vtk9/Rendering/Volume/vtkRecursiveSphereDirection...

355 lines
12 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkRecursiveSphereDirectionEncoder.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkRecursiveSphereDirectionEncoder.h"
#include "vtkObjectFactory.h"
#include <cmath>
vtkStandardNewMacro(vtkRecursiveSphereDirectionEncoder);
// Construct the object. Initialize the index table which will be
// used to map the normal into a patch on the recursively subdivided
// sphere.
vtkRecursiveSphereDirectionEncoder::vtkRecursiveSphereDirectionEncoder()
{
this->RecursionDepth = 6;
this->IndexTable = nullptr;
this->DecodedNormal = nullptr;
this->InitializeIndexTable();
}
// Destruct a vtkRecursiveSphereDirectionEncoder - free up any memory used
vtkRecursiveSphereDirectionEncoder::~vtkRecursiveSphereDirectionEncoder()
{
delete[] this->IndexTable;
delete[] this->DecodedNormal;
}
int vtkRecursiveSphereDirectionEncoder::GetEncodedDirection(float n[3])
{
float t;
int value;
int xindex, yindex;
float x, y;
if (this->IndexTableRecursionDepth != this->RecursionDepth)
{
this->InitializeIndexTable();
}
// Convert the gradient direction into an encoded index value
// This is done by computing the (x,y) grid position of this
// normal in the 2*NORM_SQR_SIZE - 1 grid, then passing this
// through the IndexTable to look up the 16 bit index value
// Don't use fabs because it is slow - just convert to absolute
// using a simple conditional.
t = ((n[0] >= 0.0) ? (n[0]) : (-n[0])) + ((n[1] >= 0.0) ? (n[1]) : (-n[1])) +
((n[2] >= 0.0) ? (n[2]) : (-n[2]));
if (t)
{
t = 1.0 / t;
x = n[0] * t;
y = n[1] * t;
xindex = (int)((x + 1.0) * (float)(this->InnerSize) + 0.5);
yindex = (int)((y + 1.0) * (float)(this->InnerSize) + 0.5);
if (xindex > 2 * this->InnerSize)
{
xindex = 2 * this->InnerSize;
}
if (yindex > 2 * this->InnerSize)
{
yindex = 2 * this->InnerSize;
}
value = this->IndexTable[xindex * (this->OuterSize + this->InnerSize) + yindex];
// If the z component is less than 0.0, add this->GridSize to the
// index
if (n[2] < 0.0)
{
value += this->GridSize;
}
}
else
{
value = 2 * this->GridSize;
}
return value;
}
float* vtkRecursiveSphereDirectionEncoder::GetDecodedGradient(int value)
{
if (this->IndexTableRecursionDepth != this->RecursionDepth)
{
this->InitializeIndexTable();
}
return (this->DecodedNormal + value * 3);
}
int vtkRecursiveSphereDirectionEncoder::GetNumberOfEncodedDirections()
{
int outer_size, inner_size;
int norm_size;
outer_size = (int)(pow(2.0, (double)this->RecursionDepth) + 1);
inner_size = outer_size - 1;
norm_size = outer_size * outer_size + inner_size * inner_size;
return (norm_size * 2 + 1);
}
float* vtkRecursiveSphereDirectionEncoder::GetDecodedGradientTable()
{
if (this->IndexTableRecursionDepth != this->RecursionDepth)
{
this->InitializeIndexTable();
}
return this->DecodedNormal;
}
// Initialize the index table. This is a 2*NORM_SQR_SIZE - 1 by
// 2*NORM_SQR_SIZE - 1 entry table that maps (x,y) grid position to
// encoded normal index. The grid position is obtained by starting
// with an octahedron (comprised of 8 triangles forming a double
// pyramid). Each triangle is then replaced by 4 triangles by joining
// edge midpoints. This is done recursively until NORM_SQR_SIZE
// vertices exist on each original edge. If you "squish" this octahedron,
// it will look like a diamond. Then rotate it 45 degrees, it will
// look like a square. Then look at the pattern of vertices - there
// is a NORM_SQR_SIZE by NORM_SQR_SIZE grid, with a (NORM_SQR_SIZE-1) by
// NORM_SQR_SIZE - 1 grid inside of it. The vertices all fall on
// (x,y) locatiions in a grid that is 2*NORM_SQR_SIZE - 1 by
// 2*NORM_SQR_SIZE - 1, although not every (x,y) location has a vertex.
void vtkRecursiveSphereDirectionEncoder::InitializeIndexTable()
{
int i, j, index, max_index;
int xindex, yindex;
float x, y, z, tmp_x, tmp_y;
float norm;
int limit;
// Free up any memory previously used
delete[] this->IndexTable;
delete[] this->DecodedNormal;
this->OuterSize = (int)(pow(2.0, (double)this->RecursionDepth) + 1);
this->InnerSize = this->OuterSize - 1;
this->GridSize = this->OuterSize * this->OuterSize + this->InnerSize * this->InnerSize;
// Create space for the tables
this->IndexTable =
new int[(this->OuterSize + this->InnerSize) * (this->OuterSize + this->InnerSize)];
// Initialize the table to -1 -- we'll use this later to determine which
// entries are still not filled in
for (i = 0; i < ((this->OuterSize + this->InnerSize) * (this->OuterSize + this->InnerSize)); i++)
{
this->IndexTable[i] = -1;
}
this->DecodedNormal = new float[3 *
(1 + 2 * this->OuterSize * this->OuterSize + 2 * this->InnerSize * this->InnerSize)];
// Initialize the index
index = 0;
// max_index indicates the largest index we will get - the number
// of vertices in the two-grid square. This represents half the
// normals, and max_index is used to offset from one half into the
// other. One half of the normals have z components >= 0, and the
// second half (all with indices above max_index) have z components
// that are <= 0.
max_index = this->GridSize;
// The last normal (max_index*2) is the zero normal
this->DecodedNormal[3 * (max_index * 2) + 0] = 0.0;
this->DecodedNormal[3 * (max_index * 2) + 1] = 0.0;
this->DecodedNormal[3 * (max_index * 2) + 2] = 0.0;
// The outer loop is for this->OuterSize + this->InnerSize rows
for (i = 0; i < this->OuterSize + this->InnerSize; i++)
{
// Compute the y component for this row
tmp_y = (float)(2 * i) / (float)(this->InnerSize * 2) - 1.0;
// On the odd rows, we are doing the small grid which has
// this->InnerSize elements in it
limit = (i % 2) ? (this->InnerSize) : (this->OuterSize);
for (j = 0; j < limit; j++)
{
// compute the x component for this column
if (i % 2)
{
tmp_x = (float)(2 * j) / (float)(this->InnerSize) - 1.0 + (1.0 / (float)(this->InnerSize));
}
else
{
tmp_x = (float)(2 * j) / (float)(this->InnerSize) - 1.0;
}
// rotate by 45 degrees
// This rotation intentionally does not preserve length -
// we could have tmp_x = 1.0 and tmp_y = 1.0, we want this
// to lie within [-1.0,1.0] after rotation.
x = 0.5 * tmp_x - 0.5 * tmp_y;
y = 0.5 * tmp_x + 0.5 * tmp_y;
// compute the z based on the x and y values
if (x >= 0 && y >= 0)
{
z = 1.0 - x - y;
}
else if (x >= 0 && y < 0)
{
z = 1.0 - x + y;
}
else if (x < 0 && y < 0)
{
z = 1.0 + x + y;
}
else
{
z = 1.0 + x - y;
}
// Normalize this direction and set the DecodedNormal table for
// this index to this normal. Also set the corresponding
// entry for this normal with a negative z component
norm = sqrt((double)(x * x + y * y + z * z));
this->DecodedNormal[3 * index + 0] = x / norm;
this->DecodedNormal[3 * index + 1] = y / norm;
this->DecodedNormal[3 * index + 2] = z / norm;
this->DecodedNormal[3 * (index + max_index) + 0] = x / norm;
this->DecodedNormal[3 * (index + max_index) + 1] = y / norm;
this->DecodedNormal[3 * (index + max_index) + 2] = -(z / norm);
// Figure out the location in the IndexTable. Be careful with
// boundary conditions.
xindex = (int)((x + 1.0) * (float)(this->InnerSize) + 0.5);
yindex = (int)((y + 1.0) * (float)(this->InnerSize) + 0.5);
if (xindex > 2 * this->InnerSize)
{
xindex = 2 * this->InnerSize;
}
if (yindex > 2 * this->InnerSize)
{
yindex = 2 * this->InnerSize;
}
this->IndexTable[xindex * (this->OuterSize + this->InnerSize) + yindex] = index;
// Do the grid location to the left - unless we are at the left
// border of the grid. We are computing indices only for the
// actual vertices of the subdivided octahedron, but we'll
// convert these into the IndexTable coordinates and fill in
// the index for the intermediate points on the grid as well.
// This way we can't get bitten by a scan-conversion problem
// where we skip over some table index due to precision, and
// therefore it doesn't have a valid value in it.
if (tmp_x > 0)
{
x = 0.5 * (tmp_x - (1.0 / (float)this->InnerSize)) - 0.5 * tmp_y;
y = 0.5 * (tmp_x - (1.0 / (float)this->InnerSize)) + 0.5 * tmp_y;
xindex = (int)((x + 1.0) * (float)(this->InnerSize) + 0.5);
yindex = (int)((y + 1.0) * (float)(this->InnerSize) + 0.5);
if (xindex > 2 * this->InnerSize)
{
xindex = 2 * this->InnerSize;
}
if (yindex > 2 * this->InnerSize)
{
yindex = 2 * this->InnerSize;
}
this->IndexTable[xindex * (this->OuterSize + this->InnerSize) + yindex] = index;
}
// On the odd rows we also need to do the last grid location on
// the right.
if ((i % 2) && (j == limit - 1))
{
x = 0.5 * (tmp_x + (1.0 / (float)this->InnerSize)) - 0.5 * tmp_y;
y = 0.5 * (tmp_x + (1.0 / (float)this->InnerSize)) + 0.5 * tmp_y;
xindex = (int)((x + 1.0) * (float)(this->InnerSize) + 0.5);
yindex = (int)((y + 1.0) * (float)(this->InnerSize) + 0.5);
if (xindex > 2 * this->InnerSize)
{
xindex = 2 * this->InnerSize;
}
if (yindex > 2 * this->InnerSize)
{
yindex = 2 * this->InnerSize;
}
this->IndexTable[xindex * (this->OuterSize + this->InnerSize) + yindex] = index;
}
// Increment the index
index++;
}
}
// The index table has been initialized for the current recursion
// depth
this->IndexTableRecursionDepth = this->RecursionDepth;
// Spread the first index value in each row to the left, and the last to the right.
// This is because we have only filled in a diamond of index values within the square
// grid, and we need to be careful at the edges due to precision problems. This way
// we won't be able to access a table location that does not have a valid index in it.
for (j = 0; j < this->OuterSize + this->InnerSize; j++)
{
// Start from the middle going right, copy the value from the left if
// this entry is not initialized
for (i = (this->OuterSize + this->InnerSize) / 2; i < this->OuterSize + this->InnerSize; i++)
{
if (this->IndexTable[j * (this->OuterSize + this->InnerSize) + i] == -1)
{
this->IndexTable[j * (this->OuterSize + this->InnerSize) + i] =
this->IndexTable[j * (this->OuterSize + this->InnerSize) + i - 1];
}
}
// Start from the middle going left, copy the value from the right if
// this entry is not initialized
for (i = (this->OuterSize + this->InnerSize) / 2; i >= 0; i--)
{
if (this->IndexTable[j * (this->OuterSize + this->InnerSize) + i] == -1)
{
this->IndexTable[j * (this->OuterSize + this->InnerSize) + i] =
this->IndexTable[j * (this->OuterSize + this->InnerSize) + i + 1];
}
}
}
}
// Print the vtkRecursiveSphereDirectionEncoder
void vtkRecursiveSphereDirectionEncoder::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Number of encoded directions: " << this->GetNumberOfEncodedDirections() << endl;
os << indent << "Recursion depth: " << this->RecursionDepth << endl;
}