fix int8 inference

This commit is contained in:
hiyouga 2023-06-03 21:17:47 +08:00
parent de09ee1315
commit 0f69a0c19e
1 changed files with 19 additions and 10 deletions

View File

@ -55,11 +55,12 @@ require_version("trl>=0.4.1", "To fix: pip install trl>=0.4.1")
logger = get_logger(__name__)
def init_adapter(
def _init_adapter(
model: PreTrainedModel,
model_args: ModelArguments,
finetuning_args: FinetuningArguments,
is_trainable: bool
is_trainable: bool,
is_mergeable: bool
) -> PreTrainedModel:
r"""
Initializes the adapters.
@ -84,16 +85,19 @@ def init_adapter(
else:
param.data = param.data.to(torch.float32)
if finetuning_args.finetuning_type != "lora" and model_args.checkpoint_dir is not None:
assert len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
load_trainable_params(model, model_args.checkpoint_dir[0]) # load model checkpoints for non-peft methods
if model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora":
assert is_mergeable and len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
load_trainable_params(model, model_args.checkpoint_dir[0]) # load model checkpoints for non-peft methods
else:
assert is_mergeable or len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA")
lastest_checkpoint = None
if model_args.checkpoint_dir is not None:
if is_trainable and model_args.resume_lora_training: # continually train on the lora weights
if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights
checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
else:
checkpoints_to_merge = model_args.checkpoint_dir
@ -105,8 +109,8 @@ def init_adapter(
if len(checkpoints_to_merge) > 0:
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))
if lastest_checkpoint is not None: # resume lora training
model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=True)
if lastest_checkpoint is not None: # resume lora training or quantized inference
model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=is_trainable)
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
lora_config = LoraConfig(
@ -159,11 +163,15 @@ def load_pretrained(
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
is_mergeable = True
# Quantization configurations (using bitsandbytes library).
if model_args.quantization_bit is not None:
assert model_args.quantization_bit == 8, "We only accept 8-bit quantization."
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.1")
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
#require_version("transformers>=4.30.0.dev0", "To fix: pip install git+https://github.com/huggingface/transformers.git")
#require_version("peft>=0.4.0.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
#require_version("accelerate>=0.20.0.dev0", "To fix: pip install git+https://github.com/huggingface/accelerate.git")
from bitsandbytes.cuda_setup.main import get_compute_capability, get_cuda_lib_handle, is_cublasLt_compatible
cuda = get_cuda_lib_handle()
cc = get_compute_capability(cuda)
@ -171,6 +179,7 @@ def load_pretrained(
config_kwargs["load_in_8bit"] = True
config_kwargs["device_map"] = "auto" # it should not be specified outside of load_in_8bit
is_mergeable = False
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
# Load and prepare pretrained models (without valuehead).
@ -182,7 +191,7 @@ def load_pretrained(
**config_kwargs
)
model = prepare_model_for_training(model) if is_trainable else model
model = init_adapter(model, model_args, finetuning_args, is_trainable)
model = _init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
if stage == "rm" or stage == "ppo": # add value head
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)