forked from jiuyuan/InfiniTensor
81 lines
2.8 KiB
Python
81 lines
2.8 KiB
Python
|
||
import paddle
|
||
import paddle.vision.transforms as T
|
||
from paddle.vision.datasets import Cifar10
|
||
from pyinfinitensor.onnx import OnnxStub, backend
|
||
import onnx
|
||
import itertools
|
||
|
||
def run_cifar_train_and_infer():
|
||
|
||
paddle.device.set_device("gpu")
|
||
|
||
transform = T.Compose(
|
||
[
|
||
T.Resize(224),
|
||
T.ToTensor(),
|
||
T.Normalize(
|
||
mean=[0.5, 0.5, 0.5],
|
||
std=[0.5, 0.5, 0.5],
|
||
to_rgb=True,
|
||
),
|
||
]
|
||
)
|
||
|
||
# 下载数据集并初始化 DataSet
|
||
train_dataset = paddle.vision.datasets.Cifar10(mode='train', transform=transform)
|
||
test_dataset = paddle.vision.datasets.Cifar10(mode='test', transform=transform)
|
||
|
||
# 模型组网并初始化网络
|
||
densenet = paddle.vision.models.DenseNet(num_classes=10)
|
||
model = paddle.Model(densenet)
|
||
|
||
# 模型训练的配置准备,准备损失函数,优化器和评价指标
|
||
model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),
|
||
paddle.nn.CrossEntropyLoss(),
|
||
paddle.metric.Accuracy())
|
||
|
||
# 模型训练
|
||
model.fit(train_dataset, epochs=5, batch_size=64, verbose=1)
|
||
# 模型评估
|
||
model.evaluate(test_dataset, batch_size=64, verbose=1)
|
||
|
||
# export to ONNX
|
||
save_path = 'onnx.save/densenet' # 需要保存的路径
|
||
x_spec = paddle.static.InputSpec([1, 3, 224, 224], 'float32', 'x') # 为模型指定输入的形状和数据类型,支持持 Tensor 或 InputSpec ,InputSpec 支持动态的 shape。
|
||
paddle.onnx.export(densenet, save_path, input_spec=[x_spec], opset_version=11)
|
||
|
||
# 加载onnx模型并放到Infinitensor中
|
||
model_path = save_path + ".onnx"
|
||
onnx_model = onnx.load(model_path)
|
||
gofusion_model = OnnxStub(onnx_model, backend.cuda_runtime())
|
||
model = gofusion_model
|
||
model.init()
|
||
|
||
# 启动推理
|
||
cifar10_test = Cifar10(
|
||
mode="test",
|
||
transform=transform, # apply transform to every image
|
||
backend="cv2", # use OpenCV as image transform backend
|
||
)
|
||
batch_size = 1
|
||
total_size = 0
|
||
total_acc = 0.0
|
||
for data in itertools.islice(iter(cifar10_test), 10000):
|
||
images, labels = data
|
||
next(model.inputs.items().__iter__())[1].copyin_float(images.reshape([3*224*224]).tolist())
|
||
model.run()
|
||
outputs = next(model.outputs.items().__iter__())[1].copyout_float()
|
||
outputs = paddle.to_tensor(outputs)
|
||
outputs = paddle.reshape(outputs, (1, 10))
|
||
labels = paddle.to_tensor(labels)
|
||
labels = paddle.reshape(labels, (1,1))
|
||
acc = paddle.metric.accuracy(outputs, labels)
|
||
total_acc += acc
|
||
total_size += batch_size
|
||
print("test acc: {}".format(total_acc.numpy() / total_size))
|
||
|
||
|
||
if __name__ == "__main__":
|
||
run_cifar_train_and_infer()
|