ukui-search/libchinese-segmentation/storage-base/cedar/cedar.h

701 lines
28 KiB
C
Raw Permalink Normal View History

// cedar -- C++ implementation of Efficiently-updatable Double ARray trie
// $Id: cedar.h 1938 2022-03-17 16:22:30Z ynaga $
// Copyright (c) 2009-2015 Naoki Yoshinaga <ynaga@tkl.iis.u-tokyo.ac.jp>
2024-01-30 14:42:09 +08:00
/*
* Copyright (C) 2023, KylinSoft Co., Ltd.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifndef CEDAR_H
#define CEDAR_H
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cassert>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define STATIC_ASSERT(e, msg) typedef char msg[(e) ? 1 : -1]
namespace cedar {
// typedefs
typedef unsigned char uchar;
template <typename T> struct NaN { enum { N1 = -1, N2 = -2 }; };
template <> struct NaN <float> { enum { N1 = 0x7f800001, N2 = 0x7f800002 }; };
static const int MAX_ALLOC_SIZE = 1 << 16; // must be divisible by 256
// dynamic double array
template <typename value_type,
const int NO_VALUE = NaN <value_type>::N1,
const int NO_PATH = NaN <value_type>::N2,
const bool ORDERED = true,
const int MAX_TRIAL = 1,
const size_t NUM_TRACKING_NODES = 0>
class da {
public:
enum error_code { CEDAR_NO_VALUE = NO_VALUE, CEDAR_NO_PATH = NO_PATH, CEDAR_VALUE_LIMIT = 2147483647 };
typedef value_type result_type;
struct result_pair_type {
value_type value;
size_t length; // prefix length
};
struct result_triple_type { // for predict ()
value_type value;
size_t length; // suffix length
size_t id; // node id of value
};
struct node {
union { int base_; value_type value; }; // negative means prev empty index
int check; // negative means next empty index
node (const int base__ = 0, const int check_ = 0)
: base_ (base__), check (check_) {}
#ifdef USE_REDUCED_TRIE
int base () const { return - (base_ + 1); } // ~ in two's complement system
#else
int base () const { return base_; }
#endif
};
struct ninfo { // x1.5 update speed; +.25 % memory (8n -> 10n)
uchar sibling; // right sibling (= 0 if not exist)
uchar child; // first child
ninfo () : sibling (0), child (0) {}
};
struct block { // a block w/ 256 elements
int prev; // prev block; 3 bytes
int next; // next block; 3 bytes
short num; // # empty elements; 0 - 256
short reject; // minimum # branching failed to locate; soft limit
int trial; // # trial
int ehead; // first empty item
block () : prev (0), next (0), num (256), reject (257), trial (0), ehead (0) {}
};
da () : tracking_node (), _array (0), _ninfo (0), _block (0), _bheadF (0), _bheadC (0), _bheadO (0), _capacity (0), _size (0), _no_delete (false), _reject () {
STATIC_ASSERT(sizeof (value_type) <= sizeof (int),
value_type_is_not_supported___maintain_a_value_array_by_yourself_and_store_its_index
);
_initialize ();
}
~da () { clear (false); }
size_t capacity () const { return static_cast <size_t> (_capacity); }
size_t size () const { return static_cast <size_t> (_size); }
size_t total_size () const { return sizeof (node) * _size; }
size_t unit_size () const { return sizeof (node); }
size_t nonzero_size () const {
size_t i = 0;
for (int to = 0; to < _size; ++to)
if (_array[to].check >= 0) ++i;
return i;
}
size_t num_keys () const {
size_t i = 0;
for (int to = 0; to < _size; ++to)
#ifdef USE_REDUCED_TRIE
if (_array[to].check >= 0 && _array[to].value >= 0) ++i;
#else
if (_array[to].check >= 0 && _array[_array[to].check].base () == to) ++i;
#endif
return i;
}
// interfance
template <typename T>
T exactMatchSearch (const char* key) const
{ return exactMatchSearch <T> (key, std::strlen (key)); }
template <typename T>
T exactMatchSearch (const char* key, size_t len, size_t from = 0) const {
union { int i; value_type x; } b;
size_t pos = 0;
b.i = _find (key, from, pos, len);
if (b.i == CEDAR_NO_PATH) b.i = CEDAR_NO_VALUE;
T result;
_set_result (&result, b.x, len, from);
return result;
}
template <typename T>
size_t commonPrefixSearch (const char* key, T* result, size_t result_len) const
{ return commonPrefixSearch (key, result, result_len, std::strlen (key)); }
template <typename T>
size_t commonPrefixSearch (const char* key, T* result, size_t result_len, size_t len, size_t from = 0) const {
size_t num = 0;
for (size_t pos = 0; pos < len; ) {
union { int i; value_type x; } b;
b.i = _find (key, from, pos, pos + 1);
if (b.i == CEDAR_NO_VALUE) continue;
if (b.i == CEDAR_NO_PATH) return num;
if (num < result_len) _set_result (&result[num], b.x, pos, from);
++num;
}
return num;
}
// predict key from double array
template <typename T>
size_t commonPrefixPredict (const char* key, T* result, size_t result_len)
{ return commonPrefixPredict (key, result, result_len, std::strlen (key)); }
template <typename T>
size_t commonPrefixPredict (const char* key, T* result, size_t result_len, size_t len, size_t from = 0) {
size_t num (0), pos (0), p (0);
if (_find (key, from, pos, len) == CEDAR_NO_PATH) return 0;
union { int i; value_type x; } b;
size_t root = from;
for (b.i = begin (from, p); b.i != CEDAR_NO_PATH; b.i = next (from, p, root)) {
if (num < result_len) _set_result (&result[num], b.x, p, from);
++num;
}
return num;
}
void suffix (char* key, size_t len, size_t to) const {
key[len] = '\0';
while (len--) {
const int from = _array[to].check;
key[len]
= static_cast <char> (_array[from].base () ^ static_cast <int> (to));
to = static_cast <size_t> (from);
}
}
value_type traverse (const char* key, size_t& from, size_t& pos) const
{ return traverse (key, from, pos, std::strlen (key)); }
value_type traverse (const char* key, size_t& from, size_t& pos, size_t len) const {
union { int i; value_type x; } b;
b.i = _find (key, from, pos, len);
return b.x;
}
struct empty_callback { void operator () (const int, const int) {} }; // dummy empty function
value_type& update (const char* key)
{ return update (key, std::strlen (key)); }
value_type& update (const char* key, size_t len, value_type val = value_type (0))
{ size_t from (0), pos (0); return update (key, from, pos, len, val); }
value_type& update (const char* key, size_t& from, size_t& pos, size_t len, value_type val = value_type (0))
{ empty_callback cf; return update (key, from, pos, len, val, cf); }
template <typename T>
value_type& update (const char* key, size_t& from, size_t& pos, size_t len, value_type val, T& cf) {
if (! len && ! from)
_err (__FILE__, __LINE__, "failed to insert zero-length key\n");
#ifndef USE_FAST_LOAD
if (! _ninfo || ! _block) restore ();
#endif
for (const uchar* const key_ = reinterpret_cast <const uchar*> (key);
pos < len; ++pos) {
#ifdef USE_REDUCED_TRIE
const value_type val_ = _array[from].value;
if (val_ >= 0 && val_ != CEDAR_VALUE_LIMIT) // always new; correct this!
{ const int to = _follow (from, 0, cf); _array[to].value = val_; }
#endif
from = static_cast <size_t> (_follow (from, key_[pos], cf));
}
#ifdef USE_REDUCED_TRIE
const int to = _array[from].value >= 0 ? static_cast <int> (from) : _follow (from, 0, cf);
if (_array[to].value == CEDAR_VALUE_LIMIT) _array[to].value = 0;
#else
const int to = _follow (from, 0, cf);
#endif
return _array[to].value += val;
}
// easy-going erase () without compression
int erase (const char* key) { return erase (key, std::strlen (key)); }
int erase (const char* key, size_t len, size_t from = 0) {
size_t pos = 0;
const int i = _find (key, from, pos, len);
if (i == CEDAR_NO_PATH || i == CEDAR_NO_VALUE) return -1;
erase (from);
return 0;
}
void erase (size_t from) {
// _test ();
#ifdef USE_REDUCED_TRIE
int e = _array[from].value >= 0 ? static_cast <int> (from) : _array[from].base () ^ 0;
from = static_cast <size_t> (_array[e].check);
#else
int e = _array[from].base () ^ 0;
#endif
bool flag = false; // have sibling
do {
const node& n = _array[from];
flag = _ninfo[n.base () ^ _ninfo[from].child].sibling;
if (flag) _pop_sibling (from, n.base (), static_cast <uchar> (n.base () ^ e));
_push_enode (e);
e = static_cast <int> (from);
from = static_cast <size_t> (_array[from].check);
} while (! flag);
}
int build (size_t num, const char** key, const size_t* len = 0, const value_type* val = 0) {
for (size_t i = 0; i < num; ++i)
update (key[i], len ? len[i] : std::strlen (key[i]), val ? val[i] : value_type (i));
return 0;
}
template <typename T>
void dump (T* result, const size_t result_len) {
union { int i; value_type x; } b;
size_t num (0), from (0), p (0);
for (b.i = begin (from, p); b.i != CEDAR_NO_PATH; b.i = next (from, p))
if (num < result_len)
_set_result (&result[num++], b.x, p, from);
else
_err (__FILE__, __LINE__, "dump() needs array of length = num_keys()\n");
}
int save (const char* fn, const char* mode = "wb") const {
// _test ();
FILE* fp = std::fopen (fn, mode);
if (! fp) return -1;
std::fwrite (_array, sizeof (node), static_cast <size_t> (_size), fp);
std::fclose (fp);
#ifdef USE_FAST_LOAD
const char* const info
= std::strcat (std::strcpy (new char[std::strlen (fn) + 5], fn), ".sbl");
fp = std::fopen (info, mode);
delete [] info; // resolve memory leak
if (! fp) return -1;
std::fwrite (&_bheadF, sizeof (int), 1, fp);
std::fwrite (&_bheadC, sizeof (int), 1, fp);
std::fwrite (&_bheadO, sizeof (int), 1, fp);
std::fwrite (_ninfo, sizeof (ninfo), static_cast <size_t> (_size), fp);
std::fwrite (_block, sizeof (block), static_cast <size_t> (_size >> 8), fp);
std::fclose (fp);
#endif
return 0;
}
int open (const char* fn, const char* mode = "rb",
const size_t offset = 0, size_t size_ = 0) {
FILE* fp = std::fopen (fn, mode);
if (! fp) return -1;
// get size
if (! size_) {
if (std::fseek (fp, 0, SEEK_END) != 0) return -1;
size_ = static_cast <size_t> (std::ftell (fp));
if (std::fseek (fp, 0, SEEK_SET) != 0) return -1;
}
if (size_ <= offset) return -1;
// set array
clear (false);
size_ = (size_ - offset) / sizeof (node);
if (std::fseek (fp, static_cast <long> (offset), SEEK_SET) != 0) return -1;
_array = static_cast <node*> (std::malloc (sizeof (node) * size_));
#ifdef USE_FAST_LOAD
_ninfo = static_cast <ninfo*> (std::malloc (sizeof (ninfo) * size_));
_block = static_cast <block*> (std::malloc (sizeof (block) * size_));
if (! _array || ! _ninfo || ! _block)
#else
if (! _array)
#endif
_err (__FILE__, __LINE__, "memory allocation failed\n");
if (size_ != std::fread (_array, sizeof (node), size_, fp)) return -1;
std::fclose (fp);
_size = static_cast <int> (size_);
#ifdef USE_FAST_LOAD
const char* const info
= std::strcat (std::strcpy (new char[std::strlen (fn) + 5], fn), ".sbl");
fp = std::fopen (info, mode);
delete [] info; // resolve memory leak
if (! fp) return -1;
std::fread (&_bheadF, sizeof (int), 1, fp);
std::fread (&_bheadC, sizeof (int), 1, fp);
std::fread (&_bheadO, sizeof (int), 1, fp);
if (size_ != std::fread (_ninfo, sizeof (ninfo), size_, fp) ||
size_ != std::fread (_block, sizeof (block), size_ >> 8, fp) << 8)
return -1;
std::fclose (fp);
_capacity = _size;
#endif
return 0;
}
#ifndef USE_FAST_LOAD
void restore () { // restore information to update
if (! _block) _restore_block ();
if (! _ninfo) _restore_ninfo ();
_capacity = _size;
}
#endif
void set_array (void* p, size_t size_ = 0) { // ad-hoc
clear (false);
_array = static_cast <node*> (p);
_size = static_cast <int> (size_);
_no_delete = true;
}
const void* array () const { return _array; }
void clear (const bool reuse = true) {
if (_array && ! _no_delete) std::free (_array);
if (_ninfo) std::free (_ninfo);
if (_block) std::free (_block);
_array = 0; _ninfo = 0; _block = 0;
_bheadF = _bheadC = _bheadO = _capacity = _size = 0; // *
if (reuse) _initialize ();
_no_delete = false;
}
// return the first child for a tree rooted by a given node
int begin (size_t& from, size_t& len) {
#ifndef USE_FAST_LOAD
if (! _ninfo) _restore_ninfo ();
#endif
int base = _array[from].base ();
uchar c = _ninfo[from].child;
if (! from && ! (c = _ninfo[base ^ c].sibling)) // bug fix
return CEDAR_NO_PATH; // no entry
for (; c; ++len) {
from = static_cast <size_t> (_array[from].base ()) ^ c;
c = _ninfo[from].child;
}
#ifdef USE_REDUCED_TRIE
if (_array[from].value >= 0) return _array[from].value;
#endif
return _array[_array[from].base () ^ c].base_;
}
// return the next child if any
int next (size_t& from, size_t& len, const size_t root = 0) {
uchar c = 0;
#ifdef USE_REDUCED_TRIE
if (_array[from].value < 0)
#endif
c = _ninfo[_array[from].base () ^ 0].sibling;
for (; ! c && from != root; --len) {
c = _ninfo[from].sibling;
from = static_cast <size_t> (_array[from].check);
}
return c ?
begin (from = static_cast <size_t> (_array[from].base ()) ^ c, ++len) :
CEDAR_NO_PATH;
}
// test the validity of double array for debug
void test (const size_t from = 0) const {
const int base = _array[from].base ();
uchar c = _ninfo[from].child;
do {
if (from) assert (_array[base ^ c].check == static_cast <int> (from));
if (c && _array[base ^ c].value < 0) // correct this
test (static_cast <size_t> (base ^ c));
} while ((c = _ninfo[base ^ c].sibling));
}
size_t tracking_node[NUM_TRACKING_NODES + 1];
private:
// currently disabled; implement these if you need
da (const da&);
da& operator= (const da&);
node* _array;
ninfo* _ninfo;
block* _block;
int _bheadF; // first block of Full; 0
int _bheadC; // first block of Closed; 0 if no Closed
int _bheadO; // first block of Open; 0 if no Open
int _capacity;
int _size;
int _no_delete;
short _reject[257];
//
static void _err (const char* fn, const int ln, const char* msg)
{ std::fprintf (stderr, "cedar: %s [%d]: %s", fn, ln, msg); std::exit (1); }
template <typename T>
static void _realloc_array (T*& p, const int size_n, const int size_p = 0) {
void* tmp = std::realloc (p, sizeof (T) * static_cast <size_t> (size_n));
if (! tmp)
std::free (p), _err (__FILE__, __LINE__, "memory reallocation failed\n");
p = static_cast <T*> (tmp);
static const T T0 = T ();
for (T* q (p + size_p), * const r (p + size_n); q != r; ++q) *q = T0;
}
void _initialize () { // initilize the first special block
_realloc_array (_array, 256, 256);
_realloc_array (_ninfo, 256);
_realloc_array (_block, 1);
#ifdef USE_REDUCED_TRIE
_array[0] = node (-1, -1);
#else
_array[0] = node (0, -1);
#endif
for (int i = 1; i < 256; ++i)
_array[i] = node (i == 1 ? -255 : - (i - 1), i == 255 ? -1 : - (i + 1));
_block[0].ehead = 1; // bug fix for erase
_capacity = _size = 256;
for (size_t i = 0 ; i <= NUM_TRACKING_NODES; ++i) tracking_node[i] = 0;
for (short i = 0; i <= 256; ++i) _reject[i] = i + 1;
}
// follow/create edge
template <typename T>
int _follow (size_t& from, const uchar& label, T& cf) {
int to = 0;
const int base = _array[from].base ();
if (base < 0 || _array[to = base ^ label].check < 0) {
to = _pop_enode (base, label, static_cast <int> (from));
_push_sibling (from, to ^ label, label, base >= 0);
} else if (_array[to].check != static_cast <int> (from))
to = _resolve (from, base, label, cf);
return to;
}
// find key from double array
int _find (const char* key, size_t& from, size_t& pos, const size_t len) const {
for (const uchar* const key_ = reinterpret_cast <const uchar*> (key);
pos < len; ) { // follow link
#ifdef USE_REDUCED_TRIE
if (_array[from].value >= 0) return CEDAR_NO_PATH;
#endif
size_t to = static_cast <size_t> (_array[from].base ()); to ^= key_[pos];
if (_array[to].check != static_cast <int> (from)) return CEDAR_NO_PATH;
++pos;
from = to;
}
#ifdef USE_REDUCED_TRIE
if (_array[from].value >= 0) // get value from leaf; only allow integer key
return _array[from].value;
#endif
const node n = _array[_array[from].base () ^ 0];
if (n.check != static_cast <int> (from)) return CEDAR_NO_VALUE;
return n.base_;
}
#ifndef USE_FAST_LOAD
void _restore_ninfo () {
_realloc_array (_ninfo, _size);
for (int to = 0; to < _size; ++to) {
const int from = _array[to].check;
if (from < 0) continue; // skip empty node
const int base = _array[from].base ();
if (const uchar label = static_cast <uchar> (base ^ to)) // skip leaf
_push_sibling (static_cast <size_t> (from), base, label,
! from || _ninfo[from].child || _array[base ^ 0].check == from);
}
}
void _restore_block () {
_realloc_array (_block, _size >> 8);
_bheadF = _bheadC = _bheadO = 0;
for (int bi (0), e (0); e < _size; ++bi) { // register blocks to full
block& b = _block[bi];
b.num = 0;
for (; e < (bi << 8) + 256; ++e)
if (_array[e].check < 0 && ++b.num == 1) b.ehead = e;
int& head_out = b.num == 1 ? _bheadC : (b.num == 0 ? _bheadF : _bheadO);
_push_block (bi, head_out, ! head_out && b.num);
}
}
#endif
void _set_result (result_type* x, value_type r, size_t = 0, size_t = 0) const
{ *x = r; }
void _set_result (result_pair_type* x, value_type r, size_t l, size_t = 0) const
{ x->value = r; x->length = l; }
void _set_result (result_triple_type* x, value_type r, size_t l, size_t from) const
{ x->value = r; x->length = l; x->id = from; }
void _pop_block (const int bi, int& head_in, const bool last) {
if (last) { // last one poped; Closed or Open
head_in = 0;
} else {
const block& b = _block[bi];
_block[b.prev].next = b.next;
_block[b.next].prev = b.prev;
if (bi == head_in) head_in = b.next;
}
}
void _push_block (const int bi, int& head_out, const bool empty) {
block& b = _block[bi];
if (empty) { // the destination is empty
head_out = b.prev = b.next = bi;
} else { // use most recently pushed
int& tail_out = _block[head_out].prev;
b.prev = tail_out;
b.next = head_out;
head_out = tail_out = _block[tail_out].next = bi;
}
}
int _add_block () {
if (_size == _capacity) { // allocate memory if needed
#ifdef USE_EXACT_FIT
_capacity += _size >= MAX_ALLOC_SIZE ? MAX_ALLOC_SIZE : _size;
#else
_capacity += _capacity;
#endif
_realloc_array (_array, _capacity, _capacity);
_realloc_array (_ninfo, _capacity, _size);
_realloc_array (_block, _capacity >> 8, _size >> 8);
}
_block[_size >> 8].ehead = _size;
_array[_size] = node (- (_size + 255), - (_size + 1));
for (int i = _size + 1; i < _size + 255; ++i)
_array[i] = node (-(i - 1), -(i + 1));
_array[_size + 255] = node (- (_size + 254), -_size);
_push_block (_size >> 8, _bheadO, ! _bheadO); // append to block Open
_size += 256;
return (_size >> 8) - 1;
}
// transfer block from one start w/ head_in to one start w/ head_out
void _transfer_block (const int bi, int& head_in, int& head_out) {
_pop_block (bi, head_in, bi == _block[bi].next);
_push_block (bi, head_out, ! head_out && _block[bi].num);
}
// pop empty node from block; never transfer the special block (bi = 0)
int _pop_enode (const int base, const uchar label, const int from) {
const int e = base < 0 ? _find_place () : base ^ label;
const int bi = e >> 8;
node& n = _array[e];
block& b = _block[bi];
if (--b.num == 0) {
if (bi) _transfer_block (bi, _bheadC, _bheadF); // Closed to Full
} else { // release empty node from empty ring
_array[-n.base_].check = n.check;
_array[-n.check].base_ = n.base_;
if (e == b.ehead) b.ehead = -n.check; // set ehead
if (bi && b.num == 1 && b.trial != MAX_TRIAL) // Open to Closed
_transfer_block (bi, _bheadO, _bheadC);
}
// initialize the released node
#ifdef USE_REDUCED_TRIE
n.value = CEDAR_VALUE_LIMIT; n.check = from;
if (base < 0) _array[from].base_ = - (e ^ label) - 1;
#else
if (label) n.base_ = -1; else n.value = value_type (0); n.check = from;
if (base < 0) _array[from].base_ = e ^ label;
#endif
return e;
}
// push empty node into empty ring
void _push_enode (const int e) {
const int bi = e >> 8;
block& b = _block[bi];
if (++b.num == 1) { // Full to Closed
b.ehead = e;
_array[e] = node (-e, -e);
if (bi) _transfer_block (bi, _bheadF, _bheadC); // Full to Closed
} else {
const int prev = b.ehead;
const int next = -_array[prev].check;
_array[e] = node (-prev, -next);
_array[prev].check = _array[next].base_ = -e;
if (b.num == 2 || b.trial == MAX_TRIAL) // Closed to Open
if (bi) _transfer_block (bi, _bheadC, _bheadO);
b.trial = 0;
}
if (b.reject < _reject[b.num]) b.reject = _reject[b.num];
_ninfo[e] = ninfo (); // reset ninfo; no child, no sibling
}
// push label to from's child
void _push_sibling (const size_t from, const int base, const uchar label, const bool flag = true) {
uchar* c = &_ninfo[from].child;
if (flag && (ORDERED ? label > *c : ! *c))
do c = &_ninfo[base ^ *c].sibling; while (ORDERED && *c && *c < label);
_ninfo[base ^ label].sibling = *c, *c = label;
}
// pop label from from's child
void _pop_sibling (const size_t from, const int base, const uchar label) {
uchar* c = &_ninfo[from].child;
while (*c != label) c = &_ninfo[base ^ *c].sibling;
*c = _ninfo[base ^ label].sibling;
}
// check whether to replace branching w/ the newly added node
bool _consult (const int base_n, const int base_p, uchar c_n, uchar c_p) const {
do if (! (c_p = _ninfo[base_p ^ c_p].sibling)) return false;
while ((c_n = _ninfo[base_n ^ c_n].sibling));
return true;
}
// enumerate (equal to or more than one) child nodes
uchar* _set_child (uchar* p, const int base, uchar c, const int label = -1) {
--p;
if (! c) { *++p = c; c = _ninfo[base ^ c].sibling; } // 0: terminal
if (ORDERED)
while (c && c < label) { *++p = c; c = _ninfo[base ^ c].sibling; }
if (label != -1) *++p = static_cast <uchar> (label);
while (c) { *++p = c; c = _ninfo[base ^ c].sibling; }
return p;
}
// explore new block to settle down
int _find_place () {
if (_bheadC) return _block[_bheadC].ehead;
if (_bheadO) return _block[_bheadO].ehead;
return _add_block () << 8;
}
int _find_place (const uchar* const first, const uchar* const last) {
if (int bi = _bheadO) {
const int bz = _block[_bheadO].prev;
const short nc = static_cast <short> (last - first + 1);
while (1) { // set candidate block
block& b = _block[bi];
if (b.num >= nc && nc < b.reject) // explore configuration
for (int e = b.ehead;;) {
const int base = e ^ *first;
for (const uchar* p = first; _array[base ^ *++p].check < 0; )
if (p == last) return b.ehead = e; // no conflict
if ((e = -_array[e].check) == b.ehead) break;
}
b.reject = nc;
if (b.reject < _reject[b.num]) _reject[b.num] = b.reject;
const int bi_ = b.next;
if (++b.trial == MAX_TRIAL) _transfer_block (bi, _bheadO, _bheadC);
if (bi == bz) break;
bi = bi_;
};
}
return _add_block () << 8;
}
// resolve conflict on base_n ^ label_n = base_p ^ label_p
template <typename T>
int _resolve (size_t& from_n, const int base_n, const uchar label_n, T& cf) {
// examine siblings of conflicted nodes
const int to_pn = base_n ^ label_n;
const int from_p = _array[to_pn].check;
const int base_p = _array[from_p].base ();
const bool flag // whether to replace siblings of newly added
= _consult (base_n, base_p, _ninfo[from_n].child, _ninfo[from_p].child);
uchar child[256];
uchar* const first = &child[0];
uchar* const last =
flag ? _set_child (first, base_n, _ninfo[from_n].child, label_n)
: _set_child (first, base_p, _ninfo[from_p].child);
const int base =
(first == last ? _find_place () : _find_place (first, last)) ^ *first;
// replace & modify empty list
const int from = flag ? static_cast <int> (from_n) : from_p;
const int base_ = flag ? base_n : base_p;
if (flag && *first == label_n) _ninfo[from].child = label_n; // new child
#ifdef USE_REDUCED_TRIE
_array[from].base_ = -base - 1; // new base
#else
_array[from].base_ = base; // new base
#endif
for (const uchar* p = first; p <= last; ++p) { // to_ => to
const int to = _pop_enode (base, *p, from);
const int to_ = base_ ^ *p;
_ninfo[to].sibling = (p == last ? 0 : *(p + 1));
if (flag && to_ == to_pn) continue; // skip newcomer (no child)
cf (to_, to); // user-defined callback function to handle moved nodes
node& n = _array[to];
node& n_ = _array[to_];
#ifdef USE_REDUCED_TRIE
if ((n.base_ = n_.base_) < 0 && *p) // copy base; bug fix
#else
if ((n.base_ = n_.base_) > 0 && *p) // copy base; bug fix
#endif
{
uchar c = _ninfo[to].child = _ninfo[to_].child;
do _array[n.base () ^ c].check = to; // adjust grand son's check
while ((c = _ninfo[n.base () ^ c].sibling));
}
if (! flag && to_ == static_cast <int> (from_n)) // parent node moved
from_n = static_cast <size_t> (to); // bug fix
if (! flag && to_ == to_pn) { // the address is immediately used
_push_sibling (from_n, to_pn ^ label_n, label_n);
_ninfo[to_].child = 0; // remember to reset child
#ifdef USE_REDUCED_TRIE
n_.value = CEDAR_VALUE_LIMIT;
#else
if (label_n) n_.base_ = -1; else n_.value = value_type (0);
#endif
n_.check = static_cast <int> (from_n);
} else
_push_enode (to_);
if (NUM_TRACKING_NODES) // keep the traversed node updated
for (size_t j = 0; tracking_node[j] != 0; ++j)
if (tracking_node[j] == static_cast <size_t> (to_))
{ tracking_node[j] = static_cast <size_t> (to); break; }
}
return flag ? base ^ label_n : to_pn;
}
};
}
#endif