LLaMA-Factory-310P3/examples/train_lora/llama3_lora_sft.yaml

40 lines
705 B
YAML
Raw Normal View History

2024-05-17 01:02:00 +08:00
### model
2024-05-06 21:47:00 +08:00
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
2024-05-17 01:02:00 +08:00
### method
2024-05-06 21:47:00 +08:00
stage: sft
do_train: true
finetuning_type: lora
2024-06-06 03:53:28 +08:00
lora_target: all
2024-05-06 21:47:00 +08:00
2024-05-17 01:02:00 +08:00
### dataset
2024-05-18 03:44:56 +08:00
dataset: identity,alpaca_en_demo
2024-05-06 21:47:00 +08:00
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
2024-05-17 01:02:00 +08:00
### output
2024-05-06 21:47:00 +08:00
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
2024-05-17 01:02:00 +08:00
### train
2024-05-06 21:47:00 +08:00
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
2024-06-03 19:12:29 +08:00
learning_rate: 1.0e-4
2024-05-06 21:47:00 +08:00
num_train_epochs: 3.0
lr_scheduler_type: cosine
2024-06-03 19:12:29 +08:00
warmup_ratio: 0.1
2024-05-06 21:47:00 +08:00
fp16: true
2024-06-13 03:15:06 +08:00
ddp_timeout: 180000000
2024-05-06 21:47:00 +08:00
2024-05-17 01:02:00 +08:00
### eval
2024-05-13 20:39:36 +08:00
val_size: 0.1
2024-05-06 21:47:00 +08:00
per_device_eval_batch_size: 1
2024-06-06 01:49:20 +08:00
eval_strategy: steps
2024-05-06 21:47:00 +08:00
eval_steps: 500