vtk9/Rendering/Volume/vtkUnstructuredGridVolumeRa...

722 lines
23 KiB
C++

/*=========================================================================
Program: Visualization Toolkit
Module: vtkUnstructuredGridVolumeRayCastMapper.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkUnstructuredGridVolumeRayCastMapper.h"
#include "vtkCamera.h"
#include "vtkDoubleArray.h"
#include "vtkEncodedGradientEstimator.h"
#include "vtkEncodedGradientShader.h"
#include "vtkFiniteDifferenceGradientEstimator.h"
#include "vtkIdList.h"
#include "vtkMath.h"
#include "vtkMultiThreader.h"
#include "vtkObjectFactory.h"
#include "vtkPlaneCollection.h"
#include "vtkPointData.h"
#include "vtkRayCastImageDisplayHelper.h"
#include "vtkRenderWindow.h"
#include "vtkRenderer.h"
#include "vtkTimerLog.h"
#include "vtkTransform.h"
#include "vtkUnstructuredGrid.h"
#include "vtkUnstructuredGridBunykRayCastFunction.h"
#include "vtkUnstructuredGridHomogeneousRayIntegrator.h"
#include "vtkUnstructuredGridPartialPreIntegration.h"
#include "vtkUnstructuredGridPreIntegration.h"
#include "vtkUnstructuredGridVolumeRayCastIterator.h"
#include "vtkVolumeProperty.h"
#include <cmath>
VTK_THREAD_RETURN_TYPE UnstructuredGridVolumeRayCastMapper_CastRays(void* arg);
vtkStandardNewMacro(vtkUnstructuredGridVolumeRayCastMapper);
vtkCxxSetObjectMacro(vtkUnstructuredGridVolumeRayCastMapper, RayCastFunction,
vtkUnstructuredGridVolumeRayCastFunction);
vtkCxxSetObjectMacro(
vtkUnstructuredGridVolumeRayCastMapper, RayIntegrator, vtkUnstructuredGridVolumeRayIntegrator);
// Construct a new vtkUnstructuredGridVolumeRayCastMapper with default values
vtkUnstructuredGridVolumeRayCastMapper::vtkUnstructuredGridVolumeRayCastMapper()
{
this->ImageSampleDistance = 1.0;
this->MinimumImageSampleDistance = 1.0;
this->MaximumImageSampleDistance = 10.0;
this->AutoAdjustSampleDistances = 1;
this->ImageMemorySize[0] = 0;
this->ImageMemorySize[1] = 0;
this->Threader = vtkMultiThreader::New();
this->NumberOfThreads = this->Threader->GetNumberOfThreads();
this->Image = nullptr;
this->RenderTimeTable = nullptr;
this->RenderVolumeTable = nullptr;
this->RenderRendererTable = nullptr;
this->RenderTableSize = 0;
this->RenderTableEntries = 0;
this->ZBuffer = nullptr;
this->ZBufferSize[0] = 0;
this->ZBufferSize[1] = 0;
this->ZBufferOrigin[0] = 0;
this->ZBufferOrigin[1] = 0;
this->IntermixIntersectingGeometry = 1;
this->ImageDisplayHelper = vtkRayCastImageDisplayHelper::New();
this->RayCastFunction = vtkUnstructuredGridBunykRayCastFunction::New();
this->RayIntegrator = nullptr;
this->RealRayIntegrator = nullptr;
}
// Destruct a vtkUnstructuredGridVolumeRayCastMapper - clean up any memory used
vtkUnstructuredGridVolumeRayCastMapper::~vtkUnstructuredGridVolumeRayCastMapper()
{
this->Threader->Delete();
delete[] this->Image;
if (this->RenderTableSize)
{
delete[] this->RenderTimeTable;
delete[] this->RenderVolumeTable;
delete[] this->RenderRendererTable;
}
this->ImageDisplayHelper->Delete();
this->SetRayCastFunction(nullptr);
this->SetRayIntegrator(nullptr);
if (this->RealRayIntegrator)
{
this->RealRayIntegrator->UnRegister(this);
}
}
float vtkUnstructuredGridVolumeRayCastMapper::RetrieveRenderTime(vtkRenderer* ren, vtkVolume* vol)
{
int i;
for (i = 0; i < this->RenderTableEntries; i++)
{
if (this->RenderVolumeTable[i] == vol && this->RenderRendererTable[i] == ren)
{
return this->RenderTimeTable[i];
}
}
return 0.0;
}
void vtkUnstructuredGridVolumeRayCastMapper::StoreRenderTime(
vtkRenderer* ren, vtkVolume* vol, float time)
{
int i;
for (i = 0; i < this->RenderTableEntries; i++)
{
if (this->RenderVolumeTable[i] == vol && this->RenderRendererTable[i] == ren)
{
this->RenderTimeTable[i] = time;
return;
}
}
// Need to increase size
if (this->RenderTableEntries >= this->RenderTableSize)
{
if (this->RenderTableSize == 0)
{
this->RenderTableSize = 10;
}
else
{
this->RenderTableSize *= 2;
}
float* oldTimePtr = this->RenderTimeTable;
vtkVolume** oldVolumePtr = this->RenderVolumeTable;
vtkRenderer** oldRendererPtr = this->RenderRendererTable;
this->RenderTimeTable = new float[this->RenderTableSize];
this->RenderVolumeTable = new vtkVolume*[this->RenderTableSize];
this->RenderRendererTable = new vtkRenderer*[this->RenderTableSize];
for (i = 0; i < this->RenderTableEntries; i++)
{
this->RenderTimeTable[i] = oldTimePtr[i];
this->RenderVolumeTable[i] = oldVolumePtr[i];
this->RenderRendererTable[i] = oldRendererPtr[i];
}
delete[] oldTimePtr;
delete[] oldVolumePtr;
delete[] oldRendererPtr;
}
this->RenderTimeTable[this->RenderTableEntries] = time;
this->RenderVolumeTable[this->RenderTableEntries] = vol;
this->RenderRendererTable[this->RenderTableEntries] = ren;
this->RenderTableEntries++;
}
void vtkUnstructuredGridVolumeRayCastMapper::ReleaseGraphicsResources(vtkWindow*) {}
void vtkUnstructuredGridVolumeRayCastMapper::Render(vtkRenderer* ren, vtkVolume* vol)
{
int i;
// Check for input
if (this->GetInput() == nullptr)
{
vtkErrorMacro(<< "No Input!");
return;
}
int inputAlgPort;
vtkAlgorithm* inputAlg = this->GetInputAlgorithm(0, 0, inputAlgPort);
inputAlg->UpdateWholeExtent();
this->Scalars = vtkUnstructuredGridVolumeRayCastMapper::GetScalars(this->GetInput(),
this->ScalarMode, this->ArrayAccessMode, this->ArrayId, this->ArrayName, this->CellScalars);
if (this->Scalars == nullptr)
{
vtkErrorMacro("Can't use the ray cast mapper without scalars!");
return;
}
// Check to make sure we have an appropriate integrator.
if (this->RayIntegrator)
{
if (this->RealRayIntegrator != this->RayIntegrator)
{
if (this->RealRayIntegrator)
{
this->RealRayIntegrator->UnRegister(this);
}
this->RealRayIntegrator = this->RayIntegrator;
this->RealRayIntegrator->Register(this);
}
}
else
{
#define ESTABLISH_INTEGRATOR(classname) \
if (!this->RealRayIntegrator || (!this->RealRayIntegrator->IsA(#classname))) \
{ \
if (this->RealRayIntegrator) \
this->RealRayIntegrator->UnRegister(this); \
this->RealRayIntegrator = classname::New(); \
this->RealRayIntegrator->Register(this); \
this->RealRayIntegrator->Delete(); \
}
if (this->CellScalars)
{
ESTABLISH_INTEGRATOR(vtkUnstructuredGridHomogeneousRayIntegrator);
}
else
{
if (vol->GetProperty()->GetIndependentComponents())
{
ESTABLISH_INTEGRATOR(vtkUnstructuredGridPreIntegration);
}
else
{
ESTABLISH_INTEGRATOR(vtkUnstructuredGridPartialPreIntegration);
}
}
}
#undef ESTABLISH_INTEGRATOR
// Start timing now. We didn't want to capture the update of the
// input data in the times
this->Timer->StartTimer();
int oldImageMemorySize[2];
oldImageMemorySize[0] = this->ImageMemorySize[0];
oldImageMemorySize[1] = this->ImageMemorySize[1];
// If we are automatically adjusting the size to achieve a desired frame
// rate, then do that adjustment here. Base the new image sample distance
// on the previous one and the previous render time. Don't let
// the adjusted image sample distance be less than the minimum image sample
// distance or more than the maximum image sample distance.
float oldImageSampleDistance = this->ImageSampleDistance;
if (this->AutoAdjustSampleDistances)
{
float oldTime = this->RetrieveRenderTime(ren, vol);
float newTime = vol->GetAllocatedRenderTime();
this->ImageSampleDistance *= sqrt(oldTime / newTime);
this->ImageSampleDistance = (this->ImageSampleDistance > this->MaximumImageSampleDistance)
? (this->MaximumImageSampleDistance)
: (this->ImageSampleDistance);
this->ImageSampleDistance = (this->ImageSampleDistance < this->MinimumImageSampleDistance)
? (this->MinimumImageSampleDistance)
: (this->ImageSampleDistance);
}
// The full image fills the viewport. First, compute the actual viewport
// size, then divide by the ImageSampleDistance to find the full image
// size in pixels
int width, height;
ren->GetTiledSize(&width, &height);
this->ImageViewportSize[0] = static_cast<int>(width / this->ImageSampleDistance);
this->ImageViewportSize[1] = static_cast<int>(height / this->ImageSampleDistance);
this->ImageInUseSize[0] = this->ImageViewportSize[0];
this->ImageInUseSize[1] = this->ImageViewportSize[1];
this->ImageOrigin[0] = 0;
this->ImageOrigin[1] = 0;
// What is a power of 2 size big enough to fit this image?
this->ImageMemorySize[0] = 32;
this->ImageMemorySize[1] = 32;
while (this->ImageMemorySize[0] < this->ImageInUseSize[0])
{
this->ImageMemorySize[0] *= 2;
}
while (this->ImageMemorySize[1] < this->ImageInUseSize[1])
{
this->ImageMemorySize[1] *= 2;
}
// If the old image size is much too big (more than twice in
// either direction) then set the old width to 0 which will
// cause the image to be recreated
if (oldImageMemorySize[0] > 2 * this->ImageMemorySize[0] ||
oldImageMemorySize[1] > 2 * this->ImageMemorySize[1])
{
oldImageMemorySize[0] = 0;
}
// If the old image is big enough (but not too big - we handled
// that above) then we'll bump up our required size to the
// previous one. This will keep us from thrashing.
if (oldImageMemorySize[0] >= this->ImageMemorySize[0] &&
oldImageMemorySize[1] >= this->ImageMemorySize[1])
{
this->ImageMemorySize[0] = oldImageMemorySize[0];
this->ImageMemorySize[1] = oldImageMemorySize[1];
}
// Do we already have a texture big enough? If not, create a new one and
// clear it.
if (!this->Image || this->ImageMemorySize[0] > oldImageMemorySize[0] ||
this->ImageMemorySize[1] > oldImageMemorySize[1])
{
// If there is an image there must be row bounds
delete[] this->Image;
this->Image = new unsigned char[(this->ImageMemorySize[0] * this->ImageMemorySize[1] * 4)];
unsigned char* ucptr = this->Image;
for (i = 0; i < this->ImageMemorySize[0] * this->ImageMemorySize[1]; i++)
{
*(ucptr++) = 0;
*(ucptr++) = 0;
*(ucptr++) = 0;
*(ucptr++) = 0;
}
}
// Capture the zbuffer if necessary
if (this->IntermixIntersectingGeometry && ren->GetNumberOfPropsRendered())
{
int x1, x2, y1, y2;
double* viewport = ren->GetViewport();
const int* renWinSize = ren->GetRenderWindow()->GetSize();
// turn this->ImageOrigin into (x1,y1) in window (not viewport!)
// coordinates.
x1 = static_cast<int>(viewport[0] * static_cast<float>(renWinSize[0]) +
static_cast<float>(this->ImageOrigin[0]) * this->ImageSampleDistance);
y1 = static_cast<int>(viewport[1] * static_cast<float>(renWinSize[1]) +
static_cast<float>(this->ImageOrigin[1]) * this->ImageSampleDistance);
// compute z buffer size
this->ZBufferSize[0] =
static_cast<int>(static_cast<float>(this->ImageInUseSize[0]) * this->ImageSampleDistance);
this->ZBufferSize[1] =
static_cast<int>(static_cast<float>(this->ImageInUseSize[1]) * this->ImageSampleDistance);
// Use the size to compute (x2,y2) in window coordinates
x2 = x1 + this->ZBufferSize[0] - 1;
y2 = y1 + this->ZBufferSize[1] - 1;
// This is the z buffer origin (in viewport coordinates)
this->ZBufferOrigin[0] =
static_cast<int>(static_cast<float>(this->ImageOrigin[0]) * this->ImageSampleDistance);
this->ZBufferOrigin[1] =
static_cast<int>(static_cast<float>(this->ImageOrigin[1]) * this->ImageSampleDistance);
// Capture the z buffer
this->ZBuffer = ren->GetRenderWindow()->GetZbufferData(x1, y1, x2, y2);
}
this->RayCastFunction->Initialize(ren, vol);
this->RealRayIntegrator->Initialize(vol, this->Scalars);
// Save the volume and mapper temporarily so that they can be accessed later
this->CurrentVolume = vol;
this->CurrentRenderer = ren;
// Create iterators and buffers here to prevent race conditions.
this->RayCastIterators = new vtkUnstructuredGridVolumeRayCastIterator*[this->NumberOfThreads];
this->IntersectedCellsBuffer = new vtkIdList*[this->NumberOfThreads];
this->IntersectionLengthsBuffer = new vtkDoubleArray*[this->NumberOfThreads];
this->NearIntersectionsBuffer = new vtkDataArray*[this->NumberOfThreads];
this->FarIntersectionsBuffer = new vtkDataArray*[this->NumberOfThreads];
for (i = 0; i < this->NumberOfThreads; i++)
{
this->RayCastIterators[i] = this->RayCastFunction->NewIterator();
this->IntersectionLengthsBuffer[i] = vtkDoubleArray::New();
this->IntersectionLengthsBuffer[i]->Allocate(
this->RayCastIterators[i]->GetMaxNumberOfIntersections());
this->NearIntersectionsBuffer[i] = vtkDataArray::CreateDataArray(this->Scalars->GetDataType());
this->NearIntersectionsBuffer[i]->Allocate(
this->RayCastIterators[i]->GetMaxNumberOfIntersections());
if (this->CellScalars)
{
this->IntersectedCellsBuffer[i] = vtkIdList::New();
this->IntersectedCellsBuffer[i]->Allocate(
this->RayCastIterators[i]->GetMaxNumberOfIntersections());
this->FarIntersectionsBuffer[i] = this->NearIntersectionsBuffer[i];
}
else
{
this->IntersectedCellsBuffer[i] = nullptr;
this->FarIntersectionsBuffer[i] = vtkDataArray::CreateDataArray(this->Scalars->GetDataType());
this->FarIntersectionsBuffer[i]->Allocate(
this->RayCastIterators[i]->GetMaxNumberOfIntersections());
}
}
// Set the number of threads to use for ray casting,
// then set the execution method and do it.
this->Threader->SetNumberOfThreads(this->NumberOfThreads);
this->Threader->SetSingleMethod(UnstructuredGridVolumeRayCastMapper_CastRays, (void*)this);
this->Threader->SingleMethodExecute();
// We don't need these anymore
this->CurrentVolume = nullptr;
this->CurrentRenderer = nullptr;
for (i = 0; i < this->NumberOfThreads; i++)
{
this->RayCastIterators[i]->Delete();
this->IntersectionLengthsBuffer[i]->Delete();
this->NearIntersectionsBuffer[i]->Delete();
if (this->CellScalars)
{
this->IntersectedCellsBuffer[i]->Delete();
}
else
{
this->FarIntersectionsBuffer[i]->Delete();
}
}
delete[] this->RayCastIterators;
delete[] this->IntersectedCellsBuffer;
delete[] this->IntersectionLengthsBuffer;
delete[] this->NearIntersectionsBuffer;
delete[] this->FarIntersectionsBuffer;
if (!ren->GetRenderWindow()->GetAbortRender())
{
float depth;
if (this->IntermixIntersectingGeometry)
{
depth = this->GetMinimumBoundsDepth(ren, vol);
}
else
{
depth = -1;
}
this->ImageDisplayHelper->RenderTexture(vol, ren, this->ImageMemorySize,
this->ImageViewportSize, this->ImageInUseSize, this->ImageOrigin, depth, this->Image);
this->Timer->StopTimer();
this->TimeToDraw = this->Timer->GetElapsedTime();
this->StoreRenderTime(ren, vol, this->TimeToDraw);
}
else
{
this->ImageSampleDistance = oldImageSampleDistance;
}
delete[] this->ZBuffer;
this->ZBuffer = nullptr;
this->UpdateProgress(1.0);
}
VTK_THREAD_RETURN_TYPE UnstructuredGridVolumeRayCastMapper_CastRays(void* arg)
{
// Get the info out of the input structure
int threadID = ((vtkMultiThreader::ThreadInfo*)(arg))->ThreadID;
int threadCount = ((vtkMultiThreader::ThreadInfo*)(arg))->NumberOfThreads;
vtkUnstructuredGridVolumeRayCastMapper* me =
(vtkUnstructuredGridVolumeRayCastMapper*)((vtkMultiThreader::ThreadInfo*)arg)->UserData;
if (!me)
{
vtkGenericWarningMacro("The volume does not have a ray cast mapper!");
return VTK_THREAD_RETURN_VALUE;
}
me->CastRays(threadID, threadCount);
return VTK_THREAD_RETURN_VALUE;
}
template <class T>
inline void vtkUGVRCMLookupCopy(
const T* src, T* dest, vtkIdType* lookup, int numcomponents, int numtuples)
{
for (vtkIdType i = 0; i < numtuples; i++)
{
const T* srctuple = src + lookup[i] * numcomponents;
for (int j = 0; j < numcomponents; j++)
{
*dest = *srctuple;
dest++;
srctuple++;
}
}
}
void vtkUnstructuredGridVolumeRayCastMapper::CastRays(int threadID, int threadCount)
{
int i, j;
unsigned char* ucptr;
vtkRenderWindow* renWin = this->CurrentRenderer->GetRenderWindow();
vtkUnstructuredGridVolumeRayCastIterator* iterator = this->RayCastIterators[threadID];
vtkIdList* intersectedCells = this->IntersectedCellsBuffer[threadID];
vtkDoubleArray* intersectionLengths = this->IntersectionLengthsBuffer[threadID];
vtkDataArray* nearIntersections = this->NearIntersectionsBuffer[threadID];
vtkDataArray* farIntersections = this->FarIntersectionsBuffer[threadID];
for (j = 0; j < this->ImageInUseSize[1]; j++)
{
if (j % threadCount != threadID)
{
continue;
}
if (!threadID)
{
this->UpdateProgress((double)j / this->ImageInUseSize[1]);
if (renWin->CheckAbortStatus())
{
break;
}
}
else if (renWin->GetAbortRender())
{
break;
}
ucptr = this->Image + 4 * j * this->ImageMemorySize[0];
for (i = 0; i < this->ImageInUseSize[0]; i++)
{
int x = i + this->ImageOrigin[0];
int y = j + this->ImageOrigin[1];
double bounds[2] = { 0.0, 1.0 };
float color[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
if (this->ZBuffer)
{
bounds[1] = this->GetZBufferValue(x, y);
}
iterator->SetBounds(bounds);
iterator->Initialize(x, y);
vtkIdType numIntersections;
do
{
if (this->CellScalars)
{
numIntersections = iterator->GetNextIntersections(
intersectedCells, intersectionLengths, nullptr, nullptr, nullptr);
nearIntersections->SetNumberOfComponents(this->Scalars->GetNumberOfComponents());
nearIntersections->SetNumberOfTuples(numIntersections);
switch (this->Scalars->GetDataType())
{
vtkTemplateMacro(vtkUGVRCMLookupCopy((const VTK_TT*)this->Scalars->GetVoidPointer(0),
(VTK_TT*)nearIntersections->GetVoidPointer(0), intersectedCells->GetPointer(0),
this->Scalars->GetNumberOfComponents(), numIntersections));
}
}
else
{
numIntersections = iterator->GetNextIntersections(
nullptr, intersectionLengths, this->Scalars, nearIntersections, farIntersections);
}
if (numIntersections < 1)
break;
this->RealRayIntegrator->Integrate(
intersectionLengths, nearIntersections, farIntersections, color);
} while (color[3] < 0.99);
if (color[3] > 0.0)
{
int val;
val = static_cast<int>(color[0] * 255.0);
val = (val > 255) ? (255) : (val);
val = (val < 0) ? (0) : (val);
ucptr[0] = static_cast<unsigned char>(val);
val = static_cast<int>(color[1] * 255.0);
val = (val > 255) ? (255) : (val);
val = (val < 0) ? (0) : (val);
ucptr[1] = static_cast<unsigned char>(val);
val = static_cast<int>(color[2] * 255.0);
val = (val > 255) ? (255) : (val);
val = (val < 0) ? (0) : (val);
ucptr[2] = static_cast<unsigned char>(val);
val = static_cast<int>(color[3] * 255.0);
val = (val > 255) ? (255) : (val);
val = (val < 0) ? (0) : (val);
ucptr[3] = static_cast<unsigned char>(val);
}
else
{
ucptr[0] = 0;
ucptr[1] = 0;
ucptr[2] = 0;
ucptr[3] = 0;
}
ucptr += 4;
}
}
}
double vtkUnstructuredGridVolumeRayCastMapper::GetMinimumBoundsDepth(
vtkRenderer* ren, vtkVolume* vol)
{
double bounds[6];
vol->GetBounds(bounds);
vtkTransform* perspectiveTransform = vtkTransform::New();
vtkMatrix4x4* perspectiveMatrix = vtkMatrix4x4::New();
ren->ComputeAspect();
double* aspect = ren->GetAspect();
// Get the view matrix in two steps - there is a one step method in camera
// but it turns off stereo so we do not want to use that one
vtkCamera* cam = ren->GetActiveCamera();
perspectiveTransform->Identity();
perspectiveTransform->Concatenate(
cam->GetProjectionTransformMatrix(aspect[0] / aspect[1], 0.0, 1.0));
perspectiveTransform->Concatenate(cam->GetViewTransformMatrix());
perspectiveMatrix->DeepCopy(perspectiveTransform->GetMatrix());
double minZ = 1.0;
for (int k = 0; k < 2; k++)
{
for (int j = 0; j < 2; j++)
{
for (int i = 0; i < 2; i++)
{
double inPoint[4];
inPoint[0] = bounds[i];
inPoint[1] = bounds[2 + j];
inPoint[2] = bounds[4 + k];
inPoint[3] = 1.0;
double outPoint[4];
perspectiveMatrix->MultiplyPoint(inPoint, outPoint);
double testZ = outPoint[2] / outPoint[3];
minZ = (testZ < minZ) ? (testZ) : (minZ);
}
}
}
perspectiveTransform->Delete();
perspectiveMatrix->Delete();
return minZ;
}
double vtkUnstructuredGridVolumeRayCastMapper::GetZBufferValue(int x, int y)
{
int xPos, yPos;
xPos = static_cast<int>(static_cast<float>(x) * this->ImageSampleDistance);
yPos = static_cast<int>(static_cast<float>(y) * this->ImageSampleDistance);
xPos = (xPos >= this->ZBufferSize[0]) ? (this->ZBufferSize[0] - 1) : (xPos);
yPos = (yPos >= this->ZBufferSize[1]) ? (this->ZBufferSize[1] - 1) : (yPos);
return *(this->ZBuffer + yPos * this->ZBufferSize[0] + xPos);
}
// Print method for vtkUnstructuredGridVolumeRayCastMapper
void vtkUnstructuredGridVolumeRayCastMapper::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os, indent);
os << indent << "Image Sample Distance: " << this->ImageSampleDistance << "\n";
os << indent << "Minimum Image Sample Distance: " << this->MinimumImageSampleDistance << "\n";
os << indent << "Maximum Image Sample Distance: " << this->MaximumImageSampleDistance << "\n";
os << indent << "Auto Adjust Sample Distances: " << this->AutoAdjustSampleDistances << "\n";
os << indent << "Intermix Intersecting Geometry: "
<< (this->IntermixIntersectingGeometry ? "On\n" : "Off\n");
os << indent << "Number Of Threads: " << this->NumberOfThreads << "\n";
if (this->RayCastFunction)
{
os << indent << "RayCastFunction: " << this->RayCastFunction->GetClassName() << "\n";
}
else
{
os << indent << "RayCastFunction: (none)\n";
}
if (this->RayIntegrator)
{
os << indent << "RayIntegrator: " << this->RayIntegrator->GetClassName() << endl;
}
else
{
os << indent << "RayIntegrator: (automatic)" << endl;
}
// Do not want to print this->ImageOrigin, this->ImageViewportSize or
// this->ImageInUseSize since these are just internal variables with Get
// methods for access from the ray cast function (not part of the public
// API)
}