update readme

This commit is contained in:
hiyouga 2023-12-23 02:17:41 +08:00
parent 779cfefb78
commit 0ad86a4f62
2 changed files with 2 additions and 2 deletions

View File

@ -55,7 +55,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation for faster LoRA tuning. Try `--use_unsloth` argument to active unsloth patch. See performance comparisons [here](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
[23/12/23] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s implementation to boost LoRA tuning for the LLaMA, Mistral and Yi models. Try `--use_unsloth` argument to activate unsloth patch. It achieves 1.7x speed in our benchmark, check [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison) for details.
[23/12/12] We supported fine-tuning the latest MoE model **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)** in our framework. See hardware requirement [here](#hardware-requirement).

View File

@ -55,7 +55,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846
## 更新日志
[23/12/23] 我们支持了使用 **[unsloth](https://github.com/unslothai/unsloth)** 大幅提升 LoRA 训练效率。请使用 `--use_unsloth` 参数启用 unsloth 优化。性能对比请查阅[此处](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[23/12/23] 我们针对 LLaMA, Mistral 和 Yi 模型支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的 LoRA 训练加速。请使用 `--use_unsloth` 参数启用 unsloth 优化。该方法可提供 1.7 倍的训练速度,详情请查阅[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
[23/12/12] 我们支持了微调最新的混合专家模型 **[Mixtral 8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)**。硬件需求请查阅[此处](#硬件依赖)。