chore: add 9g tokenizer config files
This commit is contained in:
parent
72a0997cdc
commit
049b3d18be
|
@ -0,0 +1,477 @@
|
|||
import io
|
||||
import json
|
||||
import os
|
||||
from shutil import copyfile
|
||||
from typing import Any, Dict, IO, List, Optional, Tuple
|
||||
|
||||
import pkg_resources
|
||||
import sentencepiece as spm
|
||||
from pytrie import StringTrie
|
||||
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
||||
|
||||
PRETRAINED_VOCAB_FILES_MAP = {
|
||||
"vocab_file": {},
|
||||
"tokenizer_file": {},
|
||||
}
|
||||
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
||||
|
||||
|
||||
class CPM9GTokenizer(PreTrainedTokenizer):
|
||||
"""
|
||||
CPM9G 分词器类。用于基于字节对编码的分词。
|
||||
|
||||
参数:
|
||||
path (str, 可选): 词汇表文件的路径。
|
||||
"""
|
||||
|
||||
vocab_files_names = VOCAB_FILES_NAMES
|
||||
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
||||
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
||||
model_input_names = ["input_ids", "attention_mask"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_file: Optional[str] = None,
|
||||
unk_token: str = "<unk>",
|
||||
bos_token: str = "<s>",
|
||||
eos_token: str = "</s>",
|
||||
pad_token: Optional[str] = None,
|
||||
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
add_bos_token: bool = True,
|
||||
add_eos_token: bool = False,
|
||||
clean_up_tokenization_spaces: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
self.sp_model_kwargs = sp_model_kwargs or {}
|
||||
self.vocab_file = vocab_file
|
||||
self.add_bos_token = add_bos_token
|
||||
self.add_eos_token = add_eos_token
|
||||
|
||||
self.unk_token = unk_token
|
||||
self.bos_token = bos_token
|
||||
self.eos_token = eos_token
|
||||
self.pad_token = pad_token
|
||||
|
||||
self.byte_list: List[str] = (
|
||||
[f"<0x0{hex(i).upper()[2:]}>" for i in range(0x10)] +
|
||||
[f"<0x{hex(i).upper()[2:]}>" for i in range(0x10, 0x100)]
|
||||
)
|
||||
|
||||
self._special_token_set = set([self.unk_token, self.bos_token, self.eos_token] + self.byte_list)
|
||||
|
||||
if vocab_file:
|
||||
if 'vocab.txt' not in vocab_file:
|
||||
all_tokens = self.load_vocab(io.FileIO(vocab_file + VOCAB_FILES_NAMES['vocab_file'], "rb"))
|
||||
else:
|
||||
all_tokens = self.load_vocab(io.FileIO(VOCAB_FILES_NAMES['vocab_file'], "rb"))
|
||||
|
||||
self.encoder: Dict[str, int] = {}
|
||||
self._special_encoder: Dict[str, int] = {}
|
||||
for token, token_id in all_tokens.items():
|
||||
if token in self._special_token_set:
|
||||
self._special_encoder[token] = token_id
|
||||
else:
|
||||
self.encoder[token] = token_id
|
||||
|
||||
self.decoder = {v: k for k, v in self.encoder.items()}
|
||||
self._byte_decoder = {self._special_encoder[token]: i for i, token in enumerate(self.byte_list)}
|
||||
|
||||
self._max_word_len = max([len(x) for x in self.encoder.keys()])
|
||||
|
||||
self._len_word_first = {}
|
||||
for x in self.encoder.keys():
|
||||
if not x[0] in self._len_word_first:
|
||||
self._len_word_first[x[0]] = 1
|
||||
if len(x) > self._len_word_first[x[0]]:
|
||||
self._len_word_first[x[0]] = len(x)
|
||||
self.tencoder = StringTrie(self.encoder)
|
||||
|
||||
super().__init__(
|
||||
bos_token=AddedToken(bos_token, lstrip=False, rstrip=False),
|
||||
eos_token=AddedToken(eos_token, lstrip=False, rstrip=False),
|
||||
unk_token=AddedToken(unk_token, lstrip=False, rstrip=False),
|
||||
pad_token=AddedToken(pad_token, lstrip=False, rstrip=False) if pad_token else None,
|
||||
add_bos_token=add_bos_token,
|
||||
add_eos_token=add_eos_token,
|
||||
sp_model_kwargs=self.sp_model_kwargs,
|
||||
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def __getstate__(self) -> Dict[str, Any]:
|
||||
state = self.__dict__.copy()
|
||||
state["sp_model"] = None
|
||||
return state
|
||||
|
||||
def __setstate__(self, d: Dict[str, Any]) -> None:
|
||||
self.__dict__ = d
|
||||
|
||||
def load_vocab(self, fp: IO[bytes]) -> Dict[str, int]:
|
||||
"""
|
||||
加载词汇表文件到字典中。
|
||||
|
||||
参数:
|
||||
fp (IO[bytes]): 词汇表文件指针。
|
||||
|
||||
返回:
|
||||
Dict[str, int]: 词汇表字典。
|
||||
"""
|
||||
vocab: Dict[str, int] = {}
|
||||
reader = io.TextIOWrapper(fp, encoding="utf-8")
|
||||
for token in reader.readlines():
|
||||
token = token.strip()
|
||||
if len(token) == 0:
|
||||
continue
|
||||
token = json.loads(token)
|
||||
vocab[token] = len(vocab)
|
||||
return vocab
|
||||
|
||||
@property
|
||||
def vocab_size(self) -> int:
|
||||
"""返回词汇表大小"""
|
||||
return len(self.encoder) + len(self._special_encoder)
|
||||
|
||||
@property
|
||||
def eos_id(self):
|
||||
return self._special_encoder[self.eos_token]
|
||||
|
||||
@property
|
||||
def bos_id(self):
|
||||
return self._special_encoder[self.bos_token]
|
||||
|
||||
@property
|
||||
def unk_id(self):
|
||||
return self._special_encoder[self.unk_token]
|
||||
|
||||
def get_vocab(self) -> Dict[str, int]:
|
||||
"""返回词汇表作为字典"""
|
||||
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
||||
vocab.update(self.added_tokens_encoder)
|
||||
return vocab
|
||||
|
||||
def _tokenize(self, text: str) -> List[str]:
|
||||
"""返回分词后的字符串"""
|
||||
output_tokens: List[str] = []
|
||||
st = 0
|
||||
while st < len(text):
|
||||
piece = self.get_piece(text[st:])
|
||||
output_tokens.append(piece)
|
||||
st += len(piece)
|
||||
return output_tokens
|
||||
|
||||
def _convert_token_to_id(self, token: str) -> int:
|
||||
"""使用词汇表将标记(字符串)转换为 id"""
|
||||
return self.encoder.get(token, self.unk_id)
|
||||
|
||||
def _convert_id_to_token(self, index: int) -> str:
|
||||
"""使用词汇表将索引(整数)转换为标记(字符串)"""
|
||||
return self.decoder.get(index, self.unk_token)
|
||||
|
||||
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
||||
"""将标记序列(字符串)转换为单个字符串"""
|
||||
current_sub_tokens: List[str] = []
|
||||
out_string = ""
|
||||
prev_is_special = False
|
||||
for i, token in enumerate(tokens):
|
||||
if token in self._special_token_set:
|
||||
if not prev_is_special and i != 0:
|
||||
out_string += " "
|
||||
out_string += self.decode(current_sub_tokens) + token
|
||||
prev_is_special = True
|
||||
current_sub_tokens = []
|
||||
else:
|
||||
current_sub_tokens.append(token)
|
||||
prev_is_special = False
|
||||
out_string += self.sp_model.decode(current_sub_tokens)
|
||||
return out_string
|
||||
|
||||
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
||||
"""
|
||||
保存词汇表和特殊标记文件到目录。
|
||||
|
||||
参数:
|
||||
save_directory (str): 要保存词汇表的目录。
|
||||
|
||||
返回:
|
||||
Tuple[str]: 保存的文件路径。
|
||||
"""
|
||||
if not os.path.isdir(save_directory):
|
||||
raise ValueError(f"Vocabulary path ({save_directory}) should be a directory")
|
||||
|
||||
out_vocab_file = os.path.join(
|
||||
save_directory,
|
||||
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
|
||||
)
|
||||
|
||||
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
||||
copyfile(self.vocab_file, out_vocab_file)
|
||||
elif not os.path.isfile(self.vocab_file):
|
||||
with open(out_vocab_file, "wb") as fi:
|
||||
fi.write(self.sp_model.serialized_model_proto())
|
||||
|
||||
return (out_vocab_file, )
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||||
|
||||
output = bos_token_id + token_ids_0 + eos_token_id
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output = output + bos_token_id + token_ids_1 + eos_token_id
|
||||
|
||||
return output
|
||||
|
||||
def get_special_tokens_mask(
|
||||
self,
|
||||
token_ids_0: List[int],
|
||||
token_ids_1: Optional[List[int]] = None,
|
||||
already_has_special_tokens: bool = False
|
||||
) -> List[int]:
|
||||
"""
|
||||
获取从未添加特殊标记的标记列表中检索到的序列 id。
|
||||
在使用分词器的 `prepare_for_model` 方法添加特殊标记时调用此方法。
|
||||
|
||||
参数:
|
||||
token_ids_0 (List[int]): id 列表。
|
||||
token_ids_1 (List[int], 可选): 序列对的可选第二 id 列表。
|
||||
already_has_special_tokens (bool, 可选, 默认值为 False):
|
||||
标记列表是否已使用模型的特殊标记进行格式化。
|
||||
|
||||
返回:
|
||||
List[int]: 一个包含整数(0 或 1)的列表。1 表示特殊标记,0 表示序列标记。
|
||||
"""
|
||||
if already_has_special_tokens:
|
||||
return super().get_special_tokens_mask(
|
||||
token_ids_0=token_ids_0,
|
||||
token_ids_1=token_ids_1,
|
||||
already_has_special_tokens=True,
|
||||
)
|
||||
|
||||
bos_token_id = [1] if self.add_bos_token else []
|
||||
eos_token_id = [1] if self.add_eos_token else []
|
||||
|
||||
if token_ids_1 is None:
|
||||
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
||||
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
||||
|
||||
def create_token_type_ids_from_sequences(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
"""
|
||||
从传递的两个序列创建掩码,用于序列对分类任务。
|
||||
|
||||
参数:
|
||||
token_ids_0 (List[int]): id 列表。
|
||||
token_ids_1 (List[int], 可选): 序列对的可选第二 id 列表。
|
||||
|
||||
返回:
|
||||
List[int]: 根据给定序列的标记类型 id 列表。
|
||||
"""
|
||||
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
||||
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
||||
|
||||
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
||||
|
||||
if token_ids_1 is not None:
|
||||
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
||||
|
||||
return output
|
||||
|
||||
def get_piece(self, text: str) -> str:
|
||||
"""
|
||||
获取文本中的分词片段。
|
||||
|
||||
参数:
|
||||
text (str): 输入文本。
|
||||
|
||||
返回:
|
||||
str: 分词片段。
|
||||
"""
|
||||
if text[0] in self._len_word_first:
|
||||
text = text[: self._len_word_first[text[0]]]
|
||||
len_text = len(text)
|
||||
for i in range(len(text)):
|
||||
sub = text[: len_text - i]
|
||||
if sub in self.encoder:
|
||||
return sub
|
||||
return text[0]
|
||||
|
||||
|
||||
def encode(self, text: str) -> List[int]:
|
||||
"""
|
||||
将文本编码为 ID 列表。
|
||||
|
||||
参数:
|
||||
text (str): 输入文本。
|
||||
|
||||
返回:
|
||||
List[int]: 编码后的 ID 列表。
|
||||
"""
|
||||
#if len(text) > 20480:
|
||||
# return [0 for _ in range(20480)]
|
||||
ret = []
|
||||
for x in self._tokenize(text):
|
||||
if x in self.encoder:
|
||||
ret.append(self.encoder[x])
|
||||
else:
|
||||
ret.extend(self._encode_unicode(x))
|
||||
return ret
|
||||
|
||||
|
||||
def decode_all(self, tokens: List[int]):
|
||||
"""Decode ids into a string."""
|
||||
ret = []
|
||||
st = 0
|
||||
|
||||
while st < len(tokens):
|
||||
if tokens[st] in self.decoder:
|
||||
ret.append(self.decoder[tokens[st]])
|
||||
st += 1
|
||||
elif tokens[st] in self._byte_decoder:
|
||||
if (
|
||||
st + 3 < len(tokens)
|
||||
and tokens[st + 1] in self._byte_decoder
|
||||
and tokens[st + 2] in self._byte_decoder
|
||||
and tokens[st + 3] in self._byte_decoder
|
||||
):
|
||||
first_id = self._byte_decoder[tokens[st]]
|
||||
plane_id = self._byte_decoder[tokens[st + 1]]
|
||||
row_id = self._byte_decoder[tokens[st + 2]]
|
||||
cell_id = self._byte_decoder[tokens[st + 3]]
|
||||
ret.append(
|
||||
int.to_bytes(first_id << 24 | plane_id << 16 | row_id << 8 | cell_id, 4, "big").decode("utf-8")
|
||||
)
|
||||
st += 4
|
||||
elif (
|
||||
st + 2 < len(tokens)
|
||||
and tokens[st + 1] in self._byte_decoder
|
||||
and tokens[st + 2] in self._byte_decoder
|
||||
):
|
||||
plane_id = self._byte_decoder[tokens[st]]
|
||||
row_id = self._byte_decoder[tokens[st + 1]]
|
||||
cell_id = self._byte_decoder[tokens[st + 2]]
|
||||
ret.append(int.to_bytes(plane_id << 16 | row_id << 8 | cell_id, 3, "big").decode("utf-8"))
|
||||
st += 3
|
||||
elif st + 1 < len(tokens) and tokens[st + 1] in self._byte_decoder:
|
||||
row_id = self._byte_decoder[tokens[st]]
|
||||
cell_id = self._byte_decoder[tokens[st + 1]]
|
||||
ret.append(int.to_bytes(row_id << 8 | cell_id, 2, "big").decode("utf-8"))
|
||||
st += 2
|
||||
else:
|
||||
cell_id = self._byte_decoder[tokens[st]]
|
||||
ret.append(int.to_bytes(cell_id, 1, "big").decode("utf-8"))
|
||||
st += 1
|
||||
elif tokens[st] == self.eos_id:
|
||||
ret.append(self.eos_token)
|
||||
st += 1
|
||||
elif tokens[st] == self.bos_id:
|
||||
ret.append(self.bos_token)
|
||||
st += 1
|
||||
else:
|
||||
ret.append(self.unk_token)
|
||||
st += 1
|
||||
return "".join(ret)
|
||||
|
||||
def decode(self, tokens: List[int]) -> str:
|
||||
"""
|
||||
将 ID 列表解码为字符串。
|
||||
|
||||
参数:
|
||||
tokens (List[int]): ID 列表。
|
||||
|
||||
返回:
|
||||
str: 解码后的字符串。
|
||||
"""
|
||||
ret = []
|
||||
st = 0
|
||||
|
||||
while st < len(tokens):
|
||||
if tokens[st] in self._byte_decoder:
|
||||
if (
|
||||
st + 3 < len(tokens)
|
||||
and tokens[st + 1] in self._byte_decoder
|
||||
and tokens[st + 2] in self._byte_decoder
|
||||
and tokens[st + 3] in self._byte_decoder
|
||||
):
|
||||
first_id = self._byte_decoder[tokens[st]]
|
||||
plane_id = self._byte_decoder[tokens[st + 1]]
|
||||
row_id = self._byte_decoder[tokens[st + 2]]
|
||||
cell_id = self._byte_decoder[tokens[st + 3]]
|
||||
ret.append(
|
||||
int.to_bytes(first_id << 24 | plane_id << 16 | row_id << 8 | cell_id, 4, "big").decode("utf-8")
|
||||
)
|
||||
st += 4
|
||||
elif (
|
||||
st + 2 < len(tokens)
|
||||
and tokens[st + 1] in self._byte_decoder
|
||||
and tokens[st + 2] in self._byte_decoder
|
||||
):
|
||||
plane_id = self._byte_decoder[tokens[st]]
|
||||
row_id = self._byte_decoder[tokens[st + 1]]
|
||||
cell_id = self._byte_decoder[tokens[st + 2]]
|
||||
ret.append(int.to_bytes(plane_id << 16 | row_id << 8 | cell_id, 3, "big").decode("utf-8"))
|
||||
st += 3
|
||||
elif st + 1 < len(tokens) and tokens[st + 1] in self._byte_decoder:
|
||||
row_id = self._byte_decoder[tokens[st]]
|
||||
cell_id = self._byte_decoder[tokens[st + 1]]
|
||||
ret.append(int.to_bytes(row_id << 8 | cell_id, 2, "big").decode("utf-8"))
|
||||
st += 2
|
||||
else:
|
||||
cell_id = self._byte_decoder[tokens[st]]
|
||||
ret.append(int.to_bytes(cell_id, 1, "big").decode("utf-8"))
|
||||
st += 1
|
||||
elif tokens[st] == self.eos_id:
|
||||
ret.append(self.eos_token)
|
||||
st += 1
|
||||
elif tokens[st] == self.bos_id:
|
||||
ret.append(self.bos_token)
|
||||
st += 1
|
||||
else:
|
||||
ret.append(tokens[st])
|
||||
st += 1
|
||||
#else:
|
||||
# ret.append(self.unk_token)
|
||||
# st += 1
|
||||
return ''.join(ret)
|
||||
|
||||
def _encode_unicode(self, token: str) -> List[int]:
|
||||
"""
|
||||
将 Unicode 编码包装到一个辅助函数中。
|
||||
|
||||
参数:
|
||||
token (str): 要编码的标记。
|
||||
|
||||
返回:
|
||||
List[int]: 编码后的 ID 列表。
|
||||
"""
|
||||
ids = []
|
||||
utf8_id = token.encode("utf-8")
|
||||
for _id in utf8_id:
|
||||
ids.append(self._special_encoder[self.byte_list[_id]])
|
||||
return ids
|
||||
|
||||
def next_token(self, text: str) -> Tuple[str, List[int]]:
|
||||
"""
|
||||
快速获取下一个匹配的标记。
|
||||
|
||||
参数:
|
||||
text (str): 输入文本。
|
||||
|
||||
返回:
|
||||
Tuple[str, List[int]]: 匹配的标记及其 ID 列表。
|
||||
"""
|
||||
token, token_id = self.tencoder.longest_prefix_item(text, (None, None))
|
||||
if token is None:
|
||||
token = text[0]
|
||||
token_ids = self._encode_unicode(token)
|
||||
else:
|
||||
token_ids = [token_id]
|
||||
return token, token_ids
|
|
@ -0,0 +1,10 @@
|
|||
{
|
||||
"tokenizer_class": "CPM9GTokenizer",
|
||||
"auto_map": {
|
||||
"AutoTokenizer": [
|
||||
"tokenization_9g.CPM9GTokenizer",
|
||||
null
|
||||
]
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue