117 lines
4.3 KiB
C++
117 lines
4.3 KiB
C++
/*
|
||
* Copyright (C) 2020, KylinSoft Co., Ltd.
|
||
*
|
||
* This program is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation, either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||
*
|
||
* Authors: zhangzihao <zhangzihao@kylinos.cn>
|
||
* Modified by: zhangpengfei <zhangpengfei@kylinos.cn>
|
||
*
|
||
*/
|
||
#ifndef CHINESESEGMENTATION_H
|
||
#define CHINESESEGMENTATION_H
|
||
|
||
#include "libchinese-segmentation_global.h"
|
||
#include "common-struct.h"
|
||
|
||
class ChineseSegmentationPrivate;
|
||
class CHINESESEGMENTATION_EXPORT ChineseSegmentation {
|
||
public:
|
||
static ChineseSegmentation *getInstance();
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::callSegment
|
||
* 调用extractor进行关键词提取,先使用Mix方式初步分词,再使用Idf词典进行关键词提取,只包含两字以上关键词
|
||
*
|
||
* @param sentence 要提取关键词的句子
|
||
* @return vector<KeyWord> 存放提取后关键词的信息的容器
|
||
*/
|
||
vector<KeyWord> callSegment(const string &sentence);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::callMixSegmentCutStr
|
||
* 使用Mix方法进行分词,即先使用最大概率法MP初步分词,再用隐式马尔科夫模型HMM进一步分词,可以准确切出词典已有词和未登录词,结果比较准确
|
||
*
|
||
* @param sentence 要分词的句子
|
||
* @return vector<string> 只存放分词后每个词的内容的容器
|
||
*/
|
||
vector<string> callMixSegmentCutStr(const string& sentence);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::callMixSegmentCutWord
|
||
* 和callMixSegmentCutStr功能相同
|
||
* @param sentence 要分词的句子
|
||
* @return vector<Word> 存放分词后每个词所有信息的容器
|
||
*/
|
||
vector<Word> callMixSegmentCutWord(const string& str);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::lookUpTagOfWord
|
||
* 查询word的词性
|
||
* @param word 要查询词性的词
|
||
* @return string word的词性
|
||
*/
|
||
string lookUpTagOfWord(const string& word);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::getTagOfWordsInSentence
|
||
* 使用Mix分词后获取每个词的词性
|
||
* @param sentence 要分词的句子
|
||
* @return vector<pair<string, string>> 分词后的每个词的内容(firsr)和其对应的词性(second)
|
||
*/
|
||
vector<pair<string, string>> getTagOfWordsInSentence(const string &sentence);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::callFullSegment
|
||
* 使用Full进行分词,Full会切出字典里所有的词。
|
||
* @param sentence 要分词的句子
|
||
* @return vector<Word> 存放分词后每个词所有信息的容器
|
||
*/
|
||
vector<Word> callFullSegment(const string& sentence);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::callQuerySegment
|
||
* 使用Query进行分词,即先使用Mix,对于长词再用Full,结果最精确,但词的数量也最大
|
||
* @param sentence 要分词的句子
|
||
* @return vector<Word> 存放分词后每个词所有信息的容器
|
||
*/
|
||
vector<Word> callQuerySegment(const string& sentence);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::callHMMSegment
|
||
* 使用隐式马尔科夫模型HMM进行分词
|
||
* @param sentence 要分词的句子
|
||
* @return vector<Word> 存放分词后每个词所有信息的容器
|
||
*/
|
||
vector<Word> callHMMSegment(const string& sentence);
|
||
|
||
/**
|
||
* @brief ChineseSegmentation::callMPSegment
|
||
* 使用最大概率法MP进行分词
|
||
* @param sentence 要分词的句子
|
||
* @return vector<Word> 存放分词后每个词所有信息的容器
|
||
*/
|
||
vector<Word> callMPSegment(const string& sentence);
|
||
|
||
private:
|
||
explicit ChineseSegmentation();
|
||
~ChineseSegmentation() = default;
|
||
ChineseSegmentation(const ChineseSegmentation&) = delete;
|
||
ChineseSegmentation& operator =(const ChineseSegmentation&) = delete;
|
||
|
||
private:
|
||
ChineseSegmentationPrivate *d = nullptr;
|
||
};
|
||
|
||
#endif // CHINESESEGMENTATION_H
|