vtk9/Rendering/Volume/vtkSphericalDirectionEncode...

149 lines
4.1 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkSphericalDirectionEncoder.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkSphericalDirectionEncoder.h"
#include "vtkObjectFactory.h"
#include "vtkMath.h"
#include "vtkTransform.h"
vtkStandardNewMacro(vtkSphericalDirectionEncoder);
float vtkSphericalDirectionEncoder::DecodedGradientTable[65536 * 3];
int vtkSphericalDirectionEncoder::DecodedGradientTableInitialized = 0;
// Construct the object. Initialize the index table which will be
// used to map the normal into a patch on the recursively subdivided
// sphere.
vtkSphericalDirectionEncoder::vtkSphericalDirectionEncoder()
{
vtkSphericalDirectionEncoder::InitializeDecodedGradientTable();
}
// Destruct a vtkSphericalDirectionEncoder - free up any memory used
vtkSphericalDirectionEncoder::~vtkSphericalDirectionEncoder() = default;
// Encode n into a 2 byte value. The first byte will be theta - the
// rotation angle around the z axis. The second (high order) byte is
// phi - the elevation of the vector. 256 values are used for theta,
// but only 255 values for phi, leaving room for a "zero normal" code
int vtkSphericalDirectionEncoder::GetEncodedDirection(float n[3])
{
if (n[0] == 0.0 && n[1] == 0.0 && n[2] == 0.0)
{
return (255 * 256);
}
float theta, phi;
// Need to handle this separately since some atan2 implementations
// don't handle a zero denominator
if (n[0] == 0)
{
theta = (n[1] > 0) ? 90.0 : 270.0;
}
else
{
theta = vtkMath::DegreesFromRadians(atan2(n[1], n[0]));
theta = (theta < 0.0) ? (theta + 360.0) : theta;
theta = (theta >= 360.0) ? (theta - 360.0) : theta;
}
phi = vtkMath::DegreesFromRadians(asin(n[2]));
phi = phi > 90.5 ? (phi - 360) : phi;
int lowByte, highByte;
lowByte = static_cast<int>(theta * 255.0 / 359.0 + 0.5);
highByte = static_cast<int>((phi + 90.0) * 254.0 / 180.0 + 0.5);
lowByte = lowByte < 0 ? 0 : lowByte;
lowByte = lowByte > 255 ? 255 : lowByte;
highByte = highByte < 0 ? 0 : highByte;
highByte = highByte > 254 ? 254 : highByte;
return (lowByte + highByte * 256);
}
float* vtkSphericalDirectionEncoder::GetDecodedGradient(int value)
{
return &(vtkSphericalDirectionEncoder::DecodedGradientTable[value * 3]);
}
// This is the table that maps the encoded gradient back into
// a float triple.
void vtkSphericalDirectionEncoder::InitializeDecodedGradientTable()
{
if (vtkSphericalDirectionEncoder::DecodedGradientTableInitialized)
{
return;
}
float theta, phi;
int i, j;
vtkTransform* transformPhi = vtkTransform::New();
vtkTransform* transformTheta = vtkTransform::New();
float v1[3] = { 1, 0, 0 };
float v2[3], v3[3];
float* ptr = vtkSphericalDirectionEncoder::DecodedGradientTable;
for (j = 0; j < 256; j++)
{
phi = -89.5 + j * (179.0 / 254.0);
transformPhi->Identity();
transformPhi->RotateY(-phi);
transformPhi->TransformPoint(v1, v2);
for (i = 0; i < 256; i++)
{
if (j < 255)
{
theta = i * (359.0 / 255.0);
transformTheta->Identity();
transformTheta->RotateZ(theta);
transformTheta->TransformPoint(v2, v3);
}
else
{
v3[0] = 0.0;
v3[1] = 0.0;
v3[2] = 0.0;
}
*(ptr++) = v3[0];
*(ptr++) = v3[1];
*(ptr++) = v3[2];
}
}
transformPhi->Delete();
transformTheta->Delete();
vtkSphericalDirectionEncoder::DecodedGradientTableInitialized = 1;
}
// Print the vtkSphericalDirectionEncoder
void vtkSphericalDirectionEncoder::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Number of encoded directions: " << this->GetNumberOfEncodedDirections() << endl;
}