_dev_name;
}
}
if (!pname) {
pname = DISPLAY_MOUNT(a->opt_flags) ? st_fs->mountp : st_fs->fs_name;
}
return pname;
}
#endif /* SOURCE_SADC undefined */