update webui and add CLIs
This commit is contained in:
parent
39e964a97a
commit
245fe47ece
|
@ -11,4 +11,4 @@ RUN pip install -e .[deepspeed,metrics,bitsandbytes,qwen]
|
||||||
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
|
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
|
||||||
EXPOSE 7860
|
EXPOSE 7860
|
||||||
|
|
||||||
CMD [ "python", "src/train_web.py" ]
|
CMD [ "llamafactory-cli webui" ]
|
||||||
|
|
|
@ -346,7 +346,7 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
|
||||||
```bash
|
```bash
|
||||||
export CUDA_VISIBLE_DEVICES=0 # `set CUDA_VISIBLE_DEVICES=0` for Windows
|
export CUDA_VISIBLE_DEVICES=0 # `set CUDA_VISIBLE_DEVICES=0` for Windows
|
||||||
export GRADIO_SERVER_PORT=7860 # `set GRADIO_SERVER_PORT=7860` for Windows
|
export GRADIO_SERVER_PORT=7860 # `set GRADIO_SERVER_PORT=7860` for Windows
|
||||||
python src/train_web.py # or python -m llmtuner.webui.interface
|
llamafactory-cli webui
|
||||||
```
|
```
|
||||||
|
|
||||||
<details><summary>For Alibaba Cloud users</summary>
|
<details><summary>For Alibaba Cloud users</summary>
|
||||||
|
@ -392,12 +392,12 @@ docker compose -f ./docker-compose.yml up -d
|
||||||
|
|
||||||
See [examples/README.md](examples/README.md) for usage.
|
See [examples/README.md](examples/README.md) for usage.
|
||||||
|
|
||||||
Use `python src/train_bash.py -h` to display arguments description.
|
Use `llamafactory-cli train -h` to display arguments description.
|
||||||
|
|
||||||
### Deploy with OpenAI-style API and vLLM
|
### Deploy with OpenAI-style API and vLLM
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
|
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api \
|
||||||
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
||||||
--template llama3 \
|
--template llama3 \
|
||||||
--infer_backend vllm \
|
--infer_backend vllm \
|
||||||
|
|
|
@ -346,7 +346,7 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
|
||||||
```bash
|
```bash
|
||||||
export CUDA_VISIBLE_DEVICES=0 # Windows 使用 `set CUDA_VISIBLE_DEVICES=0`
|
export CUDA_VISIBLE_DEVICES=0 # Windows 使用 `set CUDA_VISIBLE_DEVICES=0`
|
||||||
export GRADIO_SERVER_PORT=7860 # Windows 使用 `set GRADIO_SERVER_PORT=7860`
|
export GRADIO_SERVER_PORT=7860 # Windows 使用 `set GRADIO_SERVER_PORT=7860`
|
||||||
python src/train_web.py # 或 python -m llmtuner.webui.interface
|
llamafactory-cli webui
|
||||||
```
|
```
|
||||||
|
|
||||||
<details><summary>阿里云用户指南</summary>
|
<details><summary>阿里云用户指南</summary>
|
||||||
|
@ -392,12 +392,12 @@ docker compose -f ./docker-compose.yml up -d
|
||||||
|
|
||||||
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
|
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
|
||||||
|
|
||||||
您可以执行 `python src/train_bash.py -h` 来查看参数文档。
|
您可以执行 `llamafactory-cli train -h` 来查看参数文档。
|
||||||
|
|
||||||
### 利用 vLLM 部署 OpenAI API
|
### 利用 vLLM 部署 OpenAI API
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 python src/api_demo.py \
|
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api \
|
||||||
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
|
||||||
--template llama3 \
|
--template llama3 \
|
||||||
--infer_backend vllm \
|
--infer_backend vllm \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -7,7 +7,7 @@ pip install "bitsandbytes>=0.43.0"
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
|
||||||
--config_file ../../accelerate/fsdp_config.yaml \
|
--config_file ../../accelerate/fsdp_config.yaml \
|
||||||
../../../src/train_bash.py \
|
../../../src/train.py \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-70b-hf \
|
--model_name_or_path meta-llama/Llama-2-70b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path ../../../models/llama2-7b-pro \
|
--model_name_or_path ../../../models/llama2-7b-pro \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -6,7 +6,7 @@ python -m torch.distributed.run \
|
||||||
--node_rank $RANK \
|
--node_rank $RANK \
|
||||||
--master_addr $MASTER_ADDR \
|
--master_addr $MASTER_ADDR \
|
||||||
--master_port $MASTER_PORT \
|
--master_port $MASTER_PORT \
|
||||||
../../src/train_bash.py \
|
../../src/train.py \
|
||||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
--deepspeed ../deepspeed/ds_z3_config.json \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||||
--config_file ../accelerate/single_config.yaml \
|
--config_file ../accelerate/single_config.yaml \
|
||||||
../../src/train_bash.py \
|
../../src/train.py \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_predict \
|
--do_predict \
|
||||||
--model_name_or_path ../../saves/LLaMA2-7B/full/sft \
|
--model_name_or_path ../../saves/LLaMA2-7B/full/sft \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
deepspeed --num_gpus 4 ../../src/train_bash.py \
|
deepspeed --num_gpus 4 ../../src/train.py \
|
||||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
--deepspeed ../deepspeed/ds_z3_config.json \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \
|
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||||
--template default \
|
--template default \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/cli_demo.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||||
--template default \
|
--template default \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/evaluate.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||||
--template fewshot \
|
--template fewshot \
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# add `--visual_inputs True` to load MLLM
|
# add `--visual_inputs True` to load MLLM
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/web_demo.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||||
--template default \
|
--template default \
|
||||||
|
|
|
@ -1,6 +1,7 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
# ZeRO-3 enables weight sharding on multiple GPUs
|
||||||
|
|
||||||
deepspeed --num_gpus 4 ../../src/train_bash.py \
|
deepspeed --num_gpus 4 ../../src/train.py \
|
||||||
--deepspeed ../deepspeed/ds_z3_config.json \
|
--deepspeed ../deepspeed/ds_z3_config.json \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
|
|
|
@ -3,7 +3,7 @@
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||||
--config_file ../accelerate/master_config.yaml \
|
--config_file ../accelerate/master_config.yaml \
|
||||||
../../src/train_bash.py \
|
../../src/train.py \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
|
||||||
--config_file ../accelerate/single_config.yaml \
|
--config_file ../accelerate/single_config.yaml \
|
||||||
../../src/train_bash.py \
|
../../src/train.py \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage dpo \
|
--stage dpo \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage orpo \
|
--stage orpo \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage ppo \
|
--stage ppo \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_predict \
|
--do_predict \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# use `--tokenized_path` in training script to load data
|
# use `--tokenized_path` in training script to load data
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES= python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES= llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage pt \
|
--stage pt \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage rm \
|
--stage rm \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path llava-hf/llava-1.5-7b-hf \
|
--model_name_or_path llava-hf/llava-1.5-7b-hf \
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# DO NOT use quantized model or quantization_bit when merging lora weights
|
# DO NOT use quantized model or quantization_bit when merging lora weights
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
|
||||||
--template default \
|
--template default \
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
# NEED TO run `merge.sh` before using this script
|
# NEED TO run `merge.sh` before using this script
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/export_model.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \
|
||||||
--model_name_or_path ../../models/llama2-7b-sft \
|
--model_name_or_path ../../models/llama2-7b-sft \
|
||||||
--template default \
|
--template default \
|
||||||
--export_dir ../../models/llama2-7b-sft-int4 \
|
--export_dir ../../models/llama2-7b-sft-int4 \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
|
--model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path TheBloke/Llama-2-7B-AWQ \
|
--model_name_or_path TheBloke/Llama-2-7B-AWQ \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
--model_name_or_path meta-llama/Llama-2-7b-hf \
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
|
||||||
--stage sft \
|
--stage sft \
|
||||||
--do_train \
|
--do_train \
|
||||||
--model_name_or_path TheBloke/Llama-2-7B-GPTQ \
|
--model_name_or_path TheBloke/Llama-2-7B-GPTQ \
|
||||||
|
|
|
@ -16,3 +16,4 @@ sse-starlette
|
||||||
matplotlib
|
matplotlib
|
||||||
fire
|
fire
|
||||||
packaging
|
packaging
|
||||||
|
pyyaml
|
||||||
|
|
1
setup.py
1
setup.py
|
@ -52,6 +52,7 @@ def main():
|
||||||
python_requires=">=3.8.0",
|
python_requires=">=3.8.0",
|
||||||
install_requires=get_requires(),
|
install_requires=get_requires(),
|
||||||
extras_require=extra_require,
|
extras_require=extra_require,
|
||||||
|
entry_points={"console_scripts": ["llamafactory-cli = llmtuner.cli:main"]},
|
||||||
classifiers=[
|
classifiers=[
|
||||||
"Development Status :: 4 - Beta",
|
"Development Status :: 4 - Beta",
|
||||||
"Intended Audience :: Developers",
|
"Intended Audience :: Developers",
|
||||||
|
|
|
@ -1,16 +0,0 @@
|
||||||
import os
|
|
||||||
|
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
from llmtuner import ChatModel, create_app
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
chat_model = ChatModel()
|
|
||||||
app = create_app(chat_model)
|
|
||||||
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
|
@ -1,49 +0,0 @@
|
||||||
from llmtuner import ChatModel
|
|
||||||
from llmtuner.extras.misc import torch_gc
|
|
||||||
|
|
||||||
|
|
||||||
try:
|
|
||||||
import platform
|
|
||||||
|
|
||||||
if platform.system() != "Windows":
|
|
||||||
import readline # noqa: F401
|
|
||||||
except ImportError:
|
|
||||||
print("Install `readline` for a better experience.")
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
chat_model = ChatModel()
|
|
||||||
messages = []
|
|
||||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
|
||||||
|
|
||||||
while True:
|
|
||||||
try:
|
|
||||||
query = input("\nUser: ")
|
|
||||||
except UnicodeDecodeError:
|
|
||||||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
|
||||||
continue
|
|
||||||
except Exception:
|
|
||||||
raise
|
|
||||||
|
|
||||||
if query.strip() == "exit":
|
|
||||||
break
|
|
||||||
|
|
||||||
if query.strip() == "clear":
|
|
||||||
messages = []
|
|
||||||
torch_gc()
|
|
||||||
print("History has been removed.")
|
|
||||||
continue
|
|
||||||
|
|
||||||
messages.append({"role": "user", "content": query})
|
|
||||||
print("Assistant: ", end="", flush=True)
|
|
||||||
|
|
||||||
response = ""
|
|
||||||
for new_text in chat_model.stream_chat(messages):
|
|
||||||
print(new_text, end="", flush=True)
|
|
||||||
response += new_text
|
|
||||||
print()
|
|
||||||
messages.append({"role": "assistant", "content": response})
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
|
@ -1,9 +0,0 @@
|
||||||
from llmtuner import Evaluator
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
Evaluator().eval()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
|
@ -1,9 +0,0 @@
|
||||||
from llmtuner import export_model
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
export_model()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
|
@ -1,11 +1,3 @@
|
||||||
# Level: api, webui > chat, eval, train > data, model > extras, hparams
|
# Level: api, webui > chat, eval, train > data, model > extras, hparams
|
||||||
|
|
||||||
from .api import create_app
|
__version__ = "0.7.1.dev0"
|
||||||
from .chat import ChatModel
|
|
||||||
from .eval import Evaluator
|
|
||||||
from .train import export_model, run_exp
|
|
||||||
from .webui import create_ui, create_web_demo
|
|
||||||
|
|
||||||
|
|
||||||
__version__ = "0.7.0"
|
|
||||||
__all__ = ["create_app", "ChatModel", "Evaluator", "export_model", "run_exp", "create_ui", "create_web_demo"]
|
|
||||||
|
|
|
@ -1,4 +0,0 @@
|
||||||
from .app import create_app
|
|
||||||
|
|
||||||
|
|
||||||
__all__ = ["create_app"]
|
|
|
@ -224,7 +224,8 @@ def create_app(chat_model: "ChatModel") -> "FastAPI":
|
||||||
return app
|
return app
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def run_api():
|
||||||
chat_model = ChatModel()
|
chat_model = ChatModel()
|
||||||
app = create_app(chat_model)
|
app = create_app(chat_model)
|
||||||
|
print("Visit http://localhost:{}/docs for API document.".format(os.environ.get("API_PORT", 8000)))
|
||||||
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("API_PORT", 8000)), workers=1)
|
||||||
|
|
|
@ -2,6 +2,7 @@ import asyncio
|
||||||
from threading import Thread
|
from threading import Thread
|
||||||
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence
|
||||||
|
|
||||||
|
from ..extras.misc import torch_gc
|
||||||
from ..hparams import get_infer_args
|
from ..hparams import get_infer_args
|
||||||
from .hf_engine import HuggingfaceEngine
|
from .hf_engine import HuggingfaceEngine
|
||||||
from .vllm_engine import VllmEngine
|
from .vllm_engine import VllmEngine
|
||||||
|
@ -95,3 +96,45 @@ class ChatModel:
|
||||||
**input_kwargs,
|
**input_kwargs,
|
||||||
) -> List[float]:
|
) -> List[float]:
|
||||||
return await self.engine.get_scores(batch_input, **input_kwargs)
|
return await self.engine.get_scores(batch_input, **input_kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def run_chat():
|
||||||
|
try:
|
||||||
|
import platform
|
||||||
|
|
||||||
|
if platform.system() != "Windows":
|
||||||
|
import readline # noqa: F401
|
||||||
|
except ImportError:
|
||||||
|
print("Install `readline` for a better experience.")
|
||||||
|
|
||||||
|
chat_model = ChatModel()
|
||||||
|
messages = []
|
||||||
|
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
query = input("\nUser: ")
|
||||||
|
except UnicodeDecodeError:
|
||||||
|
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||||||
|
continue
|
||||||
|
except Exception:
|
||||||
|
raise
|
||||||
|
|
||||||
|
if query.strip() == "exit":
|
||||||
|
break
|
||||||
|
|
||||||
|
if query.strip() == "clear":
|
||||||
|
messages = []
|
||||||
|
torch_gc()
|
||||||
|
print("History has been removed.")
|
||||||
|
continue
|
||||||
|
|
||||||
|
messages.append({"role": "user", "content": query})
|
||||||
|
print("Assistant: ", end="", flush=True)
|
||||||
|
|
||||||
|
response = ""
|
||||||
|
for new_text in chat_model.stream_chat(messages):
|
||||||
|
print(new_text, end="", flush=True)
|
||||||
|
response += new_text
|
||||||
|
print()
|
||||||
|
messages.append({"role": "assistant", "content": response})
|
||||||
|
|
|
@ -0,0 +1,39 @@
|
||||||
|
import sys
|
||||||
|
from enum import Enum, unique
|
||||||
|
|
||||||
|
from .api.app import run_api
|
||||||
|
from .chat.chat_model import run_chat
|
||||||
|
from .eval.evaluator import run_eval
|
||||||
|
from .train.tuner import export_model, run_exp
|
||||||
|
from .webui.interface import run_web_demo, run_web_ui
|
||||||
|
|
||||||
|
|
||||||
|
@unique
|
||||||
|
class Command(str, Enum):
|
||||||
|
API = "api"
|
||||||
|
CHAT = "chat"
|
||||||
|
EVAL = "eval"
|
||||||
|
EXPORT = "export"
|
||||||
|
TRAIN = "train"
|
||||||
|
WEBDEMO = "webchat"
|
||||||
|
WEBUI = "webui"
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
command = sys.argv.pop(1)
|
||||||
|
if command == Command.API:
|
||||||
|
run_api()
|
||||||
|
elif command == Command.CHAT:
|
||||||
|
run_chat()
|
||||||
|
elif command == Command.EVAL:
|
||||||
|
run_eval()
|
||||||
|
elif command == Command.EXPORT:
|
||||||
|
export_model()
|
||||||
|
elif command == Command.TRAIN:
|
||||||
|
run_exp()
|
||||||
|
elif command == Command.WEBDEMO:
|
||||||
|
run_web_demo()
|
||||||
|
elif command == Command.WEBUI:
|
||||||
|
run_web_ui()
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Unknown command: {}".format(command))
|
|
@ -1,4 +0,0 @@
|
||||||
from .evaluator import Evaluator
|
|
||||||
|
|
||||||
|
|
||||||
__all__ = ["Evaluator"]
|
|
|
@ -118,6 +118,6 @@ class Evaluator:
|
||||||
f.write(score_info)
|
f.write(score_info)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def run_eval():
|
||||||
evaluator = Evaluator()
|
evaluator = Evaluator()
|
||||||
evaluator.eval()
|
evaluator.eval()
|
||||||
|
|
|
@ -1,14 +1,18 @@
|
||||||
import json
|
import json
|
||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
|
import signal
|
||||||
import time
|
import time
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
from typing import TYPE_CHECKING
|
from typing import TYPE_CHECKING, Any, Dict
|
||||||
|
|
||||||
|
import transformers
|
||||||
from transformers import TrainerCallback
|
from transformers import TrainerCallback
|
||||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
|
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, has_length
|
||||||
|
|
||||||
from .constants import LOG_FILE_NAME
|
from .constants import TRAINER_LOG
|
||||||
from .logging import get_logger
|
from .logging import LoggerHandler, get_logger
|
||||||
from .misc import fix_valuehead_checkpoint
|
from .misc import fix_valuehead_checkpoint
|
||||||
|
|
||||||
|
|
||||||
|
@ -33,20 +37,32 @@ class FixValueHeadModelCallback(TrainerCallback):
|
||||||
|
|
||||||
|
|
||||||
class LogCallback(TrainerCallback):
|
class LogCallback(TrainerCallback):
|
||||||
def __init__(self, runner=None):
|
def __init__(self, output_dir: str) -> None:
|
||||||
self.runner = runner
|
self.aborted = False
|
||||||
self.in_training = False
|
self.do_train = False
|
||||||
|
self.webui_mode = bool(int(os.environ.get("LLAMABOARD_ENABLED", "0")))
|
||||||
|
if self.webui_mode:
|
||||||
|
signal.signal(signal.SIGABRT, self._set_abort)
|
||||||
|
self.logger_handler = LoggerHandler(output_dir)
|
||||||
|
logging.root.addHandler(self.logger_handler)
|
||||||
|
transformers.logging.add_handler(self.logger_handler)
|
||||||
|
|
||||||
|
def _set_abort(self, signum, frame) -> None:
|
||||||
|
self.aborted = True
|
||||||
|
|
||||||
|
def _reset(self, max_steps: int = 0) -> None:
|
||||||
self.start_time = time.time()
|
self.start_time = time.time()
|
||||||
self.cur_steps = 0
|
self.cur_steps = 0
|
||||||
self.max_steps = 0
|
self.max_steps = max_steps
|
||||||
self.elapsed_time = ""
|
self.elapsed_time = ""
|
||||||
self.remaining_time = ""
|
self.remaining_time = ""
|
||||||
|
|
||||||
def timing(self):
|
def _timing(self, cur_steps: int) -> None:
|
||||||
cur_time = time.time()
|
cur_time = time.time()
|
||||||
elapsed_time = cur_time - self.start_time
|
elapsed_time = cur_time - self.start_time
|
||||||
avg_time_per_step = elapsed_time / self.cur_steps if self.cur_steps != 0 else 0
|
avg_time_per_step = elapsed_time / cur_steps if cur_steps != 0 else 0
|
||||||
remaining_time = (self.max_steps - self.cur_steps) * avg_time_per_step
|
remaining_time = (self.max_steps - cur_steps) * avg_time_per_step
|
||||||
|
self.cur_steps = cur_steps
|
||||||
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
|
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
|
||||||
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
|
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
|
||||||
|
|
||||||
|
@ -54,36 +70,27 @@ class LogCallback(TrainerCallback):
|
||||||
r"""
|
r"""
|
||||||
Event called at the beginning of training.
|
Event called at the beginning of training.
|
||||||
"""
|
"""
|
||||||
if state.is_local_process_zero:
|
if args.should_log:
|
||||||
self.in_training = True
|
self.do_train = True
|
||||||
self.start_time = time.time()
|
self._reset(max_steps=state.max_steps)
|
||||||
self.max_steps = state.max_steps
|
|
||||||
|
|
||||||
if args.save_on_each_node:
|
if args.should_save:
|
||||||
if not state.is_local_process_zero:
|
os.makedirs(args.output_dir, exist_ok=True)
|
||||||
return
|
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||||
else:
|
|
||||||
if not state.is_world_process_zero:
|
|
||||||
return
|
|
||||||
|
|
||||||
if os.path.exists(os.path.join(args.output_dir, LOG_FILE_NAME)) and args.overwrite_output_dir:
|
if (
|
||||||
logger.warning("Previous log file in this folder will be deleted.")
|
args.should_save
|
||||||
os.remove(os.path.join(args.output_dir, LOG_FILE_NAME))
|
and os.path.exists(os.path.join(args.output_dir, TRAINER_LOG))
|
||||||
|
and args.overwrite_output_dir
|
||||||
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
):
|
||||||
r"""
|
logger.warning("Previous trainer log in this folder will be deleted.")
|
||||||
Event called at the end of training.
|
os.remove(os.path.join(args.output_dir, TRAINER_LOG))
|
||||||
"""
|
|
||||||
if state.is_local_process_zero:
|
|
||||||
self.in_training = False
|
|
||||||
self.cur_steps = 0
|
|
||||||
self.max_steps = 0
|
|
||||||
|
|
||||||
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||||
r"""
|
r"""
|
||||||
Event called at the end of an substep during gradient accumulation.
|
Event called at the end of an substep during gradient accumulation.
|
||||||
"""
|
"""
|
||||||
if state.is_local_process_zero and self.runner is not None and self.runner.aborted:
|
if self.aborted:
|
||||||
control.should_epoch_stop = True
|
control.should_epoch_stop = True
|
||||||
control.should_training_stop = True
|
control.should_training_stop = True
|
||||||
|
|
||||||
|
@ -91,42 +98,41 @@ class LogCallback(TrainerCallback):
|
||||||
r"""
|
r"""
|
||||||
Event called at the end of a training step.
|
Event called at the end of a training step.
|
||||||
"""
|
"""
|
||||||
if state.is_local_process_zero:
|
if args.should_log:
|
||||||
self.cur_steps = state.global_step
|
self._timing(cur_steps=state.global_step)
|
||||||
self.timing()
|
|
||||||
if self.runner is not None and self.runner.aborted:
|
|
||||||
control.should_epoch_stop = True
|
|
||||||
control.should_training_stop = True
|
|
||||||
|
|
||||||
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
if self.aborted:
|
||||||
|
control.should_epoch_stop = True
|
||||||
|
control.should_training_stop = True
|
||||||
|
|
||||||
|
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||||
r"""
|
r"""
|
||||||
Event called after an evaluation phase.
|
Event called at the end of training.
|
||||||
"""
|
"""
|
||||||
if state.is_local_process_zero and not self.in_training:
|
self.thread_pool.shutdown(wait=True)
|
||||||
self.cur_steps = 0
|
self.thread_pool = None
|
||||||
self.max_steps = 0
|
|
||||||
|
|
||||||
def on_predict(
|
def on_prediction_step(
|
||||||
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", *other, **kwargs
|
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
|
||||||
):
|
):
|
||||||
r"""
|
r"""
|
||||||
Event called after a successful prediction.
|
Event called after a prediction step.
|
||||||
"""
|
"""
|
||||||
if state.is_local_process_zero and not self.in_training:
|
eval_dataloader = kwargs.pop("eval_dataloader", None)
|
||||||
self.cur_steps = 0
|
if args.should_log and has_length(eval_dataloader) and not self.do_train:
|
||||||
self.max_steps = 0
|
if self.max_steps == 0:
|
||||||
|
self.max_steps = len(eval_dataloader)
|
||||||
|
|
||||||
|
self._timing(cur_steps=self.cur_steps + 1)
|
||||||
|
|
||||||
|
def _write_log(self, output_dir: str, logs: Dict[str, Any]):
|
||||||
|
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
|
||||||
|
f.write(json.dumps(logs) + "\n")
|
||||||
|
|
||||||
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs) -> None:
|
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs) -> None:
|
||||||
r"""
|
r"""
|
||||||
Event called after logging the last logs.
|
Event called after logging the last logs, `args.should_log` has been applied.
|
||||||
"""
|
"""
|
||||||
if args.save_on_each_node:
|
|
||||||
if not state.is_local_process_zero:
|
|
||||||
return
|
|
||||||
else:
|
|
||||||
if not state.is_world_process_zero:
|
|
||||||
return
|
|
||||||
|
|
||||||
logs = dict(
|
logs = dict(
|
||||||
current_steps=self.cur_steps,
|
current_steps=self.cur_steps,
|
||||||
total_steps=self.max_steps,
|
total_steps=self.max_steps,
|
||||||
|
@ -141,26 +147,13 @@ class LogCallback(TrainerCallback):
|
||||||
elapsed_time=self.elapsed_time,
|
elapsed_time=self.elapsed_time,
|
||||||
remaining_time=self.remaining_time,
|
remaining_time=self.remaining_time,
|
||||||
)
|
)
|
||||||
if self.runner is not None:
|
logs = {k: v for k, v in logs.items() if v is not None}
|
||||||
|
if self.webui_mode and "loss" in logs and "learning_rate" in logs and "epoch" in logs:
|
||||||
logger.info(
|
logger.info(
|
||||||
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format(
|
"{{'loss': {:.4f}, 'learning_rate': {:2.4e}, 'epoch': {:.2f}}}".format(
|
||||||
logs["loss"] or 0, logs["learning_rate"] or 0, logs["epoch"] or 0
|
logs["loss"], logs["learning_rate"], logs["epoch"]
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
os.makedirs(args.output_dir, exist_ok=True)
|
if args.should_save and self.thread_pool is not None:
|
||||||
with open(os.path.join(args.output_dir, "trainer_log.jsonl"), "a", encoding="utf-8") as f:
|
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||||
f.write(json.dumps(logs) + "\n")
|
|
||||||
|
|
||||||
def on_prediction_step(
|
|
||||||
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
|
|
||||||
):
|
|
||||||
r"""
|
|
||||||
Event called after a prediction step.
|
|
||||||
"""
|
|
||||||
eval_dataloader = kwargs.pop("eval_dataloader", None)
|
|
||||||
if state.is_local_process_zero and has_length(eval_dataloader) and not self.in_training:
|
|
||||||
if self.max_steps == 0:
|
|
||||||
self.max_steps = len(eval_dataloader)
|
|
||||||
self.cur_steps += 1
|
|
||||||
self.timing()
|
|
||||||
|
|
|
@ -24,8 +24,6 @@ IGNORE_INDEX = -100
|
||||||
|
|
||||||
LAYERNORM_NAMES = {"norm", "ln"}
|
LAYERNORM_NAMES = {"norm", "ln"}
|
||||||
|
|
||||||
LOG_FILE_NAME = "trainer_log.jsonl"
|
|
||||||
|
|
||||||
METHODS = ["full", "freeze", "lora"]
|
METHODS = ["full", "freeze", "lora"]
|
||||||
|
|
||||||
MLLM_LIST = ["LLaVA1.5"]
|
MLLM_LIST = ["LLaVA1.5"]
|
||||||
|
@ -34,10 +32,16 @@ MOD_SUPPORTED_MODELS = ["bloom", "falcon", "gemma", "llama", "mistral", "mixtral
|
||||||
|
|
||||||
PEFT_METHODS = ["lora"]
|
PEFT_METHODS = ["lora"]
|
||||||
|
|
||||||
|
RUNNING_LOG = "running_log.txt"
|
||||||
|
|
||||||
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
|
SUBJECTS = ["Average", "STEM", "Social Sciences", "Humanities", "Other"]
|
||||||
|
|
||||||
SUPPORTED_MODELS = OrderedDict()
|
SUPPORTED_MODELS = OrderedDict()
|
||||||
|
|
||||||
|
TRAINER_CONFIG = "trainer_config.yaml"
|
||||||
|
|
||||||
|
TRAINER_LOG = "trainer_log.jsonl"
|
||||||
|
|
||||||
TRAINING_STAGES = {
|
TRAINING_STAGES = {
|
||||||
"Supervised Fine-Tuning": "sft",
|
"Supervised Fine-Tuning": "sft",
|
||||||
"Reward Modeling": "rm",
|
"Reward Modeling": "rm",
|
||||||
|
|
|
@ -1,5 +1,9 @@
|
||||||
import logging
|
import logging
|
||||||
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
from .constants import RUNNING_LOG
|
||||||
|
|
||||||
|
|
||||||
class LoggerHandler(logging.Handler):
|
class LoggerHandler(logging.Handler):
|
||||||
|
@ -7,19 +11,35 @@ class LoggerHandler(logging.Handler):
|
||||||
Logger handler used in Web UI.
|
Logger handler used in Web UI.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self, output_dir: str) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.log = ""
|
formatter = logging.Formatter(
|
||||||
|
fmt="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S"
|
||||||
|
)
|
||||||
|
self.setLevel(logging.INFO)
|
||||||
|
self.setFormatter(formatter)
|
||||||
|
|
||||||
def reset(self):
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
self.log = ""
|
self.running_log = os.path.join(output_dir, RUNNING_LOG)
|
||||||
|
if os.path.exists(self.running_log):
|
||||||
|
os.remove(self.running_log)
|
||||||
|
|
||||||
def emit(self, record):
|
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||||
|
|
||||||
|
def _write_log(self, log_entry: str) -> None:
|
||||||
|
with open(self.running_log, "a", encoding="utf-8") as f:
|
||||||
|
f.write(log_entry + "\n\n")
|
||||||
|
|
||||||
|
def emit(self, record) -> None:
|
||||||
if record.name == "httpx":
|
if record.name == "httpx":
|
||||||
return
|
return
|
||||||
|
|
||||||
log_entry = self.format(record)
|
log_entry = self.format(record)
|
||||||
self.log += log_entry
|
self.thread_pool.submit(self._write_log, log_entry)
|
||||||
self.log += "\n\n"
|
|
||||||
|
def close(self) -> None:
|
||||||
|
self.thread_pool.shutdown(wait=True)
|
||||||
|
return super().close()
|
||||||
|
|
||||||
|
|
||||||
def get_logger(name: str) -> logging.Logger:
|
def get_logger(name: str) -> logging.Logger:
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
import json
|
import json
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
from typing import List
|
from typing import Any, Dict, List
|
||||||
|
|
||||||
from transformers.trainer import TRAINER_STATE_NAME
|
from transformers.trainer import TRAINER_STATE_NAME
|
||||||
|
|
||||||
|
@ -10,6 +10,7 @@ from .packages import is_matplotlib_available
|
||||||
|
|
||||||
|
|
||||||
if is_matplotlib_available():
|
if is_matplotlib_available():
|
||||||
|
import matplotlib.figure
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
|
||||||
|
@ -21,7 +22,7 @@ def smooth(scalars: List[float]) -> List[float]:
|
||||||
EMA implementation according to TensorBoard.
|
EMA implementation according to TensorBoard.
|
||||||
"""
|
"""
|
||||||
last = scalars[0]
|
last = scalars[0]
|
||||||
smoothed = list()
|
smoothed = []
|
||||||
weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function
|
weight = 1.8 * (1 / (1 + math.exp(-0.05 * len(scalars))) - 0.5) # a sigmoid function
|
||||||
for next_val in scalars:
|
for next_val in scalars:
|
||||||
smoothed_val = last * weight + (1 - weight) * next_val
|
smoothed_val = last * weight + (1 - weight) * next_val
|
||||||
|
@ -30,7 +31,27 @@ def smooth(scalars: List[float]) -> List[float]:
|
||||||
return smoothed
|
return smoothed
|
||||||
|
|
||||||
|
|
||||||
|
def gen_loss_plot(trainer_log: List[Dict[str, Any]]) -> "matplotlib.figure.Figure":
|
||||||
|
plt.close("all")
|
||||||
|
plt.switch_backend("agg")
|
||||||
|
fig = plt.figure()
|
||||||
|
ax = fig.add_subplot(111)
|
||||||
|
steps, losses = [], []
|
||||||
|
for log in trainer_log:
|
||||||
|
if log.get("loss", None):
|
||||||
|
steps.append(log["current_steps"])
|
||||||
|
losses.append(log["loss"])
|
||||||
|
|
||||||
|
ax.plot(steps, losses, color="#1f77b4", alpha=0.4, label="original")
|
||||||
|
ax.plot(steps, smooth(losses), color="#1f77b4", label="smoothed")
|
||||||
|
ax.legend()
|
||||||
|
ax.set_xlabel("step")
|
||||||
|
ax.set_ylabel("loss")
|
||||||
|
return fig
|
||||||
|
|
||||||
|
|
||||||
def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None:
|
def plot_loss(save_dictionary: os.PathLike, keys: List[str] = ["loss"]) -> None:
|
||||||
|
plt.switch_backend("agg")
|
||||||
with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
|
with open(os.path.join(save_dictionary, TRAINER_STATE_NAME), "r", encoding="utf-8") as f:
|
||||||
data = json.load(f)
|
data = json.load(f)
|
||||||
|
|
||||||
|
|
|
@ -10,6 +10,7 @@ from transformers.trainer_utils import get_last_checkpoint
|
||||||
from transformers.utils import is_torch_bf16_gpu_available
|
from transformers.utils import is_torch_bf16_gpu_available
|
||||||
from transformers.utils.versions import require_version
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
|
from ..extras.constants import TRAINER_CONFIG
|
||||||
from ..extras.logging import get_logger
|
from ..extras.logging import get_logger
|
||||||
from ..extras.misc import check_dependencies, get_current_device
|
from ..extras.misc import check_dependencies, get_current_device
|
||||||
from .data_args import DataArguments
|
from .data_args import DataArguments
|
||||||
|
@ -251,7 +252,8 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||||
and can_resume_from_checkpoint
|
and can_resume_from_checkpoint
|
||||||
):
|
):
|
||||||
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
||||||
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
files = os.listdir(training_args.output_dir)
|
||||||
|
if last_checkpoint is None and len(files) > 0 and (len(files) != 1 or files[0] != TRAINER_CONFIG):
|
||||||
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
|
raise ValueError("Output directory already exists and is not empty. Please set `overwrite_output_dir`.")
|
||||||
|
|
||||||
if last_checkpoint is not None:
|
if last_checkpoint is not None:
|
||||||
|
|
|
@ -1,4 +0,0 @@
|
||||||
from .tuner import export_model, run_exp
|
|
||||||
|
|
||||||
|
|
||||||
__all__ = ["export_model", "run_exp"]
|
|
|
@ -23,9 +23,9 @@ if TYPE_CHECKING:
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None):
|
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallback"] = []):
|
||||||
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
model_args, data_args, training_args, finetuning_args, generating_args = get_train_args(args)
|
||||||
callbacks = [LogCallback()] if callbacks is None else callbacks
|
callbacks.append(LogCallback(training_args.output_dir))
|
||||||
|
|
||||||
if finetuning_args.stage == "pt":
|
if finetuning_args.stage == "pt":
|
||||||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||||
|
@ -88,7 +88,3 @@ def export_model(args: Optional[Dict[str, Any]] = None):
|
||||||
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
|
tokenizer.push_to_hub(model_args.export_hub_model_id, token=model_args.hf_hub_token)
|
||||||
except Exception:
|
except Exception:
|
||||||
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
run_exp()
|
|
||||||
|
|
|
@ -1,4 +0,0 @@
|
||||||
from .interface import create_ui, create_web_demo
|
|
||||||
|
|
||||||
|
|
||||||
__all__ = ["create_ui", "create_web_demo"]
|
|
|
@ -4,6 +4,7 @@ from collections import defaultdict
|
||||||
from typing import Any, Dict, Optional
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME
|
from peft.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME
|
||||||
|
from yaml import safe_dump, safe_load
|
||||||
|
|
||||||
from ..extras.constants import (
|
from ..extras.constants import (
|
||||||
DATA_CONFIG,
|
DATA_CONFIG,
|
||||||
|
@ -29,7 +30,7 @@ DEFAULT_CACHE_DIR = "cache"
|
||||||
DEFAULT_CONFIG_DIR = "config"
|
DEFAULT_CONFIG_DIR = "config"
|
||||||
DEFAULT_DATA_DIR = "data"
|
DEFAULT_DATA_DIR = "data"
|
||||||
DEFAULT_SAVE_DIR = "saves"
|
DEFAULT_SAVE_DIR = "saves"
|
||||||
USER_CONFIG = "user.config"
|
USER_CONFIG = "user_config.yaml"
|
||||||
|
|
||||||
|
|
||||||
def get_save_dir(*args) -> os.PathLike:
|
def get_save_dir(*args) -> os.PathLike:
|
||||||
|
@ -47,7 +48,7 @@ def get_save_path(config_path: str) -> os.PathLike:
|
||||||
def load_config() -> Dict[str, Any]:
|
def load_config() -> Dict[str, Any]:
|
||||||
try:
|
try:
|
||||||
with open(get_config_path(), "r", encoding="utf-8") as f:
|
with open(get_config_path(), "r", encoding="utf-8") as f:
|
||||||
return json.load(f)
|
return safe_load(f)
|
||||||
except Exception:
|
except Exception:
|
||||||
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
|
return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
|
||||||
|
|
||||||
|
@ -60,13 +61,13 @@ def save_config(lang: str, model_name: Optional[str] = None, model_path: Optiona
|
||||||
user_config["last_model"] = model_name
|
user_config["last_model"] = model_name
|
||||||
user_config["path_dict"][model_name] = model_path
|
user_config["path_dict"][model_name] = model_path
|
||||||
with open(get_config_path(), "w", encoding="utf-8") as f:
|
with open(get_config_path(), "w", encoding="utf-8") as f:
|
||||||
json.dump(user_config, f, indent=2, ensure_ascii=False)
|
safe_dump(user_config, f)
|
||||||
|
|
||||||
|
|
||||||
def load_args(config_path: str) -> Optional[Dict[str, Any]]:
|
def load_args(config_path: str) -> Optional[Dict[str, Any]]:
|
||||||
try:
|
try:
|
||||||
with open(get_save_path(config_path), "r", encoding="utf-8") as f:
|
with open(get_save_path(config_path), "r", encoding="utf-8") as f:
|
||||||
return json.load(f)
|
return safe_load(f)
|
||||||
except Exception:
|
except Exception:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
@ -74,7 +75,7 @@ def load_args(config_path: str) -> Optional[Dict[str, Any]]:
|
||||||
def save_args(config_path: str, config_dict: Dict[str, Any]) -> str:
|
def save_args(config_path: str, config_dict: Dict[str, Any]) -> str:
|
||||||
os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
|
os.makedirs(DEFAULT_CONFIG_DIR, exist_ok=True)
|
||||||
with open(get_save_path(config_path), "w", encoding="utf-8") as f:
|
with open(get_save_path(config_path), "w", encoding="utf-8") as f:
|
||||||
json.dump(config_dict, f, indent=2, ensure_ascii=False)
|
safe_dump(config_dict, f)
|
||||||
|
|
||||||
return str(get_save_path(config_path))
|
return str(get_save_path(config_path))
|
||||||
|
|
||||||
|
|
|
@ -2,7 +2,7 @@ from typing import TYPE_CHECKING, Dict, Generator, List
|
||||||
|
|
||||||
from ...extras.misc import torch_gc
|
from ...extras.misc import torch_gc
|
||||||
from ...extras.packages import is_gradio_available
|
from ...extras.packages import is_gradio_available
|
||||||
from ...train import export_model
|
from ...train.tuner import export_model
|
||||||
from ..common import get_save_dir
|
from ..common import get_save_dir
|
||||||
from ..locales import ALERTS
|
from ..locales import ALERTS
|
||||||
|
|
||||||
|
|
|
@ -245,7 +245,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
resume_btn = gr.Checkbox(visible=False, interactive=False)
|
resume_btn = gr.Checkbox(visible=False, interactive=False)
|
||||||
process_bar = gr.Slider(visible=False, interactive=False)
|
progress_bar = gr.Slider(visible=False, interactive=False)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
output_box = gr.Markdown()
|
output_box = gr.Markdown()
|
||||||
|
@ -263,14 +263,14 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
||||||
output_dir=output_dir,
|
output_dir=output_dir,
|
||||||
config_path=config_path,
|
config_path=config_path,
|
||||||
resume_btn=resume_btn,
|
resume_btn=resume_btn,
|
||||||
process_bar=process_bar,
|
progress_bar=progress_bar,
|
||||||
output_box=output_box,
|
output_box=output_box,
|
||||||
loss_viewer=loss_viewer,
|
loss_viewer=loss_viewer,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
input_elems.update({output_dir, config_path})
|
input_elems.update({output_dir, config_path})
|
||||||
output_elems = [output_box, process_bar, loss_viewer]
|
output_elems = [output_box, progress_bar, loss_viewer]
|
||||||
|
|
||||||
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None)
|
cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems, concurrency_limit=None)
|
||||||
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None)
|
arg_save_btn.click(engine.runner.save_args, input_elems, output_elems, concurrency_limit=None)
|
||||||
|
|
|
@ -41,7 +41,7 @@ class Engine:
|
||||||
init_dict["train.dataset"] = {"choices": list_dataset().choices}
|
init_dict["train.dataset"] = {"choices": list_dataset().choices}
|
||||||
init_dict["eval.dataset"] = {"choices": list_dataset().choices}
|
init_dict["eval.dataset"] = {"choices": list_dataset().choices}
|
||||||
init_dict["train.output_dir"] = {"value": "train_{}".format(get_time())}
|
init_dict["train.output_dir"] = {"value": "train_{}".format(get_time())}
|
||||||
init_dict["train.config_path"] = {"value": "{}.json".format(get_time())}
|
init_dict["train.config_path"] = {"value": "{}.yaml".format(get_time())}
|
||||||
init_dict["eval.output_dir"] = {"value": "eval_{}".format(get_time())}
|
init_dict["eval.output_dir"] = {"value": "eval_{}".format(get_time())}
|
||||||
init_dict["infer.image_box"] = {"visible": False}
|
init_dict["infer.image_box"] = {"visible": False}
|
||||||
|
|
||||||
|
@ -51,7 +51,7 @@ class Engine:
|
||||||
|
|
||||||
yield self._update_component(init_dict)
|
yield self._update_component(init_dict)
|
||||||
|
|
||||||
if self.runner.alive and not self.demo_mode and not self.pure_chat:
|
if self.runner.running and not self.demo_mode and not self.pure_chat:
|
||||||
yield {elem: elem.__class__(value=value) for elem, value in self.runner.running_data.items()}
|
yield {elem: elem.__class__(value=value) for elem, value in self.runner.running_data.items()}
|
||||||
if self.runner.do_train:
|
if self.runner.do_train:
|
||||||
yield self._update_component({"train.resume_btn": {"value": True}})
|
yield self._update_component({"train.resume_btn": {"value": True}})
|
||||||
|
|
|
@ -68,5 +68,9 @@ def create_web_demo() -> gr.Blocks:
|
||||||
return demo
|
return demo
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def run_web_ui():
|
||||||
create_ui().queue().launch(server_name="0.0.0.0", server_port=None, share=False, inbrowser=True)
|
create_ui().queue().launch(server_name="0.0.0.0", server_port=None, share=False, inbrowser=True)
|
||||||
|
|
||||||
|
|
||||||
|
def run_web_demo():
|
||||||
|
create_web_demo().queue().launch(server_name="0.0.0.0", server_port=None, share=False, inbrowser=True)
|
||||||
|
|
|
@ -1,22 +1,19 @@
|
||||||
import logging
|
|
||||||
import os
|
import os
|
||||||
import time
|
import signal
|
||||||
from threading import Thread
|
from copy import deepcopy
|
||||||
from typing import TYPE_CHECKING, Any, Dict, Generator
|
from subprocess import Popen, TimeoutExpired
|
||||||
|
from typing import TYPE_CHECKING, Any, Dict, Generator, Optional
|
||||||
|
|
||||||
import transformers
|
import psutil
|
||||||
from transformers.trainer import TRAINING_ARGS_NAME
|
from transformers.trainer import TRAINING_ARGS_NAME
|
||||||
from transformers.utils import is_torch_cuda_available
|
from transformers.utils import is_torch_cuda_available
|
||||||
|
|
||||||
from ..extras.callbacks import LogCallback
|
|
||||||
from ..extras.constants import TRAINING_STAGES
|
from ..extras.constants import TRAINING_STAGES
|
||||||
from ..extras.logging import LoggerHandler
|
|
||||||
from ..extras.misc import get_device_count, torch_gc
|
from ..extras.misc import get_device_count, torch_gc
|
||||||
from ..extras.packages import is_gradio_available
|
from ..extras.packages import is_gradio_available
|
||||||
from ..train import run_exp
|
|
||||||
from .common import get_module, get_save_dir, load_args, load_config, save_args
|
from .common import get_module, get_save_dir, load_args, load_config, save_args
|
||||||
from .locales import ALERTS
|
from .locales import ALERTS
|
||||||
from .utils import gen_cmd, gen_plot, get_eval_results, update_process_bar
|
from .utils import gen_cmd, get_eval_results, get_trainer_info, save_cmd
|
||||||
|
|
||||||
|
|
||||||
if is_gradio_available():
|
if is_gradio_available():
|
||||||
|
@ -34,24 +31,18 @@ class Runner:
|
||||||
self.manager = manager
|
self.manager = manager
|
||||||
self.demo_mode = demo_mode
|
self.demo_mode = demo_mode
|
||||||
""" Resume """
|
""" Resume """
|
||||||
self.thread: "Thread" = None
|
self.trainer: Optional["Popen"] = None
|
||||||
self.do_train = True
|
self.do_train = True
|
||||||
self.running_data: Dict["Component", Any] = None
|
self.running_data: Dict["Component", Any] = None
|
||||||
""" State """
|
""" State """
|
||||||
self.aborted = False
|
self.aborted = False
|
||||||
self.running = False
|
self.running = False
|
||||||
""" Handler """
|
|
||||||
self.logger_handler = LoggerHandler()
|
|
||||||
self.logger_handler.setLevel(logging.INFO)
|
|
||||||
logging.root.addHandler(self.logger_handler)
|
|
||||||
transformers.logging.add_handler(self.logger_handler)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def alive(self) -> bool:
|
|
||||||
return self.thread is not None
|
|
||||||
|
|
||||||
def set_abort(self) -> None:
|
def set_abort(self) -> None:
|
||||||
self.aborted = True
|
self.aborted = True
|
||||||
|
if self.trainer is not None:
|
||||||
|
for children in psutil.Process(self.trainer.pid).children(): # abort the child process
|
||||||
|
os.kill(children.pid, signal.SIGABRT)
|
||||||
|
|
||||||
def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str:
|
def _initialize(self, data: Dict["Component", Any], do_train: bool, from_preview: bool) -> str:
|
||||||
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
|
get = lambda elem_id: data[self.manager.get_elem_by_id(elem_id)]
|
||||||
|
@ -85,13 +76,11 @@ class Runner:
|
||||||
if not from_preview and not is_torch_cuda_available():
|
if not from_preview and not is_torch_cuda_available():
|
||||||
gr.Warning(ALERTS["warn_no_cuda"][lang])
|
gr.Warning(ALERTS["warn_no_cuda"][lang])
|
||||||
|
|
||||||
self.logger_handler.reset()
|
|
||||||
self.trainer_callback = LogCallback(self)
|
|
||||||
return ""
|
return ""
|
||||||
|
|
||||||
def _finalize(self, lang: str, finish_info: str) -> str:
|
def _finalize(self, lang: str, finish_info: str) -> str:
|
||||||
finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info
|
finish_info = ALERTS["info_aborted"][lang] if self.aborted else finish_info
|
||||||
self.thread = None
|
self.trainer = None
|
||||||
self.aborted = False
|
self.aborted = False
|
||||||
self.running = False
|
self.running = False
|
||||||
self.running_data = None
|
self.running_data = None
|
||||||
|
@ -270,11 +259,12 @@ class Runner:
|
||||||
gr.Warning(error)
|
gr.Warning(error)
|
||||||
yield {output_box: error}
|
yield {output_box: error}
|
||||||
else:
|
else:
|
||||||
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
|
|
||||||
run_kwargs = dict(args=args, callbacks=[self.trainer_callback])
|
|
||||||
self.do_train, self.running_data = do_train, data
|
self.do_train, self.running_data = do_train, data
|
||||||
self.thread = Thread(target=run_exp, kwargs=run_kwargs)
|
args = self._parse_train_args(data) if do_train else self._parse_eval_args(data)
|
||||||
self.thread.start()
|
env = deepcopy(os.environ)
|
||||||
|
env["CUDA_VISIBLE_DEVICES"] = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
|
||||||
|
env["LLAMABOARD_ENABLED"] = "1"
|
||||||
|
self.trainer = Popen("llamafactory-cli train {}".format(save_cmd(args)), env=env, shell=True)
|
||||||
yield from self.monitor()
|
yield from self.monitor()
|
||||||
|
|
||||||
def preview_train(self, data):
|
def preview_train(self, data):
|
||||||
|
@ -291,9 +281,6 @@ class Runner:
|
||||||
|
|
||||||
def monitor(self):
|
def monitor(self):
|
||||||
get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)]
|
get = lambda elem_id: self.running_data[self.manager.get_elem_by_id(elem_id)]
|
||||||
self.aborted = False
|
|
||||||
self.running = True
|
|
||||||
|
|
||||||
lang = get("top.lang")
|
lang = get("top.lang")
|
||||||
model_name = get("top.model_name")
|
model_name = get("top.model_name")
|
||||||
finetuning_type = get("top.finetuning_type")
|
finetuning_type = get("top.finetuning_type")
|
||||||
|
@ -301,28 +288,31 @@ class Runner:
|
||||||
output_path = get_save_dir(model_name, finetuning_type, output_dir)
|
output_path = get_save_dir(model_name, finetuning_type, output_dir)
|
||||||
|
|
||||||
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval"))
|
output_box = self.manager.get_elem_by_id("{}.output_box".format("train" if self.do_train else "eval"))
|
||||||
process_bar = self.manager.get_elem_by_id("{}.process_bar".format("train" if self.do_train else "eval"))
|
progress_bar = self.manager.get_elem_by_id("{}.progress_bar".format("train" if self.do_train else "eval"))
|
||||||
loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None
|
loss_viewer = self.manager.get_elem_by_id("train.loss_viewer") if self.do_train else None
|
||||||
|
|
||||||
while self.thread is not None and self.thread.is_alive():
|
while self.trainer is not None:
|
||||||
if self.aborted:
|
if self.aborted:
|
||||||
yield {
|
yield {
|
||||||
output_box: ALERTS["info_aborting"][lang],
|
output_box: ALERTS["info_aborting"][lang],
|
||||||
process_bar: gr.Slider(visible=False),
|
progress_bar: gr.Slider(visible=False),
|
||||||
}
|
}
|
||||||
else:
|
else:
|
||||||
|
running_log, running_progress, running_loss = get_trainer_info(output_path)
|
||||||
return_dict = {
|
return_dict = {
|
||||||
output_box: self.logger_handler.log,
|
output_box: running_log,
|
||||||
process_bar: update_process_bar(self.trainer_callback),
|
progress_bar: running_progress,
|
||||||
}
|
}
|
||||||
if self.do_train:
|
if self.do_train and running_loss is not None:
|
||||||
plot = gen_plot(output_path)
|
return_dict[loss_viewer] = running_loss
|
||||||
if plot is not None:
|
|
||||||
return_dict[loss_viewer] = plot
|
|
||||||
|
|
||||||
yield return_dict
|
yield return_dict
|
||||||
|
|
||||||
time.sleep(2)
|
try:
|
||||||
|
self.trainer.wait(2)
|
||||||
|
self.trainer = None
|
||||||
|
except TimeoutExpired:
|
||||||
|
continue
|
||||||
|
|
||||||
if self.do_train:
|
if self.do_train:
|
||||||
if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)):
|
if os.path.exists(os.path.join(output_path, TRAINING_ARGS_NAME)):
|
||||||
|
@ -337,16 +327,11 @@ class Runner:
|
||||||
|
|
||||||
return_dict = {
|
return_dict = {
|
||||||
output_box: self._finalize(lang, finish_info),
|
output_box: self._finalize(lang, finish_info),
|
||||||
process_bar: gr.Slider(visible=False),
|
progress_bar: gr.Slider(visible=False),
|
||||||
}
|
}
|
||||||
if self.do_train:
|
|
||||||
plot = gen_plot(output_path)
|
|
||||||
if plot is not None:
|
|
||||||
return_dict[loss_viewer] = plot
|
|
||||||
|
|
||||||
yield return_dict
|
yield return_dict
|
||||||
|
|
||||||
def save_args(self, data):
|
def save_args(self, data: dict):
|
||||||
output_box = self.manager.get_elem_by_id("train.output_box")
|
output_box = self.manager.get_elem_by_id("train.output_box")
|
||||||
error = self._initialize(data, do_train=True, from_preview=True)
|
error = self._initialize(data, do_train=True, from_preview=True)
|
||||||
if error:
|
if error:
|
||||||
|
|
|
@ -1,10 +1,13 @@
|
||||||
import json
|
import json
|
||||||
import os
|
import os
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import TYPE_CHECKING, Any, Dict, Optional
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
from yaml import safe_dump
|
||||||
|
|
||||||
|
from ..extras.constants import RUNNING_LOG, TRAINER_CONFIG, TRAINER_LOG
|
||||||
from ..extras.packages import is_gradio_available, is_matplotlib_available
|
from ..extras.packages import is_gradio_available, is_matplotlib_available
|
||||||
from ..extras.ploting import smooth
|
from ..extras.ploting import gen_loss_plot
|
||||||
from .locales import ALERTS
|
from .locales import ALERTS
|
||||||
|
|
||||||
|
|
||||||
|
@ -12,30 +15,6 @@ if is_gradio_available():
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
|
|
||||||
if is_matplotlib_available():
|
|
||||||
import matplotlib.figure
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
|
||||||
from ..extras.callbacks import LogCallback
|
|
||||||
|
|
||||||
|
|
||||||
def update_process_bar(callback: "LogCallback") -> "gr.Slider":
|
|
||||||
if not callback.max_steps:
|
|
||||||
return gr.Slider(visible=False)
|
|
||||||
|
|
||||||
percentage = round(100 * callback.cur_steps / callback.max_steps, 0) if callback.max_steps != 0 else 100.0
|
|
||||||
label = "Running {:d}/{:d}: {} < {}".format(
|
|
||||||
callback.cur_steps, callback.max_steps, callback.elapsed_time, callback.remaining_time
|
|
||||||
)
|
|
||||||
return gr.Slider(label=label, value=percentage, visible=True)
|
|
||||||
|
|
||||||
|
|
||||||
def get_time() -> str:
|
|
||||||
return datetime.now().strftime(r"%Y-%m-%d-%H-%M-%S")
|
|
||||||
|
|
||||||
|
|
||||||
def can_quantize(finetuning_type: str) -> "gr.Dropdown":
|
def can_quantize(finetuning_type: str) -> "gr.Dropdown":
|
||||||
if finetuning_type != "lora":
|
if finetuning_type != "lora":
|
||||||
return gr.Dropdown(value="none", interactive=False)
|
return gr.Dropdown(value="none", interactive=False)
|
||||||
|
@ -57,14 +36,19 @@ def check_json_schema(text: str, lang: str) -> None:
|
||||||
gr.Warning(ALERTS["err_json_schema"][lang])
|
gr.Warning(ALERTS["err_json_schema"][lang])
|
||||||
|
|
||||||
|
|
||||||
|
def clean_cmd(args: Dict[str, Any]) -> Dict[str, Any]:
|
||||||
|
no_skip_keys = ["packing"]
|
||||||
|
return {k: v for k, v in args.items() if (k in no_skip_keys) or (v is not None and v is not False and v != "")}
|
||||||
|
|
||||||
|
|
||||||
def gen_cmd(args: Dict[str, Any]) -> str:
|
def gen_cmd(args: Dict[str, Any]) -> str:
|
||||||
args.pop("disable_tqdm", None)
|
args.pop("disable_tqdm", None)
|
||||||
args["plot_loss"] = args.get("do_train", None)
|
args["plot_loss"] = args.get("do_train", None)
|
||||||
current_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
|
current_devices = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
|
||||||
cmd_lines = ["CUDA_VISIBLE_DEVICES={} python src/train_bash.py ".format(current_devices)]
|
cmd_lines = ["CUDA_VISIBLE_DEVICES={} python src/train_bash.py ".format(current_devices)]
|
||||||
for k, v in args.items():
|
for k, v in clean_cmd(args).items():
|
||||||
if v is not None and v is not False and v != "":
|
cmd_lines.append(" --{} {} ".format(k, str(v)))
|
||||||
cmd_lines.append(" --{} {} ".format(k, str(v)))
|
|
||||||
cmd_text = "\\\n".join(cmd_lines)
|
cmd_text = "\\\n".join(cmd_lines)
|
||||||
cmd_text = "```bash\n{}\n```".format(cmd_text)
|
cmd_text = "```bash\n{}\n```".format(cmd_text)
|
||||||
return cmd_text
|
return cmd_text
|
||||||
|
@ -76,29 +60,49 @@ def get_eval_results(path: os.PathLike) -> str:
|
||||||
return "```json\n{}\n```\n".format(result)
|
return "```json\n{}\n```\n".format(result)
|
||||||
|
|
||||||
|
|
||||||
def gen_plot(output_path: str) -> Optional["matplotlib.figure.Figure"]:
|
def get_time() -> str:
|
||||||
log_file = os.path.join(output_path, "trainer_log.jsonl")
|
return datetime.now().strftime(r"%Y-%m-%d-%H-%M-%S")
|
||||||
if not os.path.isfile(log_file) or not is_matplotlib_available():
|
|
||||||
return
|
|
||||||
|
|
||||||
plt.close("all")
|
|
||||||
plt.switch_backend("agg")
|
|
||||||
fig = plt.figure()
|
|
||||||
ax = fig.add_subplot(111)
|
|
||||||
steps, losses = [], []
|
|
||||||
with open(log_file, "r", encoding="utf-8") as f:
|
|
||||||
for line in f:
|
|
||||||
log_info: Dict[str, Any] = json.loads(line)
|
|
||||||
if log_info.get("loss", None):
|
|
||||||
steps.append(log_info["current_steps"])
|
|
||||||
losses.append(log_info["loss"])
|
|
||||||
|
|
||||||
if len(losses) == 0:
|
def get_trainer_info(output_path: os.PathLike) -> Tuple[str, "gr.Slider", Optional["gr.Plot"]]:
|
||||||
return
|
running_log = ""
|
||||||
|
running_progress = gr.Slider(visible=False)
|
||||||
|
running_loss = None
|
||||||
|
|
||||||
ax.plot(steps, losses, color="#1f77b4", alpha=0.4, label="original")
|
running_log_path = os.path.join(output_path, RUNNING_LOG)
|
||||||
ax.plot(steps, smooth(losses), color="#1f77b4", label="smoothed")
|
if os.path.isfile(running_log_path):
|
||||||
ax.legend()
|
with open(running_log_path, "r", encoding="utf-8") as f:
|
||||||
ax.set_xlabel("step")
|
running_log = f.read()
|
||||||
ax.set_ylabel("loss")
|
|
||||||
return fig
|
trainer_log_path = os.path.join(output_path, TRAINER_LOG)
|
||||||
|
if os.path.isfile(trainer_log_path):
|
||||||
|
trainer_log: List[Dict[str, Any]] = []
|
||||||
|
with open(trainer_log_path, "r", encoding="utf-8") as f:
|
||||||
|
for line in f:
|
||||||
|
trainer_log.append(json.loads(line))
|
||||||
|
|
||||||
|
if len(trainer_log) != 0:
|
||||||
|
latest_log = trainer_log[-1]
|
||||||
|
percentage = latest_log["percentage"]
|
||||||
|
label = "Running {:d}/{:d}: {} < {}".format(
|
||||||
|
latest_log["current_steps"],
|
||||||
|
latest_log["total_steps"],
|
||||||
|
latest_log["elapsed_time"],
|
||||||
|
latest_log["remaining_time"],
|
||||||
|
)
|
||||||
|
running_progress = gr.Slider(label=label, value=percentage, visible=True)
|
||||||
|
|
||||||
|
if is_matplotlib_available():
|
||||||
|
running_loss = gr.Plot(gen_loss_plot(trainer_log))
|
||||||
|
|
||||||
|
return running_log, running_progress, running_loss
|
||||||
|
|
||||||
|
|
||||||
|
def save_cmd(args: Dict[str, Any]) -> str:
|
||||||
|
output_dir = args["output_dir"]
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
|
||||||
|
with open(os.path.join(output_dir, TRAINER_CONFIG), "w", encoding="utf-8") as f:
|
||||||
|
safe_dump(clean_cmd(args), f)
|
||||||
|
|
||||||
|
return os.path.join(output_dir, TRAINER_CONFIG)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from llmtuner import run_exp
|
from llmtuner.train.tuner import run_exp
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
@ -7,7 +7,7 @@ def main():
|
||||||
|
|
||||||
def _mp_fn(index):
|
def _mp_fn(index):
|
||||||
# For xla_spawn (TPUs)
|
# For xla_spawn (TPUs)
|
||||||
main()
|
run_exp()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
|
@ -1,9 +0,0 @@
|
||||||
from llmtuner import create_ui
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
create_ui().queue().launch(server_name="0.0.0.0", server_port=None, share=False, inbrowser=True)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
|
@ -1,9 +0,0 @@
|
||||||
from llmtuner import create_web_demo
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
create_web_demo().queue().launch(server_name="0.0.0.0", server_port=None, share=False, inbrowser=True)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
Loading…
Reference in New Issue