mirror of https://gitee.com/openkylin/wget.git
383 lines
11 KiB
C
383 lines
11 KiB
C
/* Functions to compute MD4 message digest of files or memory blocks.
|
|
according to the definition of MD4 in RFC 1320 from April 1992.
|
|
Copyright (C) 1995-1997, 1999-2003, 2005-2006, 2008-2019 Free Software
|
|
Foundation, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3, or (at your option) any
|
|
later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* Adapted by Simon Josefsson from gnulib md5.? and Libgcrypt
|
|
cipher/md4.c . */
|
|
|
|
#include <config.h>
|
|
|
|
#include "md4.h"
|
|
|
|
#include <stdalign.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
|
|
#if USE_UNLOCKED_IO
|
|
# include "unlocked-io.h"
|
|
#endif
|
|
|
|
#include <byteswap.h>
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define SWAP(n) bswap_32 (n)
|
|
#else
|
|
# define SWAP(n) (n)
|
|
#endif
|
|
|
|
#define BLOCKSIZE 32768
|
|
#if BLOCKSIZE % 64 != 0
|
|
# error "invalid BLOCKSIZE"
|
|
#endif
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. (RFC 1320, 3.1: Step 1) */
|
|
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
|
|
|
|
/* Initialize structure containing state of computation.
|
|
(RFC 1320, 3.3: Step 3) */
|
|
void
|
|
md4_init_ctx (struct md4_ctx *ctx)
|
|
{
|
|
ctx->A = 0x67452301;
|
|
ctx->B = 0xefcdab89;
|
|
ctx->C = 0x98badcfe;
|
|
ctx->D = 0x10325476;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* Copy the 4 byte value from v into the memory location pointed to by *cp,
|
|
If your architecture allows unaligned access this is equivalent to
|
|
* (uint32_t *) cp = v */
|
|
static void
|
|
set_uint32 (char *cp, uint32_t v)
|
|
{
|
|
memcpy (cp, &v, sizeof v);
|
|
}
|
|
|
|
/* Put result from CTX in first 16 bytes following RESBUF. The result
|
|
must be in little endian byte order. */
|
|
void *
|
|
md4_read_ctx (const struct md4_ctx *ctx, void *resbuf)
|
|
{
|
|
char *r = resbuf;
|
|
set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
|
|
set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
|
|
set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
|
|
set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF. */
|
|
void *
|
|
md4_finish_ctx (struct md4_ctx *ctx, void *resbuf)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
uint32_t bytes = ctx->buflen;
|
|
size_t pad;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
++ctx->total[1];
|
|
|
|
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
|
|
memcpy (&((char*)ctx->buffer)[bytes], fillbuf, pad);
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
ctx->buffer[(bytes + pad) / 4] = SWAP (ctx->total[0] << 3);
|
|
ctx->buffer[(bytes + pad) / 4 + 1] = SWAP ((ctx->total[1] << 3) |
|
|
(ctx->total[0] >> 29));
|
|
|
|
/* Process last bytes. */
|
|
md4_process_block (ctx->buffer, bytes + pad + 8, ctx);
|
|
|
|
return md4_read_ctx (ctx, resbuf);
|
|
}
|
|
|
|
/* Compute MD4 message digest for bytes read from STREAM. The
|
|
resulting message digest number will be written into the 16 bytes
|
|
beginning at RESBLOCK. */
|
|
int
|
|
md4_stream (FILE * stream, void *resblock)
|
|
{
|
|
struct md4_ctx ctx;
|
|
size_t sum;
|
|
|
|
char *buffer = malloc (BLOCKSIZE + 72);
|
|
if (!buffer)
|
|
return 1;
|
|
|
|
/* Initialize the computation context. */
|
|
md4_init_ctx (&ctx);
|
|
|
|
/* Iterate over full file contents. */
|
|
while (1)
|
|
{
|
|
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
|
computation function processes the whole buffer so that with the
|
|
next round of the loop another block can be read. */
|
|
size_t n;
|
|
sum = 0;
|
|
|
|
/* Read block. Take care for partial reads. */
|
|
while (1)
|
|
{
|
|
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
|
|
|
sum += n;
|
|
|
|
if (sum == BLOCKSIZE)
|
|
break;
|
|
|
|
if (n == 0)
|
|
{
|
|
/* Check for the error flag IFF N == 0, so that we don't
|
|
exit the loop after a partial read due to e.g., EAGAIN
|
|
or EWOULDBLOCK. */
|
|
if (ferror (stream))
|
|
{
|
|
free (buffer);
|
|
return 1;
|
|
}
|
|
goto process_partial_block;
|
|
}
|
|
|
|
/* We've read at least one byte, so ignore errors. But always
|
|
check for EOF, since feof may be true even though N > 0.
|
|
Otherwise, we could end up calling fread after EOF. */
|
|
if (feof (stream))
|
|
goto process_partial_block;
|
|
}
|
|
|
|
/* Process buffer with BLOCKSIZE bytes. Note that
|
|
BLOCKSIZE % 64 == 0
|
|
*/
|
|
md4_process_block (buffer, BLOCKSIZE, &ctx);
|
|
}
|
|
|
|
process_partial_block:;
|
|
|
|
/* Process any remaining bytes. */
|
|
if (sum > 0)
|
|
md4_process_bytes (buffer, sum, &ctx);
|
|
|
|
/* Construct result in desired memory. */
|
|
md4_finish_ctx (&ctx, resblock);
|
|
free (buffer);
|
|
return 0;
|
|
}
|
|
|
|
/* Compute MD4 message digest for LEN bytes beginning at BUFFER. The
|
|
result is always in little endian byte order, so that a byte-wise
|
|
output yields to the wanted ASCII representation of the message
|
|
digest. */
|
|
void *
|
|
md4_buffer (const char *buffer, size_t len, void *resblock)
|
|
{
|
|
struct md4_ctx ctx;
|
|
|
|
/* Initialize the computation context. */
|
|
md4_init_ctx (&ctx);
|
|
|
|
/* Process whole buffer but last len % 64 bytes. */
|
|
md4_process_bytes (buffer, len, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return md4_finish_ctx (&ctx, resblock);
|
|
}
|
|
|
|
void
|
|
md4_process_bytes (const void *buffer, size_t len, struct md4_ctx *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy (&((char*)ctx->buffer)[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (ctx->buflen > 64)
|
|
{
|
|
md4_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
|
|
|
|
ctx->buflen &= 63;
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy (ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63],
|
|
ctx->buflen);
|
|
}
|
|
|
|
buffer = (const char *) buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len >= 64)
|
|
{
|
|
#if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned)
|
|
# define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
|
|
if (UNALIGNED_P (buffer))
|
|
while (len > 64)
|
|
{
|
|
md4_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
|
|
buffer = (const char *) buffer + 64;
|
|
len -= 64;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
md4_process_block (buffer, len & ~63, ctx);
|
|
buffer = (const char *) buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
}
|
|
|
|
/* Move remaining bytes in internal buffer. */
|
|
if (len > 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
|
|
memcpy (&((char*)ctx->buffer)[left_over], buffer, len);
|
|
left_over += len;
|
|
if (left_over >= 64)
|
|
{
|
|
md4_process_block (ctx->buffer, 64, ctx);
|
|
left_over -= 64;
|
|
memcpy (ctx->buffer, &ctx->buffer[16], left_over);
|
|
}
|
|
ctx->buflen = left_over;
|
|
}
|
|
}
|
|
|
|
/* --- Code below is the primary difference between md5.c and md4.c --- */
|
|
|
|
/* MD4 round constants */
|
|
#define K1 0x5a827999
|
|
#define K2 0x6ed9eba1
|
|
|
|
/* Round functions. */
|
|
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
|
|
#define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
|
|
#define H(x, y, z) ((x) ^ (y) ^ (z))
|
|
#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
|
|
#define R1(a,b,c,d,k,s) a=rol(a+F(b,c,d)+x[k],s);
|
|
#define R2(a,b,c,d,k,s) a=rol(a+G(b,c,d)+x[k]+K1,s);
|
|
#define R3(a,b,c,d,k,s) a=rol(a+H(b,c,d)+x[k]+K2,s);
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 64 == 0. */
|
|
|
|
void
|
|
md4_process_block (const void *buffer, size_t len, struct md4_ctx *ctx)
|
|
{
|
|
const uint32_t *words = buffer;
|
|
size_t nwords = len / sizeof (uint32_t);
|
|
const uint32_t *endp = words + nwords;
|
|
uint32_t x[16];
|
|
uint32_t A = ctx->A;
|
|
uint32_t B = ctx->B;
|
|
uint32_t C = ctx->C;
|
|
uint32_t D = ctx->D;
|
|
uint32_t lolen = len;
|
|
|
|
/* First increment the byte count. RFC 1320 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += lolen;
|
|
ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
|
|
|
|
/* Process all bytes in the buffer with 64 bytes in each round of
|
|
the loop. */
|
|
while (words < endp)
|
|
{
|
|
int t;
|
|
for (t = 0; t < 16; t++)
|
|
{
|
|
x[t] = SWAP (*words);
|
|
words++;
|
|
}
|
|
|
|
/* Round 1. */
|
|
R1 (A, B, C, D, 0, 3);
|
|
R1 (D, A, B, C, 1, 7);
|
|
R1 (C, D, A, B, 2, 11);
|
|
R1 (B, C, D, A, 3, 19);
|
|
R1 (A, B, C, D, 4, 3);
|
|
R1 (D, A, B, C, 5, 7);
|
|
R1 (C, D, A, B, 6, 11);
|
|
R1 (B, C, D, A, 7, 19);
|
|
R1 (A, B, C, D, 8, 3);
|
|
R1 (D, A, B, C, 9, 7);
|
|
R1 (C, D, A, B, 10, 11);
|
|
R1 (B, C, D, A, 11, 19);
|
|
R1 (A, B, C, D, 12, 3);
|
|
R1 (D, A, B, C, 13, 7);
|
|
R1 (C, D, A, B, 14, 11);
|
|
R1 (B, C, D, A, 15, 19);
|
|
|
|
/* Round 2. */
|
|
R2 (A, B, C, D, 0, 3);
|
|
R2 (D, A, B, C, 4, 5);
|
|
R2 (C, D, A, B, 8, 9);
|
|
R2 (B, C, D, A, 12, 13);
|
|
R2 (A, B, C, D, 1, 3);
|
|
R2 (D, A, B, C, 5, 5);
|
|
R2 (C, D, A, B, 9, 9);
|
|
R2 (B, C, D, A, 13, 13);
|
|
R2 (A, B, C, D, 2, 3);
|
|
R2 (D, A, B, C, 6, 5);
|
|
R2 (C, D, A, B, 10, 9);
|
|
R2 (B, C, D, A, 14, 13);
|
|
R2 (A, B, C, D, 3, 3);
|
|
R2 (D, A, B, C, 7, 5);
|
|
R2 (C, D, A, B, 11, 9);
|
|
R2 (B, C, D, A, 15, 13);
|
|
|
|
/* Round 3. */
|
|
R3 (A, B, C, D, 0, 3);
|
|
R3 (D, A, B, C, 8, 9);
|
|
R3 (C, D, A, B, 4, 11);
|
|
R3 (B, C, D, A, 12, 15);
|
|
R3 (A, B, C, D, 2, 3);
|
|
R3 (D, A, B, C, 10, 9);
|
|
R3 (C, D, A, B, 6, 11);
|
|
R3 (B, C, D, A, 14, 15);
|
|
R3 (A, B, C, D, 1, 3);
|
|
R3 (D, A, B, C, 9, 9);
|
|
R3 (C, D, A, B, 5, 11);
|
|
R3 (B, C, D, A, 13, 15);
|
|
R3 (A, B, C, D, 3, 3);
|
|
R3 (D, A, B, C, 11, 9);
|
|
R3 (C, D, A, B, 7, 11);
|
|
R3 (B, C, D, A, 15, 15);
|
|
|
|
A = ctx->A += A;
|
|
B = ctx->B += B;
|
|
C = ctx->C += C;
|
|
D = ctx->D += D;
|
|
}
|
|
}
|